Skip to content
2000
Volume 29, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Minerals occurring on earth have been used as raw materials by mankind for thousands of years. Currently, more than 6000 mineral species are known, and a few of them are common or abundant. It has long been known that minerals can catalyse chemical processes. The catalytic activity of metallic ore minerals has been investigated primarily in coal liquefaction and prebiotic chemistry and, to a lesser extent, in organic syntheses. This review article discusses organic chemical reactions, in which metallic ore minerals have been used as catalysts.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728327246240821061535
2024-09-03
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/coc/29/2/COC-29-2-02.html?itemId=/content/journals/coc/10.2174/0113852728327246240821061535&mimeType=html&fmt=ahah

References

  1. RaffertyJ.P. Geological Science.New YorkBritannica Educational Pub2011
    [Google Scholar]
  2. AydinalpC. An introduction to the study of mineralogy.CroatiaInTech201210.5772/2064
    [Google Scholar]
  3. HouseJ.E. HouseK.A. Descriptive Inorganic Chemistry.2nd edCambridge, MassachusettsAcademic Press201010.1016/C2009‑0‑05861‑9
    [Google Scholar]
  4. ZhouL. Towards sustainability in mineral resources.Ore Geol. Rev.202316010560010.1016/j.oregeorev.2023.105600
    [Google Scholar]
  5. SondereggerT. BergerM. AlvarengaR. BachV. CimprichA. DewulfJ. FrischknechtR. GuinéeJ. HelbigC. HuppertzT. JollietO. MotoshitaM. NortheyS. RuganiB. SchrijversD. SchulzeR. SonnemannG. ValeroA. WeidemaB.P. YoungS.B. Mineral resources in life cycle impact assessment-part I: A critical review of existing methods.Int. J. Life Cycle Assess.202025478479710.1007/s11367‑020‑01736‑6
    [Google Scholar]
  6. ZhaiM. HuR. WangY. JiangS. WangR. LiJ. ChenH. YangZ. LüQ. QiT. ShiX. LiY. LiuJ. LiZ. ZhuX. Mineral resource science in China: Review and perspective. Geograph.Sustain20212210711410.1016/j.geosus.2021.05.002
    [Google Scholar]
  7. WillsB.A. FinchJ.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery.8th edOxford, UKButterworth–Heinemann2015
    [Google Scholar]
  8. NovákM. KorbelP. The Complete Encyclopedia of Minerals.New YorkChartwell Books2002
    [Google Scholar]
  9. FeldmanS.R. Sodium Chloride. Kirk-Othmer Encyclopedia of Chemical Technology.New YorkJohn Wiley & Sons, Inc.2005
    [Google Scholar]
  10. AiZ. LiS. ZhaoY. YiH. ChenL. ChenP. SongS. Effect of magnesium ion on sylvite flotation: An experiment and molecular dynamic simulation study.Chem. Phys. Lett.202075213758610.1016/j.cplett.2020.137586
    [Google Scholar]
  11. KafkafiU. XuG. ImasP. MagenH. TarchitzkyJ. JohnstonA.E. Potassium and Chloride in Crops and Soils: The Role of Potassium Chloride Fertilizer in Crop Nutrition; International Potash Institute.Berne, SwitzerlandIPI2002
    [Google Scholar]
  12. TitkovS. SabirovR. PanteleevaN. Investigations of alkylmorpholines-collectors for a new halite flotation process.Miner. Eng.200316111161116610.1016/j.mineng.2003.07.011
    [Google Scholar]
  13. GreenwoodN.N. EarnshawA. Chemistry of the Elements.2nd edOxford, United KingdomButterworth–Heinemann199710.1016/C2009‑0‑30414‑6
    [Google Scholar]
  14. ZhangY. SongS. Beneficiation of fluorite by flotation in a new chemical scheme.Miner. Eng.200316759760010.1016/S0892‑6875(03)00136‑5
    [Google Scholar]
  15. KleinC. Manual of Mineralogy.21st edHoboken, New JerseyWiley1993
    [Google Scholar]
  16. Ahmad FauziA.A. OsmanA.F. AlrashdiA.A. MustafaZ. Abdul HalimK.A. On the use of dolomite as a mineral filler and co-filler in the field of polymer composites: A review.Polymers (Basel)20221414284310.3390/polym14142843 35890619
    [Google Scholar]
  17. ZocaS.M. PennC. Chapter one – An important tool with no instruction manual: A review of gypsum use in agriculture.Adv. Agron.201714414410.1016/bs.agron.2017.03.001
    [Google Scholar]
  18. PauloM.S. VeigaM.R. de BritoJ. Gypsum coatings in ancient buildings.Constr. Build. Mater.200721112613110.1016/j.conbuildmat.2005.06.035
    [Google Scholar]
  19. AustinR.T. Treatment of broken legs before and after the introduction of gypsum.Injury198314538939410.1016/0020‑1383(83)90089‑X 6347885
    [Google Scholar]
  20. MinjigmaaA. TemuujinJ. KhasbaatarD. Oyun-ErdeneG. AmgalanJ. MacKenzieK.J.D. Influence of mechanical distortion on the solubility of fluorapatite.Miner. Eng.200720219419610.1016/j.mineng.2006.07.011
    [Google Scholar]
  21. ChenA. WangX. ZhangQ. Interaction and inhibition mechanism of sulfuric acid with fluorapatite (001) surface and dolomite (104) surface: Flotation experiments and molecular dynamics simulations.Minerals (Basel)20231312151710.3390/min13121517
    [Google Scholar]
  22. DyachenkoA.N. KraydenkoR.I. MalytinL.N. Novel ammonium fluoride process for beryllium raw materials to produce hydroxide.Miner. Eng.202217910743910.1016/j.mineng.2022.107439
    [Google Scholar]
  23. SchmandtD.S. CookN.J. EhrigK. GilbertS. WadeB.P. RollogM. CiobanuC.L. KamenetskyV.S. Uptake of trace elements by baryte during copper ore processing: A case study from Olympic Dam, South Australia.Miner. Eng.2019135839410.1016/j.mineng.2019.02.034
    [Google Scholar]
  24. AcarkanN. BulutG. KangalO. ÖnalG. A new process for upgrading boron content and recovery of borax concentrate.Miner. Eng.200518773974110.1016/j.mineng.2004.12.005
    [Google Scholar]
  25. YuanD. CadienK. LiuQ. ZengH. Separation of talc and molybdenite: Challenges and opportunities.Miner. Eng.201914310592310.1016/j.mineng.2019.105923
    [Google Scholar]
  26. FanC. RenL. ZhangY. BaoS. Grinding effect of sodium silicate on muscovite and its mechanism analysis.Miner. Eng.202319910810610.1016/j.mineng.2023.108106
    [Google Scholar]
  27. LarsenE. JohannessenN.E. KowalczukP.B. KleivR.A. Selective flotation of K-feldspar from Na-feldspar in alkaline environment.Miner. Eng.201914210592810.1016/j.mineng.2019.105928
    [Google Scholar]
  28. PanX. LiS. LiY. GuoP. ZhaoX. CaiY. Resource, characteristic, purification and application of quartz: A review.Miner. Eng.202218310760010.1016/j.mineng.2022.107600
    [Google Scholar]
  29. ChenQ. KasomoR.M. LiH. JiaoX. ZhengH. WengX. MutuaN.M. SongS. HeD. LuoH. Froth flotation of rutile – An overview.Miner. Eng.202116310679710.1016/j.mineng.2021.106797
    [Google Scholar]
  30. WangQ. WangS. MaX. CaoZ. DiJ. YangJ. ZhongH. A green cyclic leaching process for low-grade pyrolusite via a recyclable Fe(II) reductant.Minerals (Basel)2023139119110.3390/min13091191
    [Google Scholar]
  31. ZhangM. XuZ. ZhangQ. DanZ. FuH. YaoW. Properties and potential application of ozone-oxidized starch for enhanced reverse flotation of fine hematite.Miner. Eng.202319810808410.1016/j.mineng.2023.108084
    [Google Scholar]
  32. OpuchovicO. KareivaA. Historical hematite pigment: Synthesis by an aqueous sol–gel method, characterization and application for the colouration of ceramic glazes.Ceram. Int.20154134504451310.1016/j.ceramint.2014.11.145
    [Google Scholar]
  33. TianM. GaoZ. JiB. FanR. LiuR. ChenP. SunW. HuY. Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant.Minerals (Basel)20188831610.3390/min8080316
    [Google Scholar]
  34. TiuG. GhorbaniY. JanssonN. WanhainenC. BolinN.J. Ore mineral characteristics as rate-limiting factors in sphalerite flotation: Comparison of the mineral chemistry (iron and manganese content), grain size, and liberation.Miner. Eng.202218510770510.1016/j.mineng.2022.107705
    [Google Scholar]
  35. DembeleS. AkcilA. PandaS. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite.Miner. Eng.202217510730410.1016/j.mineng.2021.107304
    [Google Scholar]
  36. LiangG. ChimonyoW. LvJ. PengY. Differential depression of calcium lignosulfonate on chalcopyrite and molybdenite flotation with collector kerosene.Miner. Eng.202320110819210.1016/j.mineng.2023.108192
    [Google Scholar]
  37. WuL.M. ZhouC.H. KeelingJ. TongD.S. YuW.H. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation.Earth Sci. Rev.2012115437338610.1016/j.earscirev.2012.10.001
    [Google Scholar]
  38. LiY. Minerals as prebiotic catalysts for chemical evolution towards the origin of life; Mineralogy.Rijeka, CroatiaIntechOpen202210.5772/intechopen.102389
    [Google Scholar]
  39. LiY. KitadaiN. NakamuraR. Chemical diversity of metal sulfide minerals and its implications for the origin of life.Life (Basel)2018844610.3390/life8040046 30308967
    [Google Scholar]
  40. HaasM. LamourS. ChristS.B. TrappO. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting.Commun. Chem.20203114010.1038/s42004‑020‑00387‑w 36703456
    [Google Scholar]
  41. SaladinoR. NeriV. CrestiniC. CostanzoG. GraciottiM. Di MauroE. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals.J. Am. Chem. Soc.200813046155121551810.1021/ja804782e 18939836
    [Google Scholar]
  42. SaladinoR. Di MauroE. García-RuizJ.M. A universal geochemical scenario for formamide condensation and prebiotic chemistry.Chemistry201925133181318910.1002/chem.201803889 30230056
    [Google Scholar]
  43. CostanzoG. SaladinoR. CrestiniC. CicirielloF. Di MauroE. Nucleoside phosphorylation by phosphate minerals.J. Biol. Chem.200728223167291673510.1074/jbc.M611346200 17412692
    [Google Scholar]
  44. VarmaR.S. Clay and clay-supported reagents in organic synthesis.Tetrahedron20025871235125510.1016/S0040‑4020(01)01216‑9
    [Google Scholar]
  45. ThengB.K.G. Clay Mineral Catalysis of Organic Reactions.Boca RatonCRC Press201810.1201/9780429465789
    [Google Scholar]
  46. KumarB.S. DhakshinamoorthyA. PitchumaniK. K10 montmorillonite clays as environmentally benign catalysts for organic reactions.Catal. Sci. Technol.2014482378239610.1039/C4CY00112E
    [Google Scholar]
  47. SenS.E. SmithS.M. SullivanK.A. Organic transformations using zeolites and zeotype materials.Tetrahedron19995544126571269810.1016/S0040‑4020(99)00747‑4
    [Google Scholar]
  48. International Mineralogical Association.Available from: https://mineralogy-ima.org/
  49. HazenR.M. AusubelJ.H. On the nature and significance of rarity in mineralogy.Am. Mineral.201610161245125110.2138/am‑2016‑5601CCBY
    [Google Scholar]
  50. SahaB. DeS. DuttaS. Recent advancements of replacing existing aniline production process with environmentally friendly one-pot process: An overview.Crit. Rev. Environ. Sci. Technol.20134318412010.1080/10643389.2011.604252
    [Google Scholar]
  51. LawrenceS.A. Amines: Synthesis, properties and applications.Cambridge, EnglandCambridge University Press2004
    [Google Scholar]
  52. RappaportZ. The Chemistry of Anilines, Part 1.Hoboken, New JerseyWiley Interscience200710.1002/9780470871737
    [Google Scholar]
  53. BéchampA. De l’action des protosels de fer sur la nitronaphtaline et la nitrobenzine. nouvelle méthode de formation des bases organiques artificielles de Zinin.Ann. Chim. Phys.1854423186196
    [Google Scholar]
  54. KadamH.K. TilveS.G. Advancement in methodologies for reduction of nitroarenes.RSC Advances20155101833918340710.1039/C5RA10076C
    [Google Scholar]
  55. FormentiD. FerrettiF. ScharnaglF.K. BellerM. Reduction of nitro compounds using 3D-non-noble metal catalysts.Chem. Rev.201911942611268010.1021/acs.chemrev.8b00547 30516963
    [Google Scholar]
  56. RomeroA.H. Reduction of nitroarenes via catalytic transfer hydrogenation using formic acid as hydrogen source: A comprehensive review.ChemistrySelect2020542130541307510.1002/slct.202002838
    [Google Scholar]
  57. OrlandiM. BrennaD. HarmsR. JostS. BenagliaM. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines.Org. Process Res. Dev.201822443044510.1021/acs.oprd.6b00205
    [Google Scholar]
  58. RamdarM. KazemiF. KaboudinB. TaranZ. PartoviA. Visible light active CdS nanorods: One-pot synthesis of aldonitrones.New J. Chem.201640119257926210.1039/C6NJ01459C
    [Google Scholar]
  59. BrownO.W. RainesE.D. Nickel, cadmium, and lead sulfides as catalysts in the vapor phase reduction of nitrobenzene.J. Phys. Chem.193943338338610.1021/j150390a011
    [Google Scholar]
  60. GriffittsF.A. BrownO.W. The catalytic activity of cobalt sulfide for the gas-phase reduction of nitro benzene to aniline.J. Phys. Chem.193741347748410.1021/j150381a014
    [Google Scholar]
  61. HuangL. LuoP. XiongM. ChenR. WangY. XingW. HuangJ. Selective reduction of nitroarenes with molybdenum disulfide.Chin. J. Chem.201331898799110.1002/cjoc.201300310
    [Google Scholar]
  62. MorseJ.R. CallejasJ.F. DarlingA.J. SchaakR.E. Bulk iron pyrite as a catalyst for the selective hydrogenation of nitroarenes.Chem. Commun. (Camb.)201753354807481010.1039/C7CC00120G 28406262
    [Google Scholar]
  63. RickardD. LutherG.W.III Chemistry of iron sulfides.Chem. Rev.2007107251456210.1021/cr0503658 17261073
    [Google Scholar]
  64. JeffersonM. Yenial-ArslanU. EvansC. Curtis-MorarC. O’DonnellR. Parbhakar-FoxA. ForbesE. Effect of pyrite textures and composition on flotation performance: A review.Miner. Eng.202320110823410.1016/j.mineng.2023.108234
    [Google Scholar]
  65. MakK.K.W. Synthesis and resolution of the atropisomeric 1,1′-bi-2-naphthol: An experiment in organic synthesis and 2-D NMR spectroscopy.J. Chem. Educ.20048111163610.1021/ed081p1636
    [Google Scholar]
  66. KaganH.B. RiantO. Catalytic asymmetric Diels-Alder reactions.Chem. Rev.19929251007101910.1021/cr00013a013
    [Google Scholar]
  67. da SilvaE.M. VidalH.D.A. JanuárioM.A.P. CorrêaA.G. Advances in the asymmetric synthesis of BINOL derivatives.Molecules20222811210.3390/molecules28010012 36615207
    [Google Scholar]
  68. ShibasakiM. MatsunagaS. Metal/linked-BINOL complexes: Applications in direct catalytic asymmetric Mannich-type reactions.J. Organomet. Chem.2006691102089210010.1016/j.jorganchem.2005.10.025
    [Google Scholar]
  69. DolsophonK. RuangsupapichatN. SoponpongJ. SungsuwanS. PrabpaiS. KongsaereeP. ThongpanchangT. Tetrahydro-1,4-epoxynaphthalene-1-carboxylic acid: A chiral resolving agent for the resolution and absolute configuration assignment of 7,7′-disubstituted 1,1′-bi-2-naphthols.Tetrahedron Asymmetry20162722-231113112010.1016/j.tetasy.2016.09.003
    [Google Scholar]
  70. WuY. YangL. WuB. LiJ. LiuB. KeG. DongF. ZhouY. HeH. Accurate understanding the catalytic role of MnO2 in the oxidative-coupling of 2-naphthols into 1,1′-bi-2-naphthols.Catal. Lett.2021151390190810.1007/s10562‑020‑03353‑2
    [Google Scholar]
  71. SakoM. TakizawaS. YoshidaY. SasaiH. Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water.Tetrahedron Asymmetry20152612-1361361610.1016/j.tetasy.2015.05.002
    [Google Scholar]
  72. HonS.W. LiC.H. KuoJ.H. BarhateN.B. LiuY.H. WangY. ChenC.T. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium (IV) complexes.Org. Lett.20013686987210.1021/ol015505o 11263903
    [Google Scholar]
  73. BrusseeJ. GroenendijkJ.L.G. te KoppeleJ.M. JansenA.C.A. On the mechanism of the formation of S(−)-(1,1′-binaphthalene)-2,2′-diol via copper(II)amine complexes.Tetrahedron198541163313331910.1016/S0040‑4020(01)96682‑7
    [Google Scholar]
  74. TkachenkoN.V. BryliakovK.P. Transition metal catalyzed aerobic asymmetric coupling of 2-naphthols.Mini Rev. Org. Chem.201916439239810.2174/1570193X15666180418153713
    [Google Scholar]
  75. PuccettiF. SchumacherC. WotrubaH. HernándezJ.G. BolmC. The use of copper and vanadium mineral ores in catalyzed mechanochemical carbon–carbon bond formations.ACS Sustain. Chem.& Eng.20208197262726610.1021/acssuschemeng.0c02447
    [Google Scholar]
  76. NasimifarA. MehrabaniJ.V. A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources. Int. J. Min.Geo-Eng202256436138210.22059/IJMGE.2022.319012.594893
    [Google Scholar]
  77. SaranyaS. AnilkumarG. Copper Catalysis in Organic Synthesis.Hoboken, New JerseyWiley‐VCH202010.1002/9783527826445
    [Google Scholar]
  78. HassanJ. SévignonM. GozziC. SchulzE. LemaireM. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction.Chem. Rev.200210251359147010.1021/cr000664r 11996540
    [Google Scholar]
  79. BadanyanS.O. VoskanyanM.G. ChobanyanZ.A. Copper salts in catalytic reactions of organic compounds.Russ. Chem. Rev.198150111074108610.1070/RC1981v050n11ABEH002737
    [Google Scholar]
  80. LazregF. NahraF. CazinC.S.J. Copper–NHC complexes in catalysis.Coord. Chem. Rev.2015293-294487910.1016/j.ccr.2014.12.019
    [Google Scholar]
  81. GawandeM.B. GoswamiA. FelpinF.X. AsefaT. HuangX. SilvaR. ZouX. ZbořilR. VarmaR.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis.Chem. Rev.201611663722381110.1021/acs.chemrev.5b00482 26935812
    [Google Scholar]
  82. OlszewskiT.K. AdlerP. GrisonC. Bio-based catalysts from biomass issued after decontamination of effluents rich in copper–an innovative approach towards greener copper-based catalysis.Catalysts20199321410.3390/catal9030214
    [Google Scholar]
  83. ShiriP. AboonajmiJ. A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions.Beilstein J. Org. Chem.20201655158610.3762/bjoc.16.52 32280385
    [Google Scholar]
  84. FodorA. KissÁ. DebreczeniN. HellZ. GresitsI. A simple method for the preparation of propargylamines using molecular sieve modified with copper(II).Org. Biomol. Chem.20108204575458110.1039/c0ob00224k 20740243
    [Google Scholar]
  85. Torres-MéndezC.E. López-MayorgaB. Copper supported on acid-activated vermiculite as an efficient and recyclable catalyst for the Biginelli reaction: A green approach.Clay Miner.202055427128010.1180/clm.2020.37
    [Google Scholar]
  86. PeshkovV.A. PereshivkoO.P. Van der EyckenE.V. A walk around the A3-coupling.Chem. Soc. Rev.201241103790380710.1039/c2cs15356d 22422343
    [Google Scholar]
  87. SahaT.K. DasR. Progress in synthesis of propargylamine and its derivatives by nanoparticle catalysis via A3 coupling: A decade update.ChemistrySelect20183114716910.1002/slct.201702454
    [Google Scholar]
  88. JesinI. NandiG.C. Recent advances in the A3 coupling reactions and their applications.Eur. J. Org. Chem.20192019162704272010.1002/ejoc.201900001
    [Google Scholar]
  89. RokadeB.V. BarkerJ. GuiryP.J. Development of and recent advances in asymmetric A3 coupling.Chem. Soc. Rev.201948184766479010.1039/C9CS00253G 31465045
    [Google Scholar]
  90. FarhiJ. LykakisI.N. KostakisG.E. Metal-catalysed A3 coupling methodologies: Classification and visualisation.Catalysts202212666010.3390/catal12060660
    [Google Scholar]
  91. MoJ.N. SuJ. ZhaoJ. The asymmetric A3(aldehyde–alkyne–amine) coupling: Highly enantioselective access to propargylamines.Molecules2019247121610.3390/molecules24071216 30925732
    [Google Scholar]
  92. NasrollahzadehM. SajjadiM. GhorbannezhadF. SajadiS.M. A review on recent advances in the application of nanocatalysts in A3 coupling reactions.Chem. Rec.201818101409147310.1002/tcr.201700100 29537731
    [Google Scholar]
  93. MilenM. GyörkeG. DancsóA. VolkB. Study on the A3-coupling reaction catalyzed by readily available copper-containing minerals. Synthesis of propargylamines.Tetrahedron Lett.2020611015154410.1016/j.tetlet.2019.151544
    [Google Scholar]
  94. ClarkA.J. Atom transfer radical cyclisation reactions mediated by copper complexes.Chem. Soc. Rev.200231111110.1039/b107811a 12108978
    [Google Scholar]
  95. ClarkA.J. Copper catalyzed atom transfer radical cyclization reactions.Eur. J. Org. Chem.20162016132231224310.1002/ejoc.201501571
    [Google Scholar]
  96. Muñoz-MolinaJ.M. BelderraínT.R. PérezP.J. Atom transfer radical reactions as a tool for olefin functionalization – on the way to practical applications.Eur. J. Inorg. Chem.20112011213155316410.1002/ejic.201100379
    [Google Scholar]
  97. LiuQ. ChenC. TongX. Pd(0)-catalyzed atom transfer radical cyclization of N-allyl-α-chloroamides: Highly stereoselective synthesis of substituted γ-lactam.Tetrahedron Lett.201556304483448510.1016/j.tetlet.2015.05.094
    [Google Scholar]
  98. LeeG.M. ParvezM. WeinrebS.M. Intramolecular metal catalyzed kharasch cyclizations of olefinic α-halo esters and acids.Tetrahedron198844154671467810.1016/S0040‑4020(01)86169‑X
    [Google Scholar]
  99. De PaoliP. IsseA.A. BortolameiN. GennaroA. New insights into the mechanism of activation of atom transfer radical polymerization by Cu(I) complexes.Chem. Commun. (Camb.)201147123580358210.1039/c1cc10195a 21327281
    [Google Scholar]
  100. BhambraA.S. EdgarM. ElsegoodM.R.J. LiY. WeaverG.W. ArrooR.R.J. YardleyV. Burrell-SawardH. KryštofV. Design, synthesis and antitrypanosomal activities of 2,6-disubstituted-4,5,7-trifluoro-benzo-thiophenes.Eur. J. Med. Chem.201610834735310.1016/j.ejmech.2015.11.043 26698538
    [Google Scholar]
  101. KaplancıklıZ.A. LeventS. OsmaniyeD. SağlıkB.N. ÇevikU.A. ÇavuşoğluB.K. ÖzkayY. IlgınS. Synthesis and anticandidal activity evaluation of new benzimidazole-thiazole derivatives.Molecules20172212205110.3390/molecules22122051 29168743
    [Google Scholar]
  102. PathareB. BansodeT. Review- biological active benzimidazole derivatives.Results Chem.2021310020010.1016/j.rechem.2021.100200
    [Google Scholar]
  103. GhasemiZ. AziziS. SalehiR. KafilH.S. Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties.Monatsh. Chem.2018149114915710.1007/s00706‑017‑2073‑y
    [Google Scholar]
  104. MatsumuraM. KitamuraY. YamauchiA. KanazawaY. MurataY. HyodoT. YamaguchiK. YasuikeS. Synthesis of benzo[d]imidazo[2,1-b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)-benzimidazoles with selenium.Beilstein J. Org. Chem.2019152029203510.3762/bjoc.15.199 31501670
    [Google Scholar]
  105. YangJ. ZhangR. WangW. ZhangZ. ShiM. Axially chiral N-heterocyclic carbene gold(I) complex catalyzed asymmetric Friedel–Crafts/cyclization reaction of nitrogen-tethered 1,6-enynes with indole derivatives.Tetrahedron Asymmetry201122232029203810.1016/j.tetasy.2011.12.004
    [Google Scholar]
  106. XuQ. ShiM. GuP. Synthesis of novel N-heterocyclic carbene-oxazoline palladium complexes and their applications in Suzuki–Miyaura cross-coupling reaction.Synlett201324101255125910.1055/s‑0033‑1338848
    [Google Scholar]
  107. ChanD.M.T. MonacoK.L. WangR.P. WintersM.P. New N- and O-arylations with phenylboronic acids and cupric acetate.Tetrahedron Lett.199839192933293610.1016/S0040‑4039(98)00503‑6
    [Google Scholar]
  108. LamP.Y.S. ClarkC.G. SaubernS. AdamsJ. WintersM.P. ChanD.M.T. CombsA. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation.Tetrahedron Lett.199839192941294410.1016/S0040‑4039(98)00504‑8
    [Google Scholar]
  109. Sanjeeva RaoK. WuT.S. Chan–Lam coupling reactions: Synthesis of heterocycles.Tetrahedron201268387735775410.1016/j.tet.2012.06.015
    [Google Scholar]
  110. ChenJ.Q. LiJ.H. DongZ.B. A review on the latest progress of Chan–Lam coupling reaction.Adv. Synth. Catal.2020362163311333110.1002/adsc.202000495
    [Google Scholar]
  111. JiaX. TongX. Recent progress on Chan–Lam coupling reactions catalyzed by copper(II) complexes.Youji Huaxue20224292640265810.6023/cjoc202203034
    [Google Scholar]
  112. SarmahD. SaikiaR. BoraU. An attractive avenue to Chan-Lam cross-coupling: Scope and developments under Ni-catalysis.Tetrahedron202210413256710.1016/j.tet.2021.132567
    [Google Scholar]
  113. JiaX. PengP.N. O-Bidentate ligand-tunable copper(II) complexes as a catalyst for Chan–Lam coupling reactions of arylboronic acids with 1H-imidazole derivatives.Org. Biomol. Chem.201816468984898810.1039/C8OB02254B 30418460
    [Google Scholar]
  114. LiuB. LiuB. ZhouY. ChenW. Copper(II) hydroxide complexes of N-heterocyclic carbenes and catalytic oxidative amination of arylboronic acids.Organometallics20102961457146410.1021/om100009u
    [Google Scholar]
  115. GuanC. FengY. ZouG. TangJ. Base-assisted, copper-catalyzed N-arylation of (benz)imidazoles and amines with diarylborinic acids.Tetrahedron201773496906691310.1016/j.tet.2017.10.043
    [Google Scholar]
  116. BegouinA. QueirozM.J.R.P. Scope and limitations of the base‐free copper(I) oxide catalyzed N‐heteroarylation of 1H‐(benz)imidazoles with B‐heteroarylboronic acids or 2‐heteroaryl‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolanes.Helv. Chim. Acta201396585386310.1002/hlca.201200310
    [Google Scholar]
  117. JaníkováK. JedinákL. VolnáT. CankařP. Chan-Lam cross-coupling reaction based on the Cu2S/TMEDA system.Tetrahedron201874560661710.1016/j.tet.2017.12.042
    [Google Scholar]
  118. CollmanJ.P. ZhongM. An efficient diamine copper complex-catalyzed coupling of arylboronic acids with imidazoles.Org. Lett.2000291233123610.1021/ol000033j 10810715
    [Google Scholar]
  119. WestM.J. FyfeJ.W.B. VantouroutJ.C. WatsonA.J.B. Mechanistic development and recent applications of the Chan–Lam amination.Chem. Rev.201911924124911252310.1021/acs.chemrev.9b00491 31756093
    [Google Scholar]
  120. GyörkeG. DancsóA. VolkB. MilenM. Chan−Lam arylation of benzimidazole and its derivatives in the presence of copper‐containing minerals.ChemistrySelect20216480280710.1002/slct.202004596
    [Google Scholar]
  121. GlaserC. Beiträge zur Kenntniss des Acetenylbenzols.Ber. Dtsch. Chem. Ges.18692142242410.1002/cber.186900201183
    [Google Scholar]
  122. EglintonG. GalbraithA.R. 182. Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1:3-diyne and related compounds.J. Chem. Soc.195988989610.1039/jr9590000889
    [Google Scholar]
  123. HayA.S. Oxidative coupling of acetylenes. II.J. Org. Chem.19622793320332110.1021/jo01056a511
    [Google Scholar]
  124. BohlmannF. SchönowskyH. InhoffenE. GrauG. Polyacetylenverbindungen, LII. Über den Mechanismus der oxydativen Dimerisierung von Acetylenverbindungen.Chem. Ber.196497379480010.1002/cber.19640970322
    [Google Scholar]
  125. VilhelmsenM.H. JensenJ. TortzenC.G. NielsenM.B. The Glaser–Hay reaction: Optimization and scope based on 13C NMR kinetics experiments.Eur. J. Org. Chem.20132013470171110.1002/ejoc.201201159
    [Google Scholar]
  126. ZhangS. ZhaoL. Anaerobic photoinduced Cu(0/I)-mediated Glaser coupling in a radical pathway.Nat. Commun.2023141674110.1038/s41467‑023‑42602‑x 37875487
    [Google Scholar]
  127. SindhuK.S. AnilkumarG. Recent advances and applications of Glaser coupling employing greener protocols.RSC Advances2014453278672788710.1039/C4RA02416H
    [Google Scholar]
  128. AkhtarR. ZahoorA.F. Transition metal catalyzed Glaser and Glaser-Hay coupling reactions: Scope, classical/green methodologies and synthetic applications.Synth. Commun.202050223337336810.1080/00397911.2020.1802757
    [Google Scholar]
  129. LuoY. DongL. Catalyst-controlled C–H transformation of pyrazolidinones with 1,3-diynes for highly selective synthesis of functionalized bisindoles and indoles.J. Org. Chem.20228795577559110.1021/acs.joc.1c02976 35389223
    [Google Scholar]
  130. CadiernoV. Catalytic hydrofunctionalization reactions of 1,3-diynes.Catalysts20221218910.3390/catal12010089
    [Google Scholar]
  131. WeberS.M. HiltG. Chemoselective cobalt(I)-catalyzed cyclotrimerization of (un)symmetrical 1,3-butadiynes for the synthesis of 1,2,4-regioisomers.Org. Lett.201921114106411010.1021/acs.orglett.9b01281 31117706
    [Google Scholar]
  132. EcksteinB.J. MelkonyanF.S. ZhouN. ManleyE.F. SmithJ. TimalsinaA. ChangR.P.H. ChenL.X. FacchettiA. MarksT.J. Buta-1,3-diyne-based π-conjugated polymers for organic transistors and solar cells.Macromolecules20175041430144110.1021/acs.macromol.6b02702
    [Google Scholar]
  133. GyörkeG. DancsóA. VolkB. HunyadiD. SzalókiI. MilenM. Copper‐containing mineral mediated Glaser coupling of terminal alkynes.ChemistrySelect2022721e20220048010.1002/slct.202200480
    [Google Scholar]
  134. BrownD.G. BoströmJ. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone?J. Med. Chem.201659104443445810.1021/acs.jmedchem.5b01409 26571338
    [Google Scholar]
  135. GoldbergI. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator.Ber. Dtsch. Chem. Ges.19063921691169210.1002/cber.19060390298
    [Google Scholar]
  136. ThomasA. SujathaA. AnilkumarG. Goldberg reaction: Development, mechanistic insights and applications.Mini Rev. Org. Chem.201412132310.2174/1570193X11666141029002910
    [Google Scholar]
  137. SperottoE. van KlinkG.P.M. van KotenG. de VriesJ.G. The mechanism of the modified Ullmann reaction.Dalton Trans.20103943103381035110.1039/c0dt00674b 21049595
    [Google Scholar]
  138. SherborneG.J. AdomeitS. MenzelR. RabeahJ. BrücknerA. FieldingM.R. WillansC.E. NguyenB.N. Origins of high catalyst loading in copper(I)-catalysed Ullmann–Goldberg C–N coupling reactions.Chem. Sci. (Camb.)20178107203721010.1039/C7SC02859H 29147546
    [Google Scholar]
  139. GyörkeG. DancsóA. VolkB. BezúrL. HunyadiD. SzalókiI. MilenM. Direct use of copper-containing minerals in Goldberg arylation of amides.Catal. Lett.2023153250352110.1007/s10562‑022‑03989‑2
    [Google Scholar]
  140. WongX.K. YeongK.Y. A patent review on the current developments of benzoxazoles in drug discovery.ChemMedChem202116213237326210.1002/cmdc.202100370 34289258
    [Google Scholar]
  141. PalS. ManjunathB. GhoraiS. SasmalS. Benzoxazole alkaloids: Occurrence, chemistry, and biology.Alkaloids Chem. Biol.2018797113710.1016/bs.alkal.2017.12.002 29455837
    [Google Scholar]
  142. YadavK.P. RahmanM.A. NishadS. MauryaS.K. AnasM. MujahidM. Synthesis and biological activities of benzothiazole derivatives: A review.Intell. Pharm.20231312213210.1016/j.ipha.2023.06.001
    [Google Scholar]
  143. Sumit; Kumar, A.; Mishra, A.K. Advancement in pharmacological activities of benzothiazole and its derivatives: An up to date review.Mini Rev. Med. Chem.202121331433510.2174/18755607MTA52MzUqw 32819243
    [Google Scholar]
  144. VarmaR.S. KumarD. Manganese triacetate oxidation of phenolic schiffs bases: Synthesis of 2‐arylbenzoxazoles.J. Heterocycl. Chem.19983561539154010.1002/jhet.5570350656
    [Google Scholar]
  145. ChangJ. ZhaoK. PanS. Synthesis of 2-arylbenzoxazoles via DDQ promoted oxidative cyclization of phenolic Schiff bases-a solution-phase strategy for library synthesis.Tetrahedron Lett.200243695195410.1016/S0040‑4039(01)02302‑4
    [Google Scholar]
  146. TerashimaM. IshiiM. KanaokaY. A facile synthesis of 2-substituted benzoxazoles.Synthesis19821982648448510.1055/s‑1982‑29847
    [Google Scholar]
  147. IngleV. GorepatilP. ManeY. Samarium(III) triflate as an efficient and reusable catalyst for facile synthesis of benzoxazoles and benzothiazoles in aqueous medium.Synlett201324172241224410.1055/s‑0033‑1339758
    [Google Scholar]
  148. ZhuX. ZhangF. KuangD. DengG. YangY. YuJ. LiangY. K2S as sulfur source and DMSO as carbon source for the synthesis of 2-unsubstituted benzothiazoles.Org. Lett.202022103789379310.1021/acs.orglett.0c00994 32362124
    [Google Scholar]
  149. EvindarG. BateyR.A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides.J. Org. Chem.20067151802180810.1021/jo051927q 16496964
    [Google Scholar]
  150. GyörkeG. DancsóA. VolkB. HunyadiD. SzalókiI. BulátkóA. MilenM. Preparation of benzoxazoles and benzothiazoles utilizing naturally occurring copper-containing mineral catalyst precursors.Tetrahedron Lett.202311615431910.1016/j.tetlet.2022.154319
    [Google Scholar]
/content/journals/coc/10.2174/0113852728327246240821061535
Loading
/content/journals/coc/10.2174/0113852728327246240821061535
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): catalysis; copper-containing minerals; Minerals; organic synthesis; pyrite; vanadinite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test