Skip to content
2000
Volume 29, Issue 7
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In this study, functionalized 2-(trichloromethyl)-1-benzo[]imidazole derivative with good yields was synthesized using a copper-catalyzed -arylation reaction of 2-iodoaniline and trichloroacetonitrile. This reaction was performed by employing the catalytic value of copper (I) and 1,10-phenanthroline as the ligand in tetrahydrofuran solvent at 23°C. In the following, the reaction of the final product with phenylacetylene and sodium azide (Huisgen reaction) using the copper catalyst in water solvent at 23°C led to the synthesis of new (1,2,3-triazol)-1-benzo[]imidazole derivatives with the principles of green chemistry and suitable efficiency. The availability of raw materials and suitable catalysts, mild reaction conditions, and easy purification are among the advantages of this method for the synthesis of various multi-substituted benzo[]imidazole and 1,2,3-triazole derivatives.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728322595240819045039
2024-09-09
2025-06-17
Loading full text...

Full text loading...

References

  1. SreeramaR. BarnaliM. BalamuraliM.M. KaushikC. Synthesis and medicinal applications of benzimidazoles: An overview.Curr. Org. Synth.2017141406010.2174/1570179413666160818151932
    [Google Scholar]
  2. EllingboeJ.W. SpinelliW. WinkleyM.W. NguyenT.T. ParsonsR.W. MoubarakI.F. KitzenJ.M. Von EngenD. BagliJ.F. Class III antiarrhythmic activity of novel substituted 4-[(methylsulfonyl)-amino]benzamides and sulfonamides.J. Med. Chem.199235470571610.1021/jm00082a011 1542097
    [Google Scholar]
  3. ZhangG. RenP. GrayN.S. SimT. LiuY. WangX. CheJ. TianS.S. SandbergM.L. SpaldingT.A. RomeoR. IskandarM. ChowD. Martin SeidelH. KaranewskyD.S. HeY. Discovery of pyrimidine benzimidazoles as Lck inhibitors: Part I.Bioorg. Med. Chem. Lett.200818205618562110.1016/j.bmcl.2008.08.104 18793846
    [Google Scholar]
  4. ÖzdenS. AtabeyD. YıldızS. GökerH. Synthesis, potent anti-staphylococcal activity and QSARs of some novel 2-anilinobenzazoles.Eur. J. Med. Chem.20084371390140210.1016/j.ejmech.2007.10.009 18022733
    [Google Scholar]
  5. ShaoB. HuangJ. SunQ. ValenzanoK.J. SchmidL. NolanS. 4-(2-Pyridyl)piperazine-1-benzimidazoles as potent TRPV1 antagonists.Bioorg. Med. Chem. Lett.200515371972310.1016/j.bmcl.2004.11.021 15664844
    [Google Scholar]
  6. BonfantiJ.F. MeyerC. DoubletF. FortinJ. MullerP. QueguinerL. GeversT. JanssensP. SzelH. WillebrordsR. TimmermanP. WuytsK. van RemoortereP. JanssensF. WigerinckP. AndriesK. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121).J. Med. Chem.200851487589610.1021/jm701284j 18254606
    [Google Scholar]
  7. WhiteA.W. AlmassyR. CalvertA.H. CurtinN.J. GriffinR.J. HostomskyZ. MaegleyK. NewellD.R. SrinivasanS. GoldingB.T. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase.J. Med. Chem.200043224084409710.1021/jm000950v 11063605
    [Google Scholar]
  8. NakanoH. InoueT. KawasakiN. MiyatakaH. MatsumotoH. TaguchiT. InagakiN. NagaiH. SatohT. Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action.Bioorg. Med. Chem.20008237338010.1016/S0968‑0896(99)00291‑6 10722160
    [Google Scholar]
  9. ZhaoZ. ArnaizD.O. GriedelB. SakataS. DallasJ.L. WhitlowM. TrinhL. PostJ. LiangA. MorrisseyM.M. ShawK. Design, synthesis, and in vitro biological activity of benzimidazole based factor Xa inhibitors.J. Bioorg. Med. Chem. Lett.200010996396610.1016/S0960‑894X
    [Google Scholar]
  10. LorenziS. MorM. BordiF. RivaraS. RivaraM. MoriniG. BertoniS. BallabeniV. BarocelliE. PlazziP.V. Validation of a histamine H3 receptor model through structure–activity relationships for classical H3 antagonists.Bioorg. Med. Chem.200513195647565710.1016/j.bmc.2005.05.072 16085419
    [Google Scholar]
  11. KumarD. JacobM.R. ReynoldsM.B. KerwinS.M. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1.Bioorg. Med. Chem.200210123997400410.1016/S0968‑0896(02)00327‑9 12413851
    [Google Scholar]
  12. Weidner-WellsM.A. OhemengK.A. NguyenV.N. Fraga-SpanoS. MacielagM.J. WerbloodH.M. FolenoB.D. WebbG.C. BarrettJ.F. HlastaD.J. Amidino benzimidazole inhibitors of bacterial two-component systems.Bioorg. Med. Chem. Lett.200111121545154810.1016/S0960‑894X(01)00024‑5 11412977
    [Google Scholar]
  13. CoffinD.R. SeradG.A. HicksH.L. MontgomeryR.T. Properties and applications of celanese PBI-polybenzimidazole Fiber.Text. Res. J.198252746647210.1177/004051758205200706
    [Google Scholar]
  14. LaiM.Y. ChenC.H. HuangW.S. LinJ.T. KeT.H. ChenL.Y. TsaiM.H. WuC.C. Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters.Angew. Chem. Int. Ed.200847358158510.1002/anie.200704113 18058878
    [Google Scholar]
  15. GhaziA. GhasemiE. MahdavianM. RamezanzadehB. RostamiM. The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating.Corros. Sci.20159420721710.1016/j.corsci.2015.02.007
    [Google Scholar]
  16. BansalY. SilakariO. The therapeutic journey of benzimidazoles: A review.Bioorg. Med. Chem.201220216208623610.1016/j.bmc.2012.09.013 23031649
    [Google Scholar]
  17. SpasovA.A. YozhitsaI.N. BugaevaL.I. AnisimovaV.A. Benzimidazole derivatives: Spectrum of pharmacological activity and toxicological properties (a review).Pharm. Chem. J.199933523224310.1007/BF02510042
    [Google Scholar]
  18. KantK. PatelC.K. BanerjeeS. NaikP. AttaA.K. KabiA.K. MalakarC.C. Recent advancements in strategies for the synthesis of imidazoles, thiazoles, oxazoles, and benzimidazoles.Chem. Select202384720230398810.1002/slct.202303988
    [Google Scholar]
  19. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An overview on biological activity of benzimidazole derivatives.Mater Horiz.: From Nature Nanomater20228235137810.1007/978‑981‑16‑8399‑2_9
    [Google Scholar]
  20. KaldhiD. VodnalaN. GujjarappaR. NayakS. RavichandiranV. GuptaS. HazraC.K. MalakarC.C. Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles.Tetrahedron Lett.201960322322910.1016/j.tetlet.2018.12.017
    [Google Scholar]
  21. KabiA.K. GujjarappaR. RoyA. SahooA. MusibD. VodnalaN. SinghV. MalakarC.C. Transition-metal-free transfer hydrogenative cascade reaction of nitroarenes with amines/alcohols: Redox-economical access to benzimidazoles.J. Org. Chem.20218621145971460710.1021/acs.joc.1c01450 34662119
    [Google Scholar]
  22. MalakarC.C. BaskakovaA. ConradJ. BeifussU. Copper-catalyzed synthesis of quinazolines in water starting from o-bromobenzylbromides and benzamidines.Chemistry201218298882888510.1002/chem.201200583 22730204
    [Google Scholar]
  23. LiuY. ManX. BaiQ. LiuH. LiuP. FuY. HuD. LuP. MaY. Highly efficient blue organic light-emitting diode based on a pyrene[4,5-d]imidazole-pyrene molecule.CCS Chem.20224121422710.31635/ccschem.021.202000627
    [Google Scholar]
  24. ZhouM. ZouY. ZhangL. ZhangZ. ZhangW. Chiral bicyclic imidazole-catalyzed direct enantioselective C-acetylation of indolones.CCS Chemistry20235236137110.31635/ccschem.022.202201782
    [Google Scholar]
  25. LiuL. GongY. TongY. TianH. WangX. HuY. HuangS. HuangW. SharmaS. CuiJ. JinY. GongW. ZhangW. Imidazole-linked fully conjugated covalent organic framework for high-performance sodium-ion battery.CCS Chemistry2024651255126310.31635/ccschem.024.202403938
    [Google Scholar]
  26. NematpourM. AbediE. AbediE. A novel one-pot protocol for the cu-catalyzed synthesis of nine 2-aminobenzimidazole derivatives from o-phenylenediamine and trichloroacetonitrile.Lett. Org. Chem.20191629910310.2174/1570178615666180914114010
    [Google Scholar]
  27. LargeronM. NguyenK. Recent advances in the synthesis of benzimidazole derivatives from the oxidative coupling of primary amines.Synthesis201850224125310.1055/s‑0036‑1590915
    [Google Scholar]
  28. BhanageB. NaleD. N-substituted formamides as C1-sources for the synthesis of benzimidazole and benzothiazole derivatives by using zinc catalysts.Synlett201526202835284210.1055/s‑0035‑1560319
    [Google Scholar]
  29. ZhangJ. XuZ-G. ChenZ-Z. TangY. ZuoL. TangD-Y. Facile one-pot synthesis of benzimidazole and quinoxalin-2(1h)-one scaffolds via two-component coupling reaction, deprotection, and intermolecular cyclization.Synlett201425172518252010.1055/s‑0034‑1379016
    [Google Scholar]
  30. SahaM. DasA.R. I2/TBHP promoted oxidative C–N bond formation at room temperature: Divergent access of 2-substituted benzimidazoles involving ring distortion.Tetrahedron Lett.201859262520252510.1016/j.tetlet.2018.05.028
    [Google Scholar]
  31. SayahiM.H. KhoshneviszadehM. SoheilizadM. SaghanezhadS.J. MahdaviM. Efficient copper-catalyzed synthesis of 2-arylbenzimidazole derivatives by reaction of 1-fluoro-2-nitrobenzene with benzamidine hydrochlorides.Chem. Heterocycl. Compd.201854335135410.1007/s10593‑018‑2272‑4
    [Google Scholar]
  32. UllmannF. SponagelP. Ueber Phenylirung von Phenolen.Justus Liebigs Ann. Chem.19063501-28310710.1002/jlac.19063500104
    [Google Scholar]
  33. FanL. CheZ. ZhangR. YuX. ZhiX. XuH. Synthesis of benzopyrano[4,3-b](N-arylsulfonyl)indoles and benzopyrano[3,4-b](N-arylsulfonyl)indoles via intramolecular palladium-catalyzed aryl–aryl coupling reaction.Mol. Divers.201216241542110.1007/s11030‑012‑9370‑5 22528272
    [Google Scholar]
  34. YadavL. SrivastavaV. YadavD. YadavA. WatalG. Copper-Catalyzed formamidation of arylboronic acids: direct access to formanilides.Synlett201324111423142710.1055/s‑0033‑1338453
    [Google Scholar]
  35. MalliaC.J. WalterG.C. BaxendaleI.R. Flow carbonylation of sterically hindered ortho-substituted iodoarenes.Beilstein J. Org. Chem.2016121503151110.3762/bjoc.12.147 27559403
    [Google Scholar]
  36. AzovV.A. JanottD. SchlüterD. ZellerM. Tuning of tetrathiafulvalene properties: Versatile synthesis of N-arylated monopyrrolotetrathiafulvalenes via Ullmann-type coupling reactions.Beilstein J. Org. Chem.20151186086810.3762/bjoc.11.96 26124887
    [Google Scholar]
  37. BeletskayaI.P. CheprakovA.V. Copper in cross-coupling reactions.Coord. Chem. Rev.200424821-242337236410.1016/j.ccr.2004.09.014
    [Google Scholar]
  38. EvanoG. BlanchardN. ToumiM. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis.Chem. Rev.200810883054313110.1021/cr8002505 18698737
    [Google Scholar]
  39. HassanJ. SévignonM. GozziC. SchulzE. LemaireM. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction.Chem. Rev.200210251359147010.1021/cr000664r 11996540
    [Google Scholar]
  40. KunzK. ScholzU. GanzerD. Renaissance of ullmann and goldberg reactions - progress in copper catalyzed C-N-, C-O- and C-S-coupling.Synlett2003152428243910.1055/s‑2003‑42473
    [Google Scholar]
  41. LeyS.V. ThomasA.W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation.Angew Chem. Int. Ed. Engl.2003424454004910.1002/anie.200300594
    [Google Scholar]
  42. NematpourM. Fasihi DastjerdiH. Mahboubi RabbaniS.M.I. TabatabaiS.A. Copper‐catalyzed N-arylation of polysubstituted pyridines synthesized by the novel reaction of N-sulfonyl ketenimine and malononitrile‐trichloroacetonitrile adduct.J. Heterocycl. Chem.20195692604261110.1002/jhet.3668
    [Google Scholar]
  43. NematpourM. Fasihi DastjerdiH. Mahboubi RabbaniS.M.I. TabatabaiS.A. Copper‐catalyzed intramolecular N-arylation of dihalobenzene and amine‐trichloroacetonitrile adduct under ultrasound‐irradiation.ChemistrySelect2019435102991030110.1002/slct.201902411
    [Google Scholar]
  44. KhlebnikovA. ShinkevichE. NovikovM. A convenient access to 3-(trihalomethyl)-3-phenyl-3,4-dihydro-2H-1,4-benz¬oxazines/thiazines and chlorinated 3-phenyl-2,3-dihydro-1,5-benzoxazepines/thiazepines by an aziridination-selective-ring-opening sequence.Synthesis20072007222523010.1055/s‑2006‑958938
    [Google Scholar]
  45. RudyakovaE.V. Evstaf’evaI.T. RozentsveigI.B. MirskovaA.N. LevkovskayaG.G. Synthesis of N-arylsulfonyl-2-aryl(hetaryl)aminoacetic acids.Russ. J. Org. Chem.200642798198510.1134/S1070428006070098
    [Google Scholar]
  46. RichmondT.G. ShriverD.F. Electrophilic halogen exchange between Lewis acids and transition-metal perfluoroalkyl complexes. Synthesis and characterization of transition-metal-alpha-haloalkyl complexes.Organometallics19843230531410.1021/om00080a025
    [Google Scholar]
  47. ZhangZ. TangW. Drug metabolism in drug discovery and development.Acta Pharm. Sin. B20188572173210.1016/j.apsb.2018.04.003 30245961
    [Google Scholar]
  48. ChuI. VilleneuveD.C. SecoursV.E. BeckingG.C. ValliV.E. Trihalomethanes: II reversibility of toxicological changes produced by chloroform, bromodichloromethane, chlorodibromomethane and bromoform in rats.J. Environ. Sci. Health B198217322524010.1080/03601238209372315 7096899
    [Google Scholar]
  49. AugustoO. Alkylation and cleavage of DNA by carbon-centered radical metabolites.Free Radic. Biol. Med.199315332933610.1016/0891‑5849(93)90079‑A 8406132
    [Google Scholar]
  50. WinterE. PizzolC.D. Filippin-MonteiroF.B. BrondaniP. SilvaA.M.P.W. SilvaA.H. BonacorsoH.G. MartinsM.A.P. ZanattaN. Creczynski-PasaT.B. Antitumoral activity of a trichloromethyl pyrimidine analogue: Molecular cross-talk between intrinsic and extrinsic apoptosis.Chem. Res. Toxicol.20142761040104910.1021/tx500094x 24848672
    [Google Scholar]
  51. YavariI. NematpourM. DamghaniT. Copper-catalyzed S-arylation of tetramethylguanidine–heterocumulene adducts.Tetrahedron Lett.20145571323132510.1016/j.tetlet.2014.01.006
    [Google Scholar]
  52. YavariI. NematpourM. Copper‐catalyzed N-arylation of 1,1,3,3‐tetramethylguanidine-phenyl isocyanate adduct.Helv. Chim. Acta20149781132113510.1002/hlca.201300418
    [Google Scholar]
  53. NematpourM. AbediE. AbediE. LotfiM. Copper-catalyzed N-arylation of the adduct of malononitrile and trichloroacetonitrile.Lett. Org. Chem.201815972773010.2174/1570178614666170810125505
    [Google Scholar]
  54. NematpourM. AbediE. AbediE. A Direct access to N-arylation of guanidines by ligand-free, copper catalysis at room temperature.Lett. Org. Chem.201815867868110.2174/1570178615666171222162430
    [Google Scholar]
  55. Seyed-TalebiS.M. KazeminezhadI. NematpourM. Synthesis and characterization of Ag@Carbon core-shell spheres as a novel catalyst for room temperature N-arylation reaction.J. Catal.201836133934610.1016/j.jcat.2018.02.029
    [Google Scholar]
  56. YavariI. NematpourM. A direct access to heptasubstituted biguanides.Mol. Divers.201519470370810.1007/s11030‑015‑9601‑7 25926389
    [Google Scholar]
  57. NematpourM. RezaeeE. JahaniM. TabatabaiS.A. Highly regioselective, base-catalyzed, biginelli-type reaction of aldehyde, phenylacetone and urea/thiourea kinetic vs. thermodynamic control.J. Sulfur Chem.201839215116310.1080/17415993.2017.1402332
    [Google Scholar]
  58. YavariI. NematpourM. A one-pot synthesis of functionalized sulfonyl-yn-imines via a Cu-catalyzed tandem reaction of sodium arylsulfinates, trichloroacetonitrile, and terminal alkynes has been developed.Helv. Chim. Acta201497338438810.1002/hlca.201300214
    [Google Scholar]
  59. BayanatiM. ParizadehN. NematpourM. SedaghatA. TabatabaiaS.A. A new route for the synthesis of functionalized benzo[d]imidazo[5,1-b]thiazol-1-amine derivatives from benzothiazole, trichloroacetamidines and terminal alkynes.J. Sulfur Chem.202142212113010.1080/17415993.2020.1820010
    [Google Scholar]
  60. YuenJ. FangY.Q. LautensM. CuI-catalyzed tandem intramolecular amidation using gem-dibromovinyl systems.Org. Lett.20068465365610.1021/ol052840u 16468734
    [Google Scholar]
  61. StrieterE.R. BlackmondD.G. BuchwaldS.L. The role of chelating diamine ligands in the goldberg reaction: A kinetic study on the copper-catalyzed amidation of aryl iodides.J. Am. Chem. Soc.2005127124120412110.1021/ja050120c 15783164
    [Google Scholar]
  62. KlaparsA. AntillaJ.C. HuangX. BuchwaldS.L. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles.J. Am. Chem. Soc.2001123317727772910.1021/ja016226z 11481007
    [Google Scholar]
  63. KlaparsA. HuangX. BuchwaldS.L. A general and efficient copper catalyst for the amidation of aryl halides.J. Am. Chem. Soc.2002124257421742810.1021/ja0260465 12071751
    [Google Scholar]
  64. JiangL. JobG.E. KlaparsA. BuchwaldS.L. Copper-catalyzed coupling of amides and carbamates with vinyl halides.Org. Lett.20035203667366910.1021/ol035355c 14507200
    [Google Scholar]
  65. HaiderJ. KunzK. ScholzU. Highly selective copper‐catalyzed monoarylation of aniline.Adv. Synth. Catal.2004346771772210.1002/adsc.200404011
    [Google Scholar]
  66. ShafirA. BuchwaldS.L. Highly selective room-temperature copper-catalyzed C-N coupling reactions.J. Am. Chem. Soc.2006128278742874310.1021/ja063063b
    [Google Scholar]
  67. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  68. AmantiniD. FringuelliF. PiermattiO. PizzoF. ZuninoE. VaccaroL. Synthesis of 4-aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-aryl-1-nitroethenes with TMSN3 under solvent-free conditions.J. Org. Chem.200570166526652910.1021/jo0507845 16050724
    [Google Scholar]
  69. SmithC.D. GreaneyM.F. Zinc mediated azide-alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles.Org. Lett.201315184826482910.1021/ol402225d 24001177
    [Google Scholar]
  70. ShiF. WaldoJ.P. ChenY. LarockR.C. Benzyne click chemistry: Synthesis of benzotriazoles from benzynes and azides.Org. Lett.200810122409241210.1021/ol800675u 18476707
    [Google Scholar]
  71. BreugstM. ReissigH.U. The Huisgen reaction: Milestones of the 1,3‐dipolar cycloaddition.Angew. Chem. Int. Ed.20205930122931230710.1002/anie.202003115 32255543
    [Google Scholar]
  72. YavariI. NematpourM. Tandem synthesis of highly functionalized N-phosphorylated sulfonamido-pyrazolone derivatives.Tetrahedron Lett.201354375061506310.1016/j.tetlet.2013.07.035
    [Google Scholar]
  73. YavariI. NematpourM. TavakoliZ. Copper‐catalyzed synthesis of 2H‐thiopyran derivatives from alkynes, sulfonyl azides, carbon disulfide, and malononitrile.Helv. Chim. Acta201396112141214610.1002/hlca.201200600
    [Google Scholar]
  74. SeyfiS. AlizadehR. GanjiM.D. AmaniV. Palladium(II) complexes with 1,2,4-triazole derivative & ethylene diamine as ligands, synthesis, characterization, luminesence study & crystal structure determination.Polyhedron2017134330231510.1016/j.poly.2017.06.034
    [Google Scholar]
  75. PaqhalehD.M.S. AminjanovA.A. AmaniV. Discrete and polymeric lead(II) complexes containing 4-methyl-1,2,4-triazole-3-thiol ligand: X-ray studies, spectroscopic characterization, and thermal analyses.J. Inorg. Organomet. Polym. Mater.201424234034610.1007/s10904‑013‑9961‑3
    [Google Scholar]
  76. VaishnaniM.J. BijaniS. RahamathullaM. BaldaniyaL. JainV. ThajudeenK.Y. AhmedM.M. FarhanaS.A. PashaI. Biological importance and synthesis of 1,2,3-triazole derivatives: A review.Green Chem. Lett. Rev.2024171230798910.1080/17518253.2024.2307989
    [Google Scholar]
  77. LauriaA. DelisiR. MingoiaF. TerenziA. MartoranaA. BaroneG. AlmericoA.M. 1,2,3‐Triazole in heterocyclic compounds, endowed with biological activity, through 1,3‐dipolar cycloadditions.Eur. J. Org. Chem.20142014163289330610.1002/ejoc.201301695
    [Google Scholar]
  78. HalimehjaniA.Z. MohammadlouM. Regio- and diastereoselective synthesis of substituted triazolo [3,4-b]thiadiazin-6-ols and triazolo[3,4-b]thiadiazines.Synthesis202456142284229410.1055/a‑2017‑4814
    [Google Scholar]
/content/journals/coc/10.2174/0113852728322595240819045039
Loading
/content/journals/coc/10.2174/0113852728322595240819045039
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test