Skip to content
2000
Volume 29, Issue 11
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

-acyl tetrahydrothienopyridine derivatives serve as important structural motifs in bioorganic chemistry. Restricted rotation of C-N bond in such molecules gives rise to two distinct chemical environments. Thienopyridine derivatives - were synthesized and characterised by 1H and 13C NMR spectroscopy. The NMR spectra reveal a doubling of signals, which suggests the presence of two rotamers in the solution. Variable temperature (VT) 1H-NMR studies supported this hypothesis. The NOESY analysis confirmed that -rotamer is present in major form as compared to -rotamer. The results were further corroborated through density functional theoretic calculations.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728347242241104091454
2025-06-01
2025-05-03
Loading full text...

Full text loading...

References

  1. Lanyon-HoggT. RitzefeldM. MasumotoN. MageeA.I. RzepaH.S. TateE.W. Modulation of amide bond rotamers in 5-acyl-6,7-dihydro-thieno[3,2-c]pyridines.J. Org. Chem.20158094370437710.1021/acs.joc.5b00205 25713927
    [Google Scholar]
  2. GrausoL. LiY. ScarpatoS. ShulhaO. RárováL. StrnadM. TetaR. MangoniA. ZidornC. Structure and conformation of zosteraphenols, tetracyclic diarylheptanoids from the seagrass Zostera marina: An NMR and DFT study.Org. Lett.2020221788210.1021/acs.orglett.9b03964 31834807
    [Google Scholar]
  3. GeffeM. AndernachL. TrappO. OpatzT. Chromatographically separable rotamers of an unhindered amide.Beilstein J. Org. Chem.20141070170610.3762/bjoc.10.63 24778722
    [Google Scholar]
  4. GloverS.A. Anomeric amides-Structure, properties and reactivity.Tetrahedron199854267229727110.1016/S0040‑4020(98)00197‑5
    [Google Scholar]
  5. (a LaursenJ.S. Engel-AndreasenJ. FristrupP. HarrisP. OlsenC.A. Cis-trans amide bond rotamers in β-peptoids and peptoids: Evaluation of stereoelectronic effects in backbone and side chains.J. Am. Chem. Soc.201313572835284410.1021/ja312532x23343406
    [Google Scholar]
  6. (b ToukachaF.V. AnanikovV.P. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: Methods and limitations.Chem. Soc. Rev.201342218376841510.1039/c3cs60073d 23887200
    [Google Scholar]
  7. AlkortaI. ElgueroJ. RousselC. VanthuyneN. PirasP. Atropisomerism and axial chirality in heteroaromatic compounds.Adv. Heterocycl. Chem.2012105118810.1016/B978‑0‑12‑396530‑1.00001‑2
    [Google Scholar]
  8. SzawkałoJ. MaurinJ.K. PlucińskiF. CzarnockiZ. Synthesis and dynamic stereochemistry of 4-aryl-thiomorpholine-3,5-dione derivatives.J. Mol. Struct.2015107938339010.1016/j.molstruc.2014.08.046
    [Google Scholar]
  9. HoveydaA.H. Evolution of catalytic stereoselective olefin metathesis: from ancillary transformation to purveyor of stereochemical identity.J. Org. Chem.201479114763479210.1021/jo500467z 24720633
    [Google Scholar]
  10. BraggR.A. ClaydenJ. MorrisG.A. PinkJ.H. Stereodynamics of bond rotation in tertiary aromatic amides.Chemistry2002861279128910.1002/1521‑3765(20020315)8:6<1279::AID‑CHEM1279>3.0.CO;2‑7 11921211
    [Google Scholar]
  11. CoxC. LectkaT. Solvent effects on the barrier to rotation in carbamates.J. Org. Chem.19986382426242710.1021/jo9800863 11672097
    [Google Scholar]
  12. RablenP.R. Computational analysis of the solvent effect on the barrier to rotation about the conjugated C-N bond in methyl N, N-dimethylcarbamate.J. Org. Chem.200065237930793710.1021/jo000945z 11073600
    [Google Scholar]
  13. BassoE.A. PontesR.M. Further studies on the rotational barriers of Carbamates. An NMR and DFT analysis of the solvent effect for Cyclohexyl N,N-dimethylcarbamate.J. Mol. Struct. THEOCHEM2002594319920610.1016/S0166‑1280(02)00391‑3
    [Google Scholar]
  14. DeetzM.J. ForbesC.C. JonasM. MalerichJ.P. SmithB.D. WiestO. Unusually low barrier to carbamate C-N rotation.J. Org. Chem.200267113949395210.1021/jo025554u 12027723
    [Google Scholar]
  15. Modaressi-AlamA.R. NajafiP. RostamizadehM. KeykhaH. BijanzadehH.R. KleinpeterE. Dynamic 1H NMR study of the barrier to rotation about the C-N bond in primary carbamates and its solvent dependence.J. Org. Chem.20077262208221110.1021/jo061301f 17309303
    [Google Scholar]
  16. HansonP. WilliamsD.A.R. Restricted carbon-nitrogen bond rotation in some ureas, thioureas, and thiuronium salts.J. Chem. Soc., Perkin Trans. 21973II152162216510.1039/P29730002162
    [Google Scholar]
  17. ZhaoY. RaymondM.K. TsaiH. RobertsJ.D. A proton NMR investigation of rotation about the C(O)-N bonds of urea.J. Phys. Chem.199397122910291310.1021/j100114a013
    [Google Scholar]
  18. VassilevN.G. IvanovI.C. A small change in structure, a big change in flexibility.Molecules20232824800410.3390/molecules28248004 38138494
    [Google Scholar]
  19. MolchanovS. Gryff-KellerA. Solvation of Amides in DMSO and CDCl 3: An Attempt at Quantitative DFT-Based Interpretation of 1H and 13C NMR Chemical Shifts.J. Phys. Chem. A2017121509645965310.1021/acs.jpca.7b10110 29179531
    [Google Scholar]
  20. RiceK.C. BrossiA. Expedient synthesis of racemic and optically active N-norreticuline and N-substituted and 6′-bromo-N-norreticulines.J. Org. Chem.19804559260110.1021/jo01292a008
    [Google Scholar]
  21. BuchsP. RiceK.C. BrossiA. SilvertonJ.V. PotenzoneR. Spectroscopic, optical and crystallographic properties of (S)-(+)-cis-6′-bromo-N-formylnorreticuline.J. Org. Chem.198247214134413710.1021/jo00142a025
    [Google Scholar]
  22. SzántayC. BlaskóG. Bárczai-BekeM. DörnyeiG. RadicsL. Studies aiming at the synthesis of morphine I. separation and characterization of the amide rotamers of 6′-halogeno-n-formyl-norreticulines.Heterocycles1980148112711310.3987/R‑1980‑08‑1127
    [Google Scholar]
  23. Quintanilla-LiceaR. Colunga-ValladaresJ.F. Caballero-QuinteroA. Rodríguez-PadillaC. Tamez-GuerraR. Gómez-FloresR. WaksmanN. NMR detection of isomers arising from restricted rotation of the CN amide bond of N-formyl-o-toluidine and N,N′-bis-formyl-o-tolidine.Molecules2002766267310.3390/70800662
    [Google Scholar]
  24. KamP.C.A. NetheryC.M. The thienopyridine derivatives (platelet adenosine diphosphate receptor antagonists), pharmacology and clinical developments.Anaesthesia2003581283510.1046/j.1365‑2044.2003.02960.x 12492666
    [Google Scholar]
  25. NamM. KimT. KwakJ. SeoS.H. KoM.K. LimE.J. MinS.J. ChoY.S. KeumG. BaekD.J. LeeJ. PaeA.N. Discovery and biological evaluation of tetrahydrothieno[2,3-c]pyridine derivatives as selective metabotropic glutamate receptor 1 antagonists for the potential treatment of neuropathic pain.Eur. J. Med. Chem.20159724525810.1016/j.ejmech.2015.04.060 25984841
    [Google Scholar]
  26. SangshettiJ.N. ShaikhR.I. KhanF.A.K. PatilR.H. MaratheS.D. GadeW.N. ShindeD.B. Synthesis, antileishmanial activity and docking study of N′-substitutedbenzylidene-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetohydrazides.Bioorg. Med. Chem. Lett.20142461605161010.1016/j.bmcl.2014.01.035 24513045
    [Google Scholar]
  27. DarandaleS.N. MullaN.A. PansareD.N. SangshettiJ.N. ShindeD.B. A novel amalgamation of 1,2,3-triazoles, piperidines and thieno pyridine rings and evaluation of their antifungal activity.Eur. J. Med. Chem.20136552753210.1016/j.ejmech.2013.04.045 23807083
    [Google Scholar]
  28. FujitaM. SekiT. IkedaN. Synthesis and bioactivities of novel bicyclic thiophenes and 4,5,6,7-tetrahydrothieno[2,3-c]pyridines as inhibitors of tumor necrosis factor-α (TNF-α) production.Bioorg. Med. Chem. Lett.200212151897190010.1016/S0960‑894X(02)00332‑3 12113803
    [Google Scholar]
  29. KamleshK.K. WavhalD.S. BhalekarS.B. MeshramR.J. ShindeV.S. Exploring new tetrahydrothienopyridine derivatives as platelet agglutination inhibitors: Synthesis, biological evaluation and in silico study.ChemistrySelect20227e202103428
    [Google Scholar]
  30. JackmanL.M. SternhellS. Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry2nd ed BartonD.H.R. DoeringW. Elsevier1978
    [Google Scholar]
  31. BondiA. van der waals volumes and radii of metals in covalent compounds.J. Phys. Chem.19667093006300710.1021/j100881a503
    [Google Scholar]
  32. KleinR.A. Modified van der Waals atomic radii for hydrogen bonding based on electron density topology.Chem. Phys. Lett.20064251-312813310.1016/j.cplett.2006.04.109
    [Google Scholar]
  33. TomasiB. MennucciB. CammiR. Quantum mechanical continuum solvation models.Chem. Rev.20051052999309310.1021/cr9904009 16092826
    [Google Scholar]
  34. JohnsonE.R. KeinanS. Mori-SánchezP. Contreras-GarcíaJ. CohenA.J. YangW. Revealing noncovalent interactions.J. Am. Chem. Soc.20101326498650610.1021/ja100936w 20394428
    [Google Scholar]
  35. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. PeterssonG.A. Gaussian 16, Revision A. 03.Wallingford, CTGaussian, Inc2016
    [Google Scholar]
  36. ChaiJ.D. Head-GordonM. Systematic optimization of long-range corrected hybrid density functionals.J. Chem. Phys.2008128808410608411510.1063/1.2834918 18315032
    [Google Scholar]
  37. McLeanA.D. ChandlerG.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18.J. Chem. Phys.198072105639564810.1063/1.438980
    [Google Scholar]
  38. RoyD. ToddK. JohnM. GaussView, version 6.Shawnee Mission, KSSemichem Inc.2016
    [Google Scholar]
  39. WolinskiK. HintonJ.F. PulayP. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations.J. Am. Chem. Soc.1990112238251826010.1021/ja00179a005
    [Google Scholar]
  40. LuT. ChenF. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem.201233558059210.1002/jcc.22885 22162017
    [Google Scholar]
  41. HumphreyW. DalkeA. SchultenK. VMD: Visual molecular dynamics.J. Mol. Graph.19961413338, 27-2810.1016/0263‑7855(96)00018‑58744570
    [Google Scholar]
/content/journals/coc/10.2174/0113852728347242241104091454
Loading
/content/journals/coc/10.2174/0113852728347242241104091454
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test