Skip to content
2000
Volume 29, Issue 7
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

A series of 4-thiazolidinone was synthesized and characterized by means of TLC, melting point, and spectral data like IR, 1H NMR, and Mass spectra. The anti-inflammatory activity of the synthesized compounds was determined studies. The antioxidant properties of the synthesized compounds were determined by carrageenan-induced rat paw edema model. The synthesized compounds showed significant anti-inflammatory and antioxidant activities. The most promising results for both antioxidant and anti-inflammatory activity were exhibited by compound which may emerge as a potent anti-inflammatory agent with potential free radical scavenging activity. Molecular docking studies were carried out to determine the interaction of compounds into the active site of COX-2 inhibitor (PDB ID: 3LN1), which suggested compound to have the best docking score by showing interactions with ASP483 and LYS478.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728301305240828073241
2024-09-16
2025-05-23
Loading full text...

Full text loading...

References

  1. BabiorB.M. NADPH oxidase.Curr. Opin. Immunol.2004161424710.1016/j.coi.2003.12.001 14734109
    [Google Scholar]
  2. QuinnM.T. GaussK.A. Structure and regulation of the neutrophil respiratory burst oxidase: Comparison with nonphagocyte oxidases.J. Leukoc. Biol.200476476078110.1189/jlb.0404216 15240752
    [Google Scholar]
  3. ChenS. SchopferP. Hydroxyl‐radical production in physiological reactions.Eur. J. Biochem.1999260372673510.1046/j.1432‑1327.1999.00199.x 10103001
    [Google Scholar]
  4. MariottiA. A primer on inflammation.Compend. Contin. Educ. Dent.2004257715 15645882
    [Google Scholar]
  5. TeliG. SharmaP. ChawlaP.A. Exploring the potential of substituted 4-thiazolidinone derivatives in the treatment of breast cancer: Synthesis, biological screening and in silico studies.Polycycl. Aromat. Compd.20234376202623410.1080/10406638.2022.2112708
    [Google Scholar]
  6. Archna, ChawlaP.A. TeliG. PathaniaS. SinghS. SrivastavaV. Exploration of anti-oxidant, anti-inflammtory and anti-cancer potential of substituted 4-thiazolidinone derivatives: Synthesis, biological evaluation and docking studies.Polycycl. Aromat. Compd.2023431597618
    [Google Scholar]
  7. FridovichI. Superoxide anion radical (O2-.), superoxide dismutases, and related matters.J. Biol. Chem.199727230185151851710.1074/jbc.272.30.18515 9228011
    [Google Scholar]
  8. BiswasS. DasR. Ray BanerjeeE. Role of free radicals in human inflammatory diseases.AIMS Biophys.20174459661410.3934/biophy.2017.4.596
    [Google Scholar]
  9. ConnerE.M. GrishamM.B. Inflammation, free radicals, and antioxidants.Nutrition199612427427710.1016/S0899‑9007(96)00000‑8 8862535
    [Google Scholar]
  10. WinyardP.G. BlakeD.R. EvansC.H. Free radicals and inflammation.Springer Science & Business Media200010.1007/978‑3‑0348‑8482‑2
    [Google Scholar]
  11. GomesA. FernandesE. LimaJ. MiraL. CorvoM. Molecular mechanisms of anti-inflammatory activity mediated by flavonoids.Curr. Med. Chem.200815161586160510.2174/092986708784911579 18673226
    [Google Scholar]
  12. TripathiA.C. GuptaS.J. FatimaG.N. SonarP.K. VermaA. SarafS.K. 4-Thiazolidinones: The advances continue.Eur. J. Med. Chem.201472527710.1016/j.ejmech.2013.11.017
    [Google Scholar]
  13. DeepA. JainS. SharmaP.C. Synthesis and anti-inflammatory activity of some novel biphenyl-4-carboxylic acid 5-(arylidene)-2-(aryl)-4-oxothiazolidin-3-yl amides.Acta Pol. Pharm.20106716367 20210080
    [Google Scholar]
  14. VermaA. SarafS.K. 4-Thiazolidinone – A biologically active scaffold.Eur. J. Med. Chem.200843589790510.1016/j.ejmech.2007.07.017 17870209
    [Google Scholar]
  15. AbhinitM. GhodkeM. PratimaN.A. Exploring potential of 4-thiazolidinone: A brief review.Int. J. Pharm. Pharm. Sci.2009114764
    [Google Scholar]
  16. OmarK. GeronikakiA. ZoumpoulakisP. CamoutsisC. SokovićM. ĆirićA. GlamočlijaJ. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs.Bioorg. Med. Chem.201018142643210.1016/j.bmc.2009.10.041 19914077
    [Google Scholar]
  17. DeepA. NarasimhanB. LimS.M. RamasamyK. MishraR.K. ManiV. 4-Thiazolidinone derivatives: Synthesis, antimicrobial, anticancer evaluation and QSAR studies.RSC Advances2016611110948510949410.1039/C6RA23006G
    [Google Scholar]
  18. SzychowskiK.A. LejaM.L. KaminskyyD.V. BindugaU.E. PinyazhkoO.R. LesykR.B. GmińskiJ. Study of novel anticancer 4-thiazolidinone derivatives.Chem. Biol. Interact.2017262465610.1016/j.cbi.2016.12.008 27965178
    [Google Scholar]
  19. WangS. ZhaoY. ZhangG. LvY. ZhangN. GongP. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent.Eur. J. Med. Chem.20114683509351810.1016/j.ejmech.2011.05.017 21621880
    [Google Scholar]
  20. KumarR.A. PatilS.H. Biological prospective of 4-thiazolidinone: A review.Hygeia J. D. Med.2017918097
    [Google Scholar]
  21. ErgençN. ÇapanG. GünayN.S. ÖzkirimliS. GüngörM. ÖzbeyS. KendiE. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives.Arch. Pharm. (Weinheim)19993321034334710.1002/(SICI)1521‑4184(199910)332:10<343::AID‑ARDP343>3.0.CO;2‑0 10575366
    [Google Scholar]
  22. AlmasiradA. GhadimiM. MirahmadiS. AhmadianK.P. JahaniR. NazariM. RezaeeE. AzizianH. RabizadehP. TabatabaiS.A. FaiziM. Design, synthesis, and preliminary pharmacological evaluation of novel thiazolidinone derivatives as potential benzodiazepine agonists.Mol. Diversity2021262769780
    [Google Scholar]
  23. RaiK.M.L. UmeshaK.B. NayakaM.A.H. Antioxidant and antimicrobial activity of 5-methyl-2-(5-methyl-1,3-diphenyl-1H-pyrazole-4-carbonyl)-2,4-dihydro-pyrazol-3-one.Int. J. Biomed. Sci.20095435936810.59566/IJBS.2009.5359 23675159
    [Google Scholar]
  24. BanuS. ArunachalamG. JayaveeraK.N. BabuA.V.L. PremakumariK.B. Estimation of total phenolic content and in vitro antioxidant activity of Barleria montana.Der. Pharmacia. Let.201134178182
    [Google Scholar]
  25. BanuS. ArunachalamG. JayaveeraK.N. BabuA.V.L. PremakumariK.B. Estimation of total phenolic content and in vitro antioxidant activity of Barleria Montana.Pharm. Lett.201134
    [Google Scholar]
  26. NargundL.V.G. ReddyG.R.N. HariprasadV. Anti-inflammatory activity of substituted 1,3,4-oxadiazoles.J. Pharm. Sci.199483224624810.1002/jps.2600830226 8169798
    [Google Scholar]
  27. GeronikakiA. GavalasA. Antioxidants and inflammatory disease: Synthetic and natural antioxidants with anti-inflammatory activity.Comb. Chem. High Throughput Screen.20069642544210.2174/138620706777698481 16842224
    [Google Scholar]
  28. TasneemS. LiuB. LiB. ChoudharyM.I. WangW. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents.Pharmacol. Res.201913912614010.1016/j.phrs.2018.11.001 30395947
    [Google Scholar]
  29. VogelS. BarbicM. JürgenliemkG. HeilmannJ. Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect.Eur. J. Med. Chem.20104562206221310.1016/j.ejmech.2010.01.060 20153559
    [Google Scholar]
  30. KourounakisA.P. GalanakisD. TsiakitzisK. RekkaE.A. KourounakisP.N. Synthesis and pharmacological evaluation of novel derivatives of anti-inflammatory drugs with increased antioxidant and anti-inflammatory activities.Drug Dev. Res.199947191610.1002/(SICI)1098‑2299(199905)47:1<9::AID‑DDR2>3.0.CO;2‑9
    [Google Scholar]
  31. KeebleJ.E. MooreP.K. Pharmacology and potential therapeutic applications of nitric oxide‐releasing non‐steroidal anti‐inflammatory and related nitric oxide‐donating drugs.Br. J. Pharmacol.2002137329531010.1038/sj.bjp.0704876 12237248
    [Google Scholar]
  32. AntolovichM. PrenzlerP.D. PatsalidesE. McDonaldS. RobardsK. Methods for testing antioxidant activity.Analyst (Lond.)2002127118319810.1039/b009171p 11827390
    [Google Scholar]
  33. ShahidiF. ZhongY. Measurement of antioxidant activity.J. Funct. Foods20151875778110.1016/j.jff.2015.01.047
    [Google Scholar]
  34. MunteanuI.G. ApetreiC. Analytical methods used in determining antioxidant activity: A review.Int. J. Mol. Sci.2021227338010.3390/ijms22073380 33806141
    [Google Scholar]
  35. SchlesierK. HarwatM. BöhmV. BitschR. Assessment of antioxidant activity by using different in vitro methods.Free Radic. Res.200236217718710.1080/10715760290006411 11999386
    [Google Scholar]
  36. MoharramH.A. YoussefM.M. Methods for determining the antioxidant activity: A review.Alex. J. Food Sci. Tech.2014111314210.12816/0025348
    [Google Scholar]
  37. GohariA.R. HajimehdipoorH. SaeidniaS. AjaniY. HadjiakhoondiA. Antioxidant activity of some medicinal species using FRAP assay.J. Med. Plant.201110375460
    [Google Scholar]
  38. PrastiwiR. ElyaB. HanafiM. DesmiatyY. SauriasariR. The antioxidant activity of Sterculia stipulata Korth woods and leaves by FRAP method.Pharmacogn. J.202012223623910.5530/pj.2020.12.36
    [Google Scholar]
  39. Ramírez-GarcíaO. Salinas-MorenoY. Santillán-FernándezA. Sumaya-MartínezM.T. Screening antioxidant capacity of Mexican maize (Zea mays L.) landraces with colored grain using ABTS, DPPH and FRAP methods.Cereal Res. Commun.20225041075108310.1007/s42976‑021‑00221‑6
    [Google Scholar]
  40. Jiménez-MoralesW.A. Cañizares-MaciasM.P. Fast FRAP-SIA method to determine antioxidant capacity.Talanta202427312581310.1016/j.talanta.2024.125813 38461642
    [Google Scholar]
  41. KaurI. GeethaT. Screening methods for antioxidants-A review.Mini Rev. Med. Chem.20066330531210.2174/138955706776073448 16515469
    [Google Scholar]
  42. MadhurangaH. SamarakoonD.N.A.W. Methods for determining in vitro antioxidant activity: Methodologies for the DPPH, FRAP, and H2O2 assays.2023
    [Google Scholar]
  43. Toyo'okaT. KashiwazakiT. KatoM. On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection.Talanta.2003602-346747510.1016/S0039‑9140(03)00076‑6
    [Google Scholar]
  44. DonthaS. A review on antioxidant methods.Asian J. Pharm. Clin. Res.2016921432
    [Google Scholar]
  45. YangX. PengQ. LiuQ. HuJ. TangZ. CuiL. LinZ. XuB. LuK. YangF. ShengZ. YuanQ. LiuS. ZhangJ. ZhouX. Antioxidant activity against H2O2-induced cytotoxicity of the ethanol extract and compounds from Pyrola decorate leaves.Pharm. Biol.20175511843184810.1080/13880209.2017.1333126 28571528
    [Google Scholar]
  46. AlamM.N. BristiN.J. RafiquzzamanM. Review on in vivo and in vitro methods evaluation of antioxidant activity.Saudi Pharm. J.2013212143152 24936134
    [Google Scholar]
  47. NabaviS.M. EbrahimzadehM.A. NabaviS.F. JafariM. Antioxidant activities of methanol exract of Sambucus ebulus.Pharmacologyonline200912544745010.3923/pjbs.2009.447.450 19579986
    [Google Scholar]
  48. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  49. DeepA. JainS. SharmaP.C. MittalS.K. Synthesis, characterization and antimicrobial evaluation of 2,5-disudstituted-4-thiazolidinone derivatives.Arab. J. Chem.201134041
    [Google Scholar]
  50. JakharR. DangiM. KhichiA. ChhillarA.K. Relevance of molecular docking studies in drug designing.Curr. Bioinform.202015427027810.2174/1574893615666191219094216
    [Google Scholar]
  51. YurievE. RamslandP.A. Latest developments in molecular docking: 2010–2011 in review.J. Mol. Recognit.201326521523910.1002/jmr.2266 23526775
    [Google Scholar]
  52. ShoichetB.K. McGovernS.L. WeiB. IrwinJ.J. Lead discovery using molecular docking.Curr. Opin. Chem. Biol.20026443944610.1016/S1367‑5931(02)00339‑3 12133718
    [Google Scholar]
  53. KaurT. MadgulkarA. BhalekarM. AsgaonkarK. Molecular docking in formulation and development.Curr. Drug Discov. Technol.2019161303910.2174/1570163815666180219112421 29468973
    [Google Scholar]
  54. GuedesI.A. de MagalhãesC.S. DardenneL.E. Receptor–ligand molecular docking.Biophys. Rev.201461758710.1007/s12551‑013‑0130‑2 28509958
    [Google Scholar]
  55. MorrisG.M. Lim-WilbyM. Molecular docking.Methods Mol Biol.20084433658210.1007/978‑1‑59745‑177‑2_19
    [Google Scholar]
  56. ElokelyK.M. DoerksenR.J. Docking challenge: Protein sampling and molecular docking performance.J. Chem. Inf. Model.20135381934194510.1021/ci400040d 23530568
    [Google Scholar]
  57. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: A review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑1 28510083
    [Google Scholar]
  58. ChawlaP. KalraS. KumarR. SinghR. SarafS.K. Novel 2-(substituted phenyl Imino)-5-benzylidene-4-thiazolidinones as possible non-ulcerogenic tri-action drug candidates: Synthesis, characterization, biological evaluation and docking studies.Med. Chem. Res.201928334035910.1007/s00044‑018‑02288‑z
    [Google Scholar]
  59. ChawlaP. SinghR. SarafS.K. Effect of chloro and fluoro groups on the antimicrobial activity of 2,5-disubstituted 4-thiazolidinones: A comparative study.Med. Chem. Res.201221103263327110.1007/s00044‑011‑9864‑1
    [Google Scholar]
/content/journals/coc/10.2174/0113852728301305240828073241
Loading
/content/journals/coc/10.2174/0113852728301305240828073241
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test