Skip to content
2000
Volume 29, Issue 6
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

This review summarizes the recent trends in the transition-metal-catalyzed C-H bond functionalization approach to access -branched (hetero)aryl/alkenyl/alkyl glycosides with reaction characteristics and proposed mechanisms. Recently, the transition-metal-catalyzed C-H functionalization has arisen as a groundbreaking and versatile method for producing potent -branched glycosides feasibly and efficiently. Nowadays, site-selective functionalization of C-H bonds in carbohydrate chemistry is highly demanded, owing to the intricate and highly stable nature of C-H bonds. In this context, we systematically summarize the C-H glycosylation of arenes, C-H arylation of glycoside, and Cattelani-strategy with mechanistic investigation. Also, the applications of transition-metal-catalyzed -glycosylation for the formation of biologically active molecules are discussed.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728326485240815110646
2024-08-29
2025-03-14
Loading full text...

Full text loading...

References

  1. DondoniA. MarraA. Methods for anomeric carbon-linked and fused sugar amino acid synthesis: The gateway to artificial glycopeptides.Chem. Rev.2000100124395442210.1021/cr9903003 11749352
    [Google Scholar]
  2. KoesterD.C. HolkenbrinkA. WerzD.B. Recent advances in the synthesis of carbohydrate mimetics.Synthesis201032173242
    [Google Scholar]
  3. LeclercE. PannecouckeX. Ethève-QuelquejeuM. SollogoubM. Fluoro-C-glycosides and fluoro-carbasugars, hydrolytically stable and synthetically challenging glycomimetics.Chem. Soc. Rev.201342104270428310.1039/C2CS35403A 23212149
    [Google Scholar]
  4. ZouW. C-glycosides and aza-C-glycosides as potential glycosidase and glycosyltransferase inhibitors.Curr. Top. Med. Chem.20055141363139110.2174/156802605774642999 16305536
    [Google Scholar]
  5. CompainP. MartinO.R. Carbohydrate mimetics-based glycosyltransferase inhibitors.Bioorg. Med. Chem.20019123077309210.1016/S0968‑0896(01)00176‑6 11711283
    [Google Scholar]
  6. YangG. SchmiegJ. TsujiM. FranckR.W. The C-glycoside analogue of the immunostimulant α-galactosylceramide (KRN7000): Synthesis and striking enhancement of activity.Angew. Chem. Int. Ed.200443293818382210.1002/anie.200454215 15258945
    [Google Scholar]
  7. FranckR.W. Tsuji, M. α-c-galactosylceramides: Synthesis and immunology.Acc. Chem. Res.2006391069270110.1021/ar050006z 17042469
    [Google Scholar]
  8. BokorÉ. KunS. GoyardD. TóthM. PralyJ.P. VidalS. SomsákL. C-glycopyranosyl arenes and hetarenes: synthetic methods and bioactivity focused on antidiabetic potential.Chem. Rev.201711731687176410.1021/acs.chemrev.6b00475 28121130
    [Google Scholar]
  9. PałaszA. CieżD. TrzewikB. MiszczakK. TynorG. BazanB. In the search of glycoside-based molecules as antidiabetic agents.Top. Curr. Chem. (Cham)201937741910.1007/s41061‑019‑0243‑6 31165274
    [Google Scholar]
  10. ChaoE.C. HenryR.R. SGLT2 inhibition — a novel strategy for diabetes treatment.Nat. Rev. Drug Discov.20109755155910.1038/nrd3180 20508640
    [Google Scholar]
  11. WooV.C. Cardiovascular effects of sodium-glucose cotransporter-2 inhibitors in adults with type 2 diabetes.Can. J. Diabetes2020441616710.1016/j.jcjd.2019.09.004 31839265
    [Google Scholar]
  12. LeseurreL. MereaC. Duprat de PauleS. PinchartA. Eco-footprint: A new tool for the “Made in Chimex” considered approach.Green Chem.20141631139114810.1039/c3gc42201a
    [Google Scholar]
  13. CavezzaA. BoulleC. GuéguiniatA. PichaudP. TrouilleS. RicardL. Dalko-CsibaM. Synthesis of Pro-XylaneTM: A new biologically active C-glycoside in aqueous media.Bioorg. Med. Chem. Lett.200919384584910.1016/j.bmcl.2008.12.037 19135365
    [Google Scholar]
  14. WeiA. BoyK.M. KishiY. Biological evaluation of rationally modified analogs of the H-type II blood group trisaccharide. A correlation between solution conformation and binding affinity.J. Am. Chem. Soc.1995117379432943610.1021/ja00142a008
    [Google Scholar]
  15. ShcherbakovaA. PrellerM. TaftM.H. PujolsJ. VenturaS. TiemannB. BuettnerF.F.R. BakkerH. C-mannosylation supports folding and enhances stability of thrombospondin repeats.eLife20198e5297810.7554/eLife.52978 31868591
    [Google Scholar]
  16. HultinP. Bioactive C-glycosides from bacterial secondary metabolism.Curr. Top. Med. Chem.20055141299133110.2174/156802605774643015 16305533
    [Google Scholar]
  17. PerkinA.G. CI.-Colouring matters of the New Zealand dyewood puriri, Vitex littoralis. Part I.J. Chem. Soc. Trans.18987301019103110.1039/CT8987301019
    [Google Scholar]
  18. RohrJ. ThierickeR. Angucycline group antibiotics.Nat. Prod. Rep.19929210313710.1039/np9920900103 1620493
    [Google Scholar]
  19. HeM. MinJ.W. KongW.L. HeX.H. LiJ.X. PengB.W. A review on the pharmacological effects of vitexin and isovitexin.Fitoterapia2016115748510.1016/j.fitote.2016.09.011 27693342
    [Google Scholar]
  20. ChagasM.B. PontesD.O.B. AlbinoA.V.D. FerreiraE.J. AlvesJ.S.F. PaivaA.S. PontesD.L. LangansserS.M.Z. FerreiraL.S. Bioinspired oxidation in cytochrome P450 of isomers orientin and isoorientin using Salen complexes.Rapid Commun. Mass Spectrom.202034Suppl. 3e8757
    [Google Scholar]
  21. PalmuK. RosenqvistP. ThapaK. IlinaY. SiitonenV. BaralB. MäkinenJ. BelogurovG. VirtaP. NiemiJ. Metsä-KeteläM. Discovery of the showdomycin gene cluster from Streptomyces showdoensis ATCC 15227 yields insight into the biosynthetic logic of C-nucleoside antibiotics.ACS Chem. Biol.20171261472147710.1021/acschembio.7b00078 28418235
    [Google Scholar]
  22. ZengJ. VedachalamS. XiangS. LiuX.W. Direct C-glycosylation of organotrifluoroborates with glycosyl fluorides and its application to the total synthesis of (+)-varitriol.Org. Lett.2011131424510.1021/ol102473k 21114334
    [Google Scholar]
  23. LeeD.Y.W. ZhangW.Y. KarnatiV.V.R. Total synthesis of puerarin, an isoflavone C-glycoside.Tetrahedron Lett.200344366857685910.1016/S0040‑4039(03)01715‑5
    [Google Scholar]
  24. WuZ. WeiG. LianG. YuB. Synthesis of mangiferin, isomangiferin, and homomangiferin.J. Org. Chem.201075165725572810.1021/jo100776q 20704443
    [Google Scholar]
  25. LiuP. JacobsenE.N. Total synthesis of (+)-ambruticin.J. Am. Chem. Soc.200112343107721077310.1021/ja016893s 11674024
    [Google Scholar]
  26. ZhaoG. YaoS. RothchildK.W. LiuT. LiuY. LianJ. HeH.Y. RyanK.S. DuY.L. The biosynthetic gene cluster of pyrazomycin-A C-nucleoside antibiotic with a rare pyrazole moiety.ChemBioChem202021564464910.1002/cbic.201900449 31482654
    [Google Scholar]
  27. TatsutaK. OzekiH. YamaguchiM. TanakaM. OkuiT. Enantioselective total synthesis of medermycin (lactoquinomycin).Tetrahedron Lett.199031385495549810.1016/S0040‑4039(00)97881‑X
    [Google Scholar]
  28. KitamuraK. MaezawaY. AndoY. KusumiT. MatsumotoT. SuzukiK. Synthesis of the pluramycins 2: Total synthesis and structure assignment of saptomycin B.Angew. Chem. Int. Ed.20145351262126510.1002/anie.201308017 24356940
    [Google Scholar]
  29. KrohnK. AgocsA. BäuerleinC. Bä uerlein, C. Total synthesis of angucyclines. XVII. First synthesis of antibiotic 100-1, a deoxydisaccharide angucycline antibiotic of the urdamycinone B-type.J. Carbohydr. Chem.2003227-857959210.1081/CAR‑120026460
    [Google Scholar]
  30. YangY. YuB. Recent advances in the chemical synthesis of C-glycosides.Chem. Rev.201711719122811235610.1021/acs.chemrev.7b00234 28915018
    [Google Scholar]
  31. KitamuraK. AndoY. MatsumotoT. SuzukiK. Total synthesis of aryl C-glycoside natural products: Strategies and tactics.Chem. Rev.201811841495159810.1021/acs.chemrev.7b00380 29281269
    [Google Scholar]
  32. TaillefumierC. ChapleurY. Synthesis and uses of exo-glycals.Chem. Rev.2004104126329210.1021/cr030640v 14719977
    [Google Scholar]
  33. LinC.H. LinH.C. YangW.B. exo-glycal chemistry: General aspects and synthetic applications for biochemical use.Curr. Top. Med. Chem.20055141431145710.2174/156802605774642980 16305538
    [Google Scholar]
  34. YuanX. LinhardtR. Recent advances in the synthesis of C-oligosaccharides.Curr. Top. Med. Chem.20055141393143010.2174/156802605774643033 16305537
    [Google Scholar]
  35. LiuL. McKeeM. PostemaM. Synthesis of C-saccharides and higher congeners.Curr. Org. Chem.20015121133116710.2174/1385272013374699
    [Google Scholar]
  36. MoosE. BenR. Recent advances in the synthesis of C-linked glycoconjugates.Curr. Top. Med. Chem.20055141351136110.2174/156802605774643024 16305535
    [Google Scholar]
  37. LeeD. HeM. Recent advances in aryl C-glycoside synthesis.Curr. Top. Med. Chem.20055141333135010.2174/156802605774643042 16305534
    [Google Scholar]
  38. HocekM. HocekM. KocovskýP. C-nucleosides: Synthetic strategies and biological applications.Chem. Rev.2009109126729676410.1021/cr9002165 19761208
    [Google Scholar]
  39. AdamoM. PergoliR. Synthesis and medicinal properties of 2-deoxyribose and ribose C-nucleosides.Curr. Org. Chem.200812181544156910.2174/138527208786786318
    [Google Scholar]
  40. ChoumaneM. BanchetA. ProbstN. GérardS. PléK. HaudrechyA. The synthesis of d-C-mannopyranosides.C. R. Chim.2010142-323527310.1016/j.crci.2010.05.015
    [Google Scholar]
  41. LalithaK. MuthusamyK. PrasadY.S. VemulaP.K. NagarajanS. Recent developments in β-C-glycosides: Synthesis and applications.Carbohydr. Res.201540215817110.1016/j.carres.2014.10.008 25498016
    [Google Scholar]
  42. BeauJ.M. GallagherT. Nucleophilic C-glycosyl donors for C-glycoside synthesis.Top. Curr. Chem.199718715410.1007/BFb0119252
    [Google Scholar]
  43. TogoH. HeW. WakiY. YokoyamaM. C-glycosylation technology with free radical reactions.Synlett19981998770071710.1055/s‑1998‑1753
    [Google Scholar]
  44. SomsákL. Carbanionic reactivity of the anomeric center in carbohydrates.Chem. Rev.200110118113610.1021/cr980007n 11712195
    [Google Scholar]
  45. DiederichF. de MeijereA. Eds.; Metal-Catalyzed Cross-coupling Reactions, 2nd, Completely Revised and Enlarged Edition.Weinhein, GermanyWiley-VCH2008938
    [Google Scholar]
  46. JanaR. PathakT.P. SigmanM.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners.Chem. Rev.201111131417149210.1021/cr100327p 21319862
    [Google Scholar]
  47. DiederichF. StangP.J. Eds.; Metal-catalyzed Cross-coupling Reactions.Weinhein, GermanyWiley-VCH199814710.1002/9783527612222
    [Google Scholar]
  48. RajanBabuT.V. Palladium(0)-catalyzed C-glycosylation: A facile alkylation of trifluoroacetylglucal.J. Org. Chem.198550193642364410.1021/jo00219a047
    [Google Scholar]
  49. WellingtonK.W. BennerS.A. A review: Synthesis of aryl C-glycosides via the heck coupling reaction.Nucleosides Nucleotides Nucleic Acids200625121309133310.1080/15257770600917013 17067955
    [Google Scholar]
  50. XiongD.C. ZhangL.H. YeX.S. Oxidant-controlled heck-type C-glycosylation of glycals with arylboronic acids: Stereoselective synthesis of aryl 2-deoxy-C-glycosides.Org. Lett.20091181709171210.1021/ol900273d 19301870
    [Google Scholar]
  51. OtteF. SchmidtB. Matsuda–Heck arylation of glycals for the stereoselective synthesis of aryl C-glycosides.J. Org. Chem.20198422148161482910.1021/acs.joc.9b02410 31615205
    [Google Scholar]
  52. FriesenR.W. SturinoC.F. The preparation of C-arylglycals. The palladium-catalyzed coupling of 3,4,6-tri-O-(tert-butyldimethylsilyl)-1-(tributyl-stannyl)-D-glucal and aryl bromides.J. Org. Chem.19905592572257410.1021/jo00296a005
    [Google Scholar]
  53. CoboI. MatheuM.I. CastillónS. BoutureiraO. DavisB.G. Phosphine-free Suzuki-Miyaura cross-coupling in aqueous media enables access to 2-C-aryl-glycosides.Org. Lett.20121471728173110.1021/ol3003139 22409147
    [Google Scholar]
  54. DharumanS. VankarY.D. N-halosuccinimide/AgNO3-efficient reagent systems for one-step synthesis of 2-haloglycals from glycals: Application in the synthesis of 2C-branched sugars via Heck coupling reactions.Org. Lett.20141641172117510.1021/ol500039s 24499471
    [Google Scholar]
  55. ShamimA. VasconcelosS.N.S. AliB. MadureiraL.S. Zukerman-SchpectorJ. StefaniH.A. Ligand and copper free Sonogashira coupling to achieve 2-alkynyl d-glucal derivatives: Regioselective electrophile promoted nucleophilic 5-endo-dig cyclization.Tetrahedron Lett.201556435836584210.1016/j.tetlet.2015.08.052
    [Google Scholar]
  56. BordessaA. FerryA. Lubin-GermainN. Access to complex c2-branched glycoconjugates via palladium-catalyzed aminocarbonylation reaction of 2-iodoglycals.J. Org. Chem.20168124124591246510.1021/acs.joc.6b02278 27978737
    [Google Scholar]
  57. de RobichonM. BordessaA. Lubin-GermainN. FerryA. “CO” as a carbon bridge to build complex c2-branched glycosides using a palladium-catalyzed carbonylative suzuki–miyaura reaction from 2-iodoglycals.J. Org. Chem.20198463328333910.1021/acs.joc.8b03248 30793601
    [Google Scholar]
  58. HussainN. HussainA. Advances in Pd-catalyzed C–C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules.RSC Advances20211154343693439110.1039/D1RA06351K 35497292
    [Google Scholar]
  59. AzeemZ. MandalP.K. Recent advances in palladium-catalyzed C(sp3)/C(sp2)–H bond functionalizations: Access to C-branched glycosides.Org. Biomol. Chem.202220226428110.1039/D1OB02142G 34904995
    [Google Scholar]
  60. GhouilemJ. de RobichonM. Le BideauF. FerryA. MessaoudiS. Emerging organometallic methods for the synthesis of c-branched (hetero)aryl, alkenyl, and alkyl glycosides: C-H functionalization and dual photoredox approaches.Chemistry202127249151110.1002/chem.202003267 32813294
    [Google Scholar]
  61. GouX.Y. ZhuX.Y. ZhangB.S. LiangY.M. Synthesis of C-aryl glycosides by C-H functionalization.Chemistry20232932e20220335110.1002/chem.202203351 36943394
    [Google Scholar]
  62. LiuM. NiuY. WuY.F. YeX.S. Ligand-controlled monoselective C-aryl glycoside synthesis via palladium-catalyzed C–H functionalization of N-quinolyl benzamides with 1-iodoglycals.Org. Lett.20161881836183910.1021/acs.orglett.6b00566 27026362
    [Google Scholar]
  63. WangQ. AnS. DengZ. ZhuW. HuangZ. HeG. ChenG. Palladium-catalysed C-H glycosylation for synthesis of C-aryl glycosides.Nat. Catal.20192979380010.1038/s41929‑019‑0324‑5
    [Google Scholar]
  64. HongB. LiC. WangZ. ChenJ. LiH. LeiX. Enantioselective total synthesis of (-)-incarviatone A.J. Am. Chem. Soc.201513737119461194910.1021/jacs.5b08551 26371964
    [Google Scholar]
  65. WangS. ChenK. GuoF. ZhuW. LiuC. DongH. YuJ.Q. LeiX. C–H glycosylation of native carboxylic acids: Discovery of antidiabetic SGLT-2 inhibitors.ACS Cent. Sci.2023961129113910.1021/acscentsci.3c00201 37396867
    [Google Scholar]
  66. SakamotoK. NagaiM. EbeY. YorimitsuH. NishimuraT. Iridium-catalyzed direct hydroarylation of glycals via C-H activation: Ligand-controlled stereoselective synthesis of α- and β-C-glycosyl arenes.ACS Catal.2019921347135210.1021/acscatal.8b04686
    [Google Scholar]
  67. WuJ. KaplanerisN. NiS. KaltenhäuserF. AckermannL. Late-StageC. Late-stage C(sp2)–H and C(sp3)-H glycosylation of C -aryl/alkyl glycopeptides: Mechanistic insights and fluorescence labeling.Chem. Sci. (Camb.)202011256521652610.1039/D0SC01260B 34094117
    [Google Scholar]
  68. WangQ. ZhuW. SunQ. HeG. ChenG. Pd-catalyzed ortho -directed C-H glycosylation of arenes using n-linked bidentate auxiliaries.Chin. J. Chem.202139357157610.1002/cjoc.202000500
    [Google Scholar]
  69. GouX.Y. LiY. ShiW.Y. LuanY.Y. DingY.N. AnY. HuangY.C. ZhangB.S. LiuX.Y. LiangY.M. Ruthenium-catalyzed stereo- and site-selective ortho- and meta-C-H glycosylation and mechanistic studies.Angew. Chem. Int. Ed.20226132e20220565610.1002/anie.202205656 35674418
    [Google Scholar]
  70. AckermannL. NovákP. VicenteR. HofmannN. Ruthenium-catalyzed regioselective direct alkylation of arenes with unactivated alkyl halides through C-H bond cleavage.Angew. Chem. Int. Ed.200948336045604810.1002/anie.200902458 19593835
    [Google Scholar]
  71. WuJ. KaplanerisN. PöhlmannJ. MichiyukiT. YuanB. AckermannL. Remote C-H glycosylation by ruthenium(II) Catalysis: Modular assembly of meta-C-aryl glycosides.Angew. Chem. Int. Ed.20226142e20220862010.1002/anie.202208620
    [Google Scholar]
  72. WeiX. ZengM. LiY. WangD. WangJ. LiuH. Palladium(II)-catalyzed heck coupling: direct stereoselective synthesis of C-aryl glycosides from nonactivated glycals and thianthrenium salts.Org. Lett.202426122473247710.1021/acs.orglett.4c00654 38498594
    [Google Scholar]
  73. LaiM. OthmanK.A. YaoH. WangQ. FengY. HuangN. LiuM. ZouK. Open-air stereoselective construction of C-aryl glycosides.Org. Lett.20202231144114810.1021/acs.orglett.9b04665 31971808
    [Google Scholar]
  74. XieR. XuJ. ShiH. XiaoC. WangN. HuangN. YaoH. Stereocontrolled synthesis of aryl C-nucleosides under ambient conditions.Org. Lett.202426245162516610.1021/acs.orglett.4c01664 38832704
    [Google Scholar]
  75. DingW.Y. LiuH.H. ChengJ.K. YaoH. XiangS.H. TanB. Palladium catalyzed decarboxylative β-C-glycosylation of glycals with oxazol-5-(4H)-ones as acceptors.Org. Chem. Front.20229226149615510.1039/D2QO01308H
    [Google Scholar]
  76. LiuD.Y. WangP.F. RuanY.J. WangX.L. HuX.Y. YangQ. LiuJ. WenM.M. ZhangC.Z. XiaoY.H. LiuX.G. Assembly of heterocyclic C-glycosides by Ru-catalyzed C-H activation/cyclization with carbonyl sulfoxonium ylide glyco-reagents.Org. Lett.202426245092509710.1021/acs.orglett.4c01287 38848493
    [Google Scholar]
  77. LiuD.Y. WangP.F. HuX.Y. RuanY.J. WangX.L. WenM.M. ZhangC.Z. XiaoY.H. LiuX.G. Synthesis of heteroaryl C-glycosides via Ru-catalyzed C-H activation/cyclization: Dioxazolone glycogen designs and applications.Org. Chem. Front.202411133609361310.1039/D4QO00529E
    [Google Scholar]
  78. GulzarT. LiuY.H. XiaY.N. LiuW. LiuP. ZhuD. XuP. YuB. Synthesis of C-oligosaccharides via Ni-catalyzed reductive hydroglycosylation.Org. Lett.20242681718172210.1021/acs.orglett.4c00289 38380896
    [Google Scholar]
  79. ZhangL. ZengW. XieD. LiJ. MaX. Nickel and chiral phosphoric acid cocatalysis enables synthesis of C-acyl glycosides.Org. Lett.20242671332133710.1021/acs.orglett.3c04159 38330288
    [Google Scholar]
  80. LyuM.Y. JacoboS.A. BrownM.K. Diverse Synthesis of C-glycosides by stereoselective Ni-catalyzed carboboration of glycals.J. Am. Chem. Soc.202414628188661887210.1021/jacs.4c06246 38967118
    [Google Scholar]
  81. JiaoY. ShiX. JuL. YuS. Photoredox-catalyzed synthesis of C-benzoselenazolyl/benzothiazolyl glycosides from 2-isocyanoaryl selenoethers/thioethers and glycolisa-tionsyl bromides.Org. Lett.202426139039510.1021/acs.orglett.3c04059 38165656
    [Google Scholar]
  82. ProbstN. GrelierG. DahaouiS. AlamiM. GandonV. MessaoudiS. Palladium(II)-catalyzed diastereoselective 2,3-Trans C(sp3)-H arylation of glycosides.ACS Catal.2018897781778610.1021/acscatal.8b01617
    [Google Scholar]
  83. GhouilemJ. TranC. GrimblatN. RetailleauP. AlamiM. GandonV. MessaoudiS. Diastereoselective Pd-catalyzed anomeric C(sp3)-H activation: Synthesis of α-(hetero)aryl C-glycosides.ACS Catal.20211131818182610.1021/acscatal.0c05052
    [Google Scholar]
  84. de RobichonM. BordessaA. MalinowskiM. UzielJ. Lubin-GermainN. FerryA. Access to C-aryl/alkenylglycosides by directed Pd-catalyzed C–H functionalisation of the anomeric position in glycal-type substrates.Chem. Commun. (Camb.)20195578118061180810.1039/C9CC05993H 31532405
    [Google Scholar]
  85. de RobichonM. BranquetD. UzielJ. Lubin-GermainN. FerryA. Directed nickel-catalyzed pseudo -Anomeric C-H alkynylation of glycals as an approach to-wards C-glycoconjugate synthesis.Adv. Synth. Catal.2021363225138514810.1002/adsc.202100823
    [Google Scholar]
  86. DubeyA. Singh ChauhanN. AzeemZ. Kumar MandalP. Directed palladium-catalyzed pseudo-anomeric C-H functionalization of glycal-type substrates: access to unsymmetrical gem -diarylmethyl C-glycosides.Adv. Synth. Catal.2023365682082510.1002/adsc.202201343
    [Google Scholar]
  87. WangJ. DongG. Palladium/norbornene cooperative catalysis.Chem. Rev.2019119127478752810.1021/acs.chemrev.9b00079 31021606
    [Google Scholar]
  88. LvW. ChenY. WenS. BaD. ChengG. Modular and stereoselective synthesis of C-aryl glycosides via catellani reaction.J. Am. Chem. Soc.202014235148641487010.1021/jacs.0c07634 32808778
    [Google Scholar]
  89. DingY.N. ShiW.Y. LiuC. ZhengN. LiM. AnY. ZhangZ. WangC.T. ZhangB.S. LiangY.M. Palladium-catalyzed ortho –C-H glycosylation/ipso-alkenylation of aryl iodides.J. Org. Chem.20208517112801129610.1021/acs.joc.0c01392 32786633
    [Google Scholar]
  90. SangwanR. AzeemZ. Kumar MandalP. Recent advances and strategies towards synthesis of indolyl and tryptophan-C-glycoside scaffolds.Adv. Synth. Catal.202436671484150810.1002/adsc.202301490
    [Google Scholar]
  91. AzeemZ. Kumar MandalP. Recent advances and development in visible-light-mediated glycosylation: An expanding research area in glycochemistry.Adv. Synth. Catal.2023365172818284910.1002/adsc.202300425
    [Google Scholar]
  92. ZhangS. NiuY.H. YeX.S. General approach to five-membered nitrogen heteroaryl C-glycosides using a palladium/copper cocatalyzed C-H functionalization strategy.Org. Lett.201719133608361110.1021/acs.orglett.7b01583 28598174
    [Google Scholar]
  93. CaiS. SunQ. WangQ. HeG. ChenG. Ruthenium-catalyzed pyridine-directed aryl C-H glycosylation with glycosyl chlorides.J. Org. Chem.202287138811881810.1021/acs.joc.2c00815 35696353
    [Google Scholar]
  94. DingY.N. LiN. HuangY.C. ShiW.Y. ZhengN. WangC.T. AnY. LiuX.Y. LiangY.M. One-pot stereoselective synthesis of 2,3-diglycosylindoles and tryptophan-C-glycosides via palladium-catalyzed C-H glycosylation of indole and tryptophan.Org. Lett.202224122381238610.1021/acs.orglett.2c00602 35319894
    [Google Scholar]
  95. WangZ. Total Synthesis of C-α-mannosyl tryptophan via palladium-catalyzed C-H glycosylation.CCS Chem.2020217291736
    [Google Scholar]
  96. DuvalR. DuplaisC. Fluorescent natural products as probes and tracers in biology.Nat. Prod. Rep.201734216119310.1039/C6NP00111D 28125109
    [Google Scholar]
  97. CañequeT. GomesF. MaiT.T. MaestriG. MalacriaM. RodriguezR. Synthesis of marmycin A and investigation into its cellular activity.Nat. Chem.20157974475110.1038/nchem.2302 26291947
    [Google Scholar]
  98. KitamuraK. AndoY. MatsumotoT. SuzukiK. Synthesis of the pluramycins 1: Two designed anthrones as enabling platforms for flexible bis-C-glycosylation.Angew. Chem. Int. Ed.20145351258126110.1002/anie.201308016 24375957
    [Google Scholar]
  99. RohrJ. ZeeckA. Metabolic products of microorganisms. 240 Urdamycins, new angucycline antibiotics from Streptomyces fradiae. II Structural studies of urdamycins B to F.J. Antibiot. (Tokyo)198740445946710.7164/antibiotics.40.459 3583915
    [Google Scholar]
  100. YuC. LiuY. XieX. HuS. ZhangS. ZengM. ZhangD. WangJ. LiuH. Ir(I)-Catalyzed C-H glycosylation for synthesis of 2-indolyl-C-deoxyglycosides.Adv. Synth. Catal.2021363214926493110.1002/adsc.202100855
    [Google Scholar]
  101. ZhuW. SunQ. ChangH. ZhangH-X. WangQ. ChenG. HeG. Synthesis of 2-deoxy- C -glycosides via iridium-catalyzed sp2 and sp3 C-H glycosylation with unfunctionalized glycals†.Chin. J. Chem.202240557157610.1002/cjoc.202100658
    [Google Scholar]
  102. AguillónA.R. MascarelloA. SegrettiN.D. de AzevedoH.F.Z. GuimaraesC.R.W. MirandaL.S.M. de SouzaR.O.M.A. Synthetic strategies toward SGLT2 inhibitors.Org. Process Res. Dev.201822446748810.1021/acs.oprd.8b00017
    [Google Scholar]
  103. MuQ.Q. GuoA.X. CaiX. QinY.Y. LiuX.L. YeF.Z. YangH.J. XiaoX. LiuX.W. Cobalt’s dual role in promoting C3-glycosylation of indoles: Unraveling mechanistic insights.Org. Lett.202325387040704510.1021/acs.orglett.3c02624 37721454
    [Google Scholar]
  104. ShiW.Y. LiH.Y. GouX.Y. LuanY.Y. ZhengN. NiuZ.J. ZhangZ. LiuX.Y. LiangY.M. Synthesis of C-aryl glycosides via Ru-catalyzed remote C-H glycosylation of 8-aminoquinoline amides.Adv. Synth. Catal.2022364162796280010.1002/adsc.202200549
    [Google Scholar]
  105. ChauhanN.S. DubeyA. MandalP.K. Palladium-catalyzed direct C-H glycosylation of Free (N-H) indole and tryptophan by norbornene-mediated regioselective C-H activation.Org. Lett.202224397067707110.1021/acs.orglett.2c02537 36165771
    [Google Scholar]
  106. Singh ChauhanN. Kumar MandalP. Palladium-catalysed norbornene-mediated regioselective direct C-H glycosylation of free (N-H) pyrrole derivatives.Adv. Synth. Catal.202436661291129710.1002/adsc.202301356
    [Google Scholar]
  107. AnY. ZhangB.S. DingY.N. ZhangZ. GouX.Y. LiX.S. WangX. LiY. LiangY.M. Palladium-catalyzed C-H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs).Chem. Sci. (Camb.)20211239131441315010.1039/D1SC03569J 34745545
    [Google Scholar]
  108. ZhaoP. LiL. ShiF. SuY. LvT. HuoX. WangX. Synthesis of 1,2-disubstituted C-aryl glycosides via palladium/norbornene cooperative catalysis.Org. Lett.202426224711471510.1021/acs.orglett.4c01491 38809207
    [Google Scholar]
  109. DingY.N. XuM.Z. HuangY.C. AckermannL. KongX. LiuX.Y. LiangY.M. Stereoselective assembly of C-oligosaccharides via modular difunctionalization of glycals.Nat. Commun.2024151279410.1038/s41467‑024‑47060‑7 38555346
    [Google Scholar]
  110. LiuY. WangY. DaiW. HuangW. LiY. LiuH. Palladium-catalysed C(sp3)-H glycosylation for the synthesis of C-alkyl glycoamino acids.Angew. Chem. Int. Ed.20205993491349410.1002/anie.201914184 31901005
    [Google Scholar]
  111. SunQ. ZhangH. WangQ. QiaoT. HeG. ChenG. Stereoselective synthesis of C-vinyl glycosides via palladium-catalyzed C-H glycosylation of alkenes.Angew. Chem. Int. Ed.20216036196201962510.1002/anie.202104430 34228869
    [Google Scholar]
/content/journals/coc/10.2174/0113852728326485240815110646
Loading
/content/journals/coc/10.2174/0113852728326485240815110646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test