Skip to content
2000
Volume 28, Issue 20
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Inulin is a naturally occurring polydisperse and flexible polysaccharide. It is a non-toxic, biocompatible, water-soluble, biodegradable, and affordable polymer. Furthermore, because of its unique properties, inulin has piqued the interest of many researchers. Studies have revealed that inulin demonstrates a broad range of biological activities such as antioxidant, antifungal, antibacterial, anticancer, antidiabetic, and immunological modulating properties in the pharmaceutical industry. Inulin has been demonstrated to function as a sweetener, fat replacer, water-holding agent, thickener, texture modifier, and browning agent in dairy and bakery food items. Inulin has produced EMF, a biofuel that is one of the most desirable gasoline substitutes. Today, inulin is widely used in the chemical, food, and pharmaceutical industries. Chemical modification of inulin is an important methodology for expanding its applications in a variety of fields. This article discusses the numerous synthesis methods used to modify the inulin structure, including conventional and non-conventional methods such as microwave and ultrasonication, as well as the diverse applications of inulin and its derivatives in several industries. This review article seeks to explore the current state of research on synthetic modifications of inulin and its wide array of applications.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728318805240627112106
2024-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. MeyerD. BayarriS. TárregaA. CostellE. Inulin as texture modifier in dairy products.Food Hydrocoll.20112581881189010.1016/j.foodhyd.2011.04.012
    [Google Scholar]
  2. El-KholyW.M. MahrousH. Biological studies on bio-yoghurt fortified with prebiotic obtained from Jerusalem artichoke.Food Nutr. Sci.20156161552156410.4236/fns.2015.616160
    [Google Scholar]
  3. LopesS.M.S. KrausováG. CarneiroJ.W.P. GonçalvesJ.E. GonçalvesR.A.C. de OliveiraA.J.B. A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni.Food Chem.201722515416110.1016/j.foodchem.2016.12.100 28193409
    [Google Scholar]
  4. MensinkM.A. FrijlinkH.W. van der Voort MaarschalkK. HinrichsW.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics.Carbohydr. Polym.201513040541910.1016/j.carbpol.2015.05.026 26076642
    [Google Scholar]
  5. MudannayakeD.C. JayasenaD.D. WimalasiriK.M.S. RanadheeraC.S. AjlouniS. Inulin fructans food applications and alternative plant sources: A review.Int. J. Food Sci. Technol.20225795764578010.1111/ijfs.15947
    [Google Scholar]
  6. WichienchotS. ThammarutwasikP. JongjareonrakA. ChansuwanW. HmadhluP. HongpattarakereT. ItharatA. OoraikulB. Extraction and analysis of prebiotics from selected plants from southern Thailand.Songklanakarin J. Sci. Technol.2011335517523
    [Google Scholar]
  7. LiY. MaX. LiuX. Physicochemical and rheological properties of cross-linked inulin with different degree of polymerization.Food Hydrocoll.20199531832510.1016/j.foodhyd.2018.11.026
    [Google Scholar]
  8. IzawaK. HasegawaT. Tosylated and azidated inulins as key substrates for further chemical modifications to access inulin-based advanced materials: An inulin-based glycocluster.Bioorg. Med. Chem. Lett.20122221189119310.1016/j.bmcl.2011.11.094 22177083
    [Google Scholar]
  9. VerraestD. L. Da SilvaL. P. PetersJ. A. Van BekkumH. Synthesis of cyanoethyl inulin, aminopropyl inulin and carboxyethyl inulin. Starch/Staerke199648519119510.1002/star.19960480509
    [Google Scholar]
  10. AfinjuomoF. FouladianP. BarclayT.G. SongY. PetrovskyN. GargS. Influence of oxidation degree on the physicochemical properties of oxidized inulin.Polymers2020125102510.3390/polym12051025 32369991
    [Google Scholar]
  11. VerraestD.L. PetersJ.A. BatelaanJ.G. van BekkumH. Carboxymethylation of inulin.Carbohydr. Res.1995271110111210.1016/0008‑6215(95)00028‑R 7648576
    [Google Scholar]
  12. ZhouD. YuW. WuA. ShuW. ZhangY. Optimization of preparation conditions of medium and highly substituted carboxymethyl inulin through response surface methodology.Carbohydr. Res.202453610900910.1016/j.carres.2023.109009 38211450
    [Google Scholar]
  13. WonC.Y. ChuC.C. Inulin polysaccharide having pendant amino acids: Synthesis and characterization.J. Appl. Polym. Sci.199870595396310.1002/(SICI)1097‑4628(19981031)70:5<953::AID‑APP16>3.0.CO;2‑U
    [Google Scholar]
  14. RoggeT.M. StevensC.V. BootenK. LeveckeB. VandammeA. VercauterenC. HaeltermanB. CorthoutsJ. D’hoogeC. Improved synthesis and physicochemical properties of alkoxylated inulin.Top. Catal.2004271-4394710.1023/B:TOCA.0000013539.39364.a2
    [Google Scholar]
  15. RenJ. LiuJ. DongF. GuoZ. Highly efficient synthesis and antioxidant activity of O-(aminoethyl)inulin.Carbohydr. Polym.20118331240124410.1016/j.carbpol.2010.09.030
    [Google Scholar]
  16. RenJ. LiuJ. DongF. GuoZ. Synthesis and hydroxyl radicals scavenging activity of N-(aminoethyl)inulin.Carbohydr. Polym.201185126827110.1016/j.carbpol.2011.01.041
    [Google Scholar]
  17. DongF. ZhangJ. YuC. LiQ. RenJ. WangG. GuG. GuoZ. Synthesis of amphiphilic aminated inulin via ‘click chemistry’ and evaluation for its antibacterial activity.Bioorg. Med. Chem. Lett.201424184590459310.1016/j.bmcl.2014.07.029 25149508
    [Google Scholar]
  18. LiQ. QiuL. TanW. GuG. GuoZ. Novel 1,2,3-triazolium-functionalized inulin derivatives: synthesis, free radical-scavenging activity, and antifungal activity.RSC Adv.2017767422254223210.1039/C7RA08244D
    [Google Scholar]
  19. WeiL. SuiH. ZhangJ. GuoZ. Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-triazole and diphenyl phosphate.Int. J. Biol. Macromol.2021186475310.1016/j.ijbiomac.2021.06.148 34186123
    [Google Scholar]
  20. RenJ. WangP. DongF. FengY. PengD. GuoZ. Synthesis and antifungal properties of 6-amino-6-deoxyinulin, a kind of precursors for facile chemical modifications of inulin.Carbohydr. Polym.20128721744174810.1016/j.carbpol.2011.09.082
    [Google Scholar]
  21. LiuJ. LuJ. KanJ. WenX. JinC. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin.Int. J. Biol. Macromol.201464768310.1016/j.ijbiomac.2013.11.028 24315946
    [Google Scholar]
  22. HuY. ZhangJ. YuC. LiQ. DongF. WangG. GuoZ. Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group.Int. J. Biol. Macromol.201470444910.1016/j.ijbiomac.2014.06.024 24971554
    [Google Scholar]
  23. SunQ. LuanL. ArifM. LiJ. DongQ.J. GaoY. ChiZ. LiuC.G. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases.Carbohydr. Polym.201818935235910.1016/j.carbpol.2017.12.021 29580419
    [Google Scholar]
  24. WuX.Y. LeeP.I. Preparation and characterization of inulin ester microspheres as drug carriers.J. Appl. Polym. Sci.200077483384010.1002/(SICI)1097‑4628(20000725)77:4<833::AID‑APP17>3.0.CO;2‑4
    [Google Scholar]
  25. RoggeT.M. StevensC.V. Facilitated synthesis of inulin esters by transesterification.Biomacromolecules2004551799180310.1021/bm049869q 15360290
    [Google Scholar]
  26. RoggeT.M. StevensC.V. ColpaertA. LeveckeB. BootenK. Use of acyl phosphonates for the synthesis of inulin esters and their use as emulsion stabilizing agents.Biomacromolecules20078248548910.1021/bm060592z 17291072
    [Google Scholar]
  27. TorlopovM.A. UdoratinaE.V. KuchinA.V. Synthesis of inulin esters of phenylcarboxylic acids.Russ. J. Org. Chem.201349570270610.1134/S1070428013050114
    [Google Scholar]
  28. ZhuX. JiaC. MengX. XingM. YiY. GaoX. Synthesis, characterization of inulin propionate ester, and evaluation of its in vitro effect on SCFA Production. Starch/Staerke20187091010.1002/star.201800037
    [Google Scholar]
  29. AfinjuomoF. BarclayT.G. SongY. ParikhA. PetrovskyN. GargS. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride.React. Funct. Polym.201913410411110.1016/j.reactfunctpolym.2018.10.014
    [Google Scholar]
  30. ChenY. ZhangJ. TanW. WangG. DongF. LiQ. GuoZ. Antioxidant activity of inulin derivatives with quaternary ammonium.Stärke20176911-12170004610.1002/star.201700046
    [Google Scholar]
  31. ChenY. TanW. LiQ. DongF. GuG. GuoZ. Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity.Int. J. Biol. Macromol.20181131273127810.1016/j.ijbiomac.2018.03.055 29548915
    [Google Scholar]
  32. ZhangJ. TanW. MiY. LuanF. WeiL. LiQ. DongF. GuoZ. Synthesis and characterization of inulin derivatives bearing urea groups with promising antifungal activity. Starch/Staerke2019711-2180005810.1002/star.201800058
    [Google Scholar]
  33. ChenY. MiY. ZhangJ. DongF. LiQ. JiN. GuoZ. Radical scavenging activities of novel cationic inulin derivatives.Polymers 20181012129510.3390/polym10121295 30961220
    [Google Scholar]
  34. GuoZ. LiQ. WangG. DongF. ZhouH. ZhangJ. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene.Carbohydr. Polym.20149946947310.1016/j.carbpol.2013.08.044 24274532
    [Google Scholar]
  35. WeiL. TanW. ZhangJ. MiY. DongF. LiQ. GuoZ. Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring.Polymers 201911237110.3390/polym11020371 30960355
    [Google Scholar]
  36. ChenY. MiY. LiQ. DongF. GuoZ. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications.Int. J. Biol. Macromol.202014371472310.1016/j.ijbiomac.2019.09.127 31726150
    [Google Scholar]
  37. MiY. ZhangJ. HanX. TanW. MiaoQ. CuiJ. LiQ. GuoZ. Modification of carboxymethyl inulin with heterocyclic compounds: Synthesis, characterization, antioxidant and antifungal activities.Int. J. Biol. Macromol.202118157258110.1016/j.ijbiomac.2021.03.109 33766596
    [Google Scholar]
  38. ZhangJ. TanW. ZhaoP. MiY. GuoZ. Facile synthesis, characterization, antioxidant activity, and antibacterial activity of carboxymethyl inulin salt derivatives.Int. J. Biol. Macromol.202219913814910.1016/j.ijbiomac.2021.12.140 34973272
    [Google Scholar]
  39. YangY. TanW. ZhangJ. GuoZ. JiangA. LiQ. Novel coumarin-functionalized inulin derivatives: Chemical modification and antioxidant activity assessment.Carbohydr. Res.202251810859710.1016/j.carres.2022.108597 35617914
    [Google Scholar]
  40. SchoenerC.A. Carillo-CondeB. HutsonH.N. PeppasN.A. An inulin and doxorubicin conjugate for improving cancer therapy.J. Drug Deliv. Sci. Technol.201323211111810.1016/S1773‑2247(13)50018‑9 24734120
    [Google Scholar]
  41. ZhangL. LiY. WangC. LiG. ZhaoY. YangY. Synthesis of methylprednisolone loaded ibuprofen modified inulin based nanoparticles and their application for drug delivery.Mater. Sci. Eng. C20144211111510.1016/j.msec.2014.05.025 25063099
    [Google Scholar]
  42. ZhangL. LiG. GaoM. LiuX. JiB. HuaR. ZhouY. YangY. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin.Colloids Surf. B Biointerfaces2016144818910.1016/j.colsurfb.2016.03.077 27070055
    [Google Scholar]
  43. GanieS.A. AliA. MirT.A. MazumdarN. Inulin niacin conjugates: Preparation, characterization, kinetic and in vitro release studies.J. Polym. Environ.202230250451510.1007/s10924‑021‑02210‑6
    [Google Scholar]
  44. TripodoG. PitarresiG. PalumboF.S. CraparoE.F. GiammonaG. UV-photocrosslinking of inulin derivatives to produce hydrogels for drug delivery application.Macromol. Biosci.20055111074108410.1002/mabi.200500134 16245273
    [Google Scholar]
  45. PitarresiG. GiacomazzaD. TrioloD. GiammonaG. San BiagioP.L. Rheological characterization and release properties of inulin-based hydrogels.Carbohydr. Polym.20128831033104010.1016/j.carbpol.2012.01.059
    [Google Scholar]
  46. RahulR. JhaU. SenG. MishraS. A novel polymeric flocculant based on polyacrylamide grafted inulin: Aqueous microwave assisted synthesis.Carbohydr. Polym.201499112110.1016/j.carbpol.2013.07.082 24274474
    [Google Scholar]
  47. SardoC. FarraR. LicciardiM. DapasB. ScialabbaC. GiammonaG. GrassiM. GrassiG. CavallaroG. Development of a simple, biocompatible and cost-effective Inulin-diethylenetriamine based siRNA delivery system.Eur. J. Pharm. Sci.201575607110.1016/j.ejps.2015.03.021 25845631
    [Google Scholar]
  48. PetkovaN. GenchevG. VassilevD. KolevaM. Krastanov and Panteley Denev, A.; Denev, P. Microwave-assisted isolation and acetylation of inulin from Helianthus tuberosus L. tubers.J. Renew. Mater.20186767167910.32604/JRM.2018.00001
    [Google Scholar]
  49. VassilevD. PetkovaN. KolevaM. DenevP. Microwave synthesis of inulin acetate as potential bio-based additive for poly (vinyl chloride).J. Renew. Mater.20186770771410.32604/JRM.2018.00015
    [Google Scholar]
  50. PetkovaN. ArabadzhievaR. VassilevD. GenchevaG. TumbarskiY. Ignatova-IvanovaT. IbryamovaS. TodorovaM. KolevaM. DenevP. Physicochemical characterization and antimicrobial properties of inulin acetate obtained by microwave-assisted synthesis.J. Renew. Mater.20208436538110.32604/jrm.2020.09292
    [Google Scholar]
  51. YangY. Abu-OmarM.M. HuC. Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate.Appl. Energy201299808410.1016/j.apenergy.2012.04.049
    [Google Scholar]
  52. AntonettiC. MelloniM. LicursiD. FulignatiS. RibechiniE. RivasS. ParajóJ.C. CavaniF. Raspolli GallettiA.M. Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts.Appl. Catal. B201720636437710.1016/j.apcatb.2017.01.056
    [Google Scholar]
  53. AntonettiC. FulignatiS. LicursiD. Raspolli GallettiA.M. Turning point toward the sustainable production of 5-hydroxymethyl-2-furaldehyde in water: Metal salts for its synthesis from fructose and inulin.ACS Sustain. Chem. Eng.2019776830683810.1021/acssuschemeng.8b06162
    [Google Scholar]
  54. FlorowskaA. FlorowskiT. KruszewskiB. Janiszewska-TurakE. BykowskaW. KsibiN. Thermal and modern, non-thermal method induction as a factor of modification of inulin hydrogel properties.Foods20231222415410.3390/foods12224154 38002211
    [Google Scholar]
  55. PetkovaN. ArabadzhievaR. HambarliyskaI. VassilevD. GenchevaG. TumbarskiY. Ignatova-IvanovaT. IbryamovaS. KolevaM. DenevP. Ultrasound-assisted synthesis of antimicrobial inulin and sucrose esters with 10-undecylenic acid.Biointerface Res. Appl. Chem.2021114120551206710.33263/BRIAC114.1205512067
    [Google Scholar]
  56. XuH. GunencA. HosseinianF. Ultrasound affects physical and chemical properties of Jerusalem artichoke and chicory inulin.J. Food Biochem.2022464e1393410.1111/jfbc.13934 34569628
    [Google Scholar]
  57. LouX. LuoD. YueC. ZhangT. LiP. XuY. XuB. XiangJ. Effect of ultrasound treatment on the physicochemical and structural properties of long-chain inulin.Lebensm. Wiss. Technol.202215411257810.1016/j.lwt.2021.112578
    [Google Scholar]
  58. LiS. LeiD. ZhuZ. CaiJ. ManzoliM. JicsinszkyL. GrilloG. CravottoG. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment.Ultrason. Sonochem.20217410556810.1016/j.ultsonch.2021.105568 33915483
    [Google Scholar]
  59. JiangW. WangY. MaC. Julian McClementsD. LiuF. LiuX. Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties.Food Chem.202238413251110.1016/j.foodchem.2022.132511 35247772
    [Google Scholar]
  60. MiX. HaoS. ZhengY. YangX. Effects of addition of inulin and β‐glucan on selected physicochemical and thermal properties of ultrasonic modified potato flour.J. Food Process. Preserv.20224611e1713410.1111/jfpp.17134
    [Google Scholar]
  61. BleckerC. ChevalierJ.P. Van HerckJ.C. FougniesC. DeroanneC. PaquotM. Inulin: Its physicochemical properties and technological functionality. Rec. Res. Develop. Agricul.Food Chem.20015125131
    [Google Scholar]
  62. MartinodA. NevilleA. EuvradM. SorbieK. Electrodeposition of a calcareous layer: Effects of green inhibitors.Chem. Eng. Sci.200964102413242110.1016/j.ces.2009.01.024
    [Google Scholar]
  63. BoelsL. WitkampG.J. Carboxymethyl inulin biopolymers: A green alternative for phosphonate calcium carbonate growth inhibitors.Cryst. Growth Des.20111194155416510.1021/cg2007183
    [Google Scholar]
  64. JohannsenF.R. Toxicological profile of carboxymethyl inulin.Food Chem. Toxicol.2003411495910.1016/S0278‑6915(02)00213‑2 12453728
    [Google Scholar]
  65. ÖnerM. UysalU. Synthesis of hydroxyapatite crystals using carboxymethyl inulin for use as a delivery of ibuprofen.Mater. Sci. Eng. C201333148248910.1016/j.msec.2012.09.018 25428099
    [Google Scholar]
  66. AkınB. ÖnerM. BayramY. DemadisK.D. Effects of carboxylate-modified, “green” inulin biopolymers on the crystal growth of calcium oxalate.Cryst. Growth Des.2008861997200510.1021/cg800092q
    [Google Scholar]
  67. RahulR. JhaU. SenG. MishraS. Carboxymethyl inulin: A novel flocculant for wastewater treatment.Int. J. Biol. Macromol.2014631710.1016/j.ijbiomac.2013.10.015 24141069
    [Google Scholar]
  68. Hernández-MartínezA. MolinaG. Jiménez-HernándezL. OskamA. FonsecaG. EstevezM. Evaluation of inulin replacing chitosan in a polyurethane/polysaccharide material for Pb2+ removal.Molecules20172212209310.3390/molecules22122093 29186073
    [Google Scholar]
  69. Mohd YusopH. Mohd IsmailA.I.H. Wan IsmailW.N. Preparation and characterization of new sol–gel hybrid inulin–TEOS adsorbent.Polymers 2021138129510.3390/polym13081295 33921052
    [Google Scholar]
  70. RakickaM. WolniakJ. LazarZ. RymowiczW. Production of high titer of citric acid from inulin.BMC Biotechnol.20191911110.1186/s12896‑019‑0503‑0 30744615
    [Google Scholar]
  71. HeoJ.B. LeeY.S. ChungC.H. Conversion of inulin-rich raw plant biomass to 2,5-furandicarboxylic acid (FDCA): Progress and challenge towards biorenewable plastics.Biotechnol. Adv.20215310783810.1016/j.biotechadv.2021.107838 34571195
    [Google Scholar]
  72. MukherjeeA. DumontM.J. RaghavanV. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities.Biomass Bioenergy20157214318310.1016/j.biombioe.2014.11.007
    [Google Scholar]
  73. WangT. NolteM.W. ShanksB.H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical.Green Chem.201416254857210.1039/C3GC41365A
    [Google Scholar]
  74. Agirrezabal-TelleriaI. GandariasI. AriasP.L. RequiesJ. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethyl-furfural) from renewable carbohydrates: A review.Catal. Today2014234425810.1016/j.cattod.2013.11.027
    [Google Scholar]
  75. van PuttenR.J. van der WaalJ.C. de JongE. RasrendraC.B. HeeresH.J. de VriesJ.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources.Chem. Rev.201311331499159710.1021/cr300182k 23394139
    [Google Scholar]
  76. PetrovskyN. Inulin-a versatile polysaccharide: use as food chemical and pharmaceutical agent.J. Excip. Food Chem.201013132750
    [Google Scholar]
  77. LuY. GuoX. HouC. TangR. LuoJ. HuangR. Characteristics, and application of inulin in food processing.Food Res. Develop.20183912194199
    [Google Scholar]
  78. BarclayT. Ginic-MarkovicM. CooperP. PetrovskyN. Inulin: A versatile polysaccharide with multiple pharmaceutical and food chemical uses.J. Excip. Food Chem.201613
    [Google Scholar]
  79. FlammG. GlinsmannW. KritchevskyD. ProskyL. RoberfroidM. Inulin and oligofructose as dietary fiber: A review of the evidence.Crit. Rev. Food Sci. Nutr.200141535336210.1080/20014091091841 11497328
    [Google Scholar]
  80. SpottiM.J. CampanellaO.H. Functional modifications by physical treatments of dietary fibers used in food formulations.Curr. Opin. Food Sci.201715707810.1016/j.cofs.2017.10.003
    [Google Scholar]
  81. SteinbachE. MasiD. RibeiroA. SerradasP. Le RoyT. ClémentK. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation.Metabolism202415015571210.1016/j.metabol.2023.155712 37884078
    [Google Scholar]
  82. WanX. GuoH. LiangY. ZhouC. LiuZ. LiK. NiuF. ZhaiX. WangL. The physiological functions and pharmaceutical applications of inulin: A review.Carbohydr. Polym.202024611658910.1016/j.carbpol.2020.116589 32747248
    [Google Scholar]
  83. ShoaibM. ShehzadA. OmarM. RakhaA. RazaH. SharifH.R. ShakeelA. AnsariA. NiaziS. Inulin: Properties, health benefits and food applications.Carbohydr. Polym.201614714744445410.1016/j.carbpol.2016.04.020 27178951
    [Google Scholar]
  84. RoberfroidM. Inulin-type fructans: functional food ingredients.Boca RatonCRC Press2004139210.1201/9780203504932
    [Google Scholar]
  85. StevensC.V. MeriggiA. BootenK. Chemical modification of inulin, a valuable renewable resource, and its industrial applications.Biomacromolecules20012111610.1021/bm005642t 11749147
    [Google Scholar]
  86. MatusekA. MerészP. LeT.K.D. ÖrsiF. Effect of temperature and pH on the degradation of fructo-oligosaccharides.Eur. Food Res. Technol.2009228335536510.1007/s00217‑008‑0941‑8
    [Google Scholar]
  87. López-MolinaD. Navarro-MartínezM.D. Rojas-MelgarejoF. HinerA.N.P. ChazarraS. Rodríguez-LópezJ.N. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.).Phytochemistry200566121476148410.1016/j.phytochem.2005.04.003 15960982
    [Google Scholar]
  88. ZabotG.L. SilvaE.K. AzevedoV.M. MeirelesM.A.A. Replacing modified starch by inulin as prebiotic encapsulant matrix of lipophilic bioactive compounds.Food Res. Int.201685263510.1016/j.foodres.2016.04.005 29544843
    [Google Scholar]
  89. TawfickM.M. XieH. ZhaoC. ShaoP. FaragM.A. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics.Int. J. Biol. Macromol.202220820894896110.1016/j.ijbiomac.2022.03.218 35381290
    [Google Scholar]
  90. Collado YurritaL. San Mauro MartínI. Ciudad-CabañasM.J. Calle-PurónM.E. Hernández CabriaM. Effectiveness of inulin intake on indicators of chronic constipation; a meta-analysis of controlled randomized clinical trials.Nutr. Hosp.2014302244252 25208775
    [Google Scholar]
  91. Fernández-BañaresF. Nutritional care of the patient with constipation.Best Pract. Res. Clin. Gastroenterol.200620357558710.1016/j.bpg.2005.11.002 16782530
    [Google Scholar]
  92. Den HondE. GeypensB. GhoosY. Effect of high performance chicory inulin on constipation.Nutr. Res.200020573173610.1016/S0271‑5317(00)00162‑7
    [Google Scholar]
  93. GriffinI.J. HicksP.M.D. HeaneyR.P. AbramsS.A. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption.Nutr. Res.200323790190910.1016/S0271‑5317(03)00085‑X
    [Google Scholar]
  94. RaschkaL. DanielH. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats.Bone200537572873510.1016/j.bone.2005.05.015 16126464
    [Google Scholar]
  95. SinghR.S. ChauhanK. PandeyA. LarrocheC. Biocatalytic strategies for the production of high fructose syrup from inulin.Bioresour. Technol.201826039540310.1016/j.biortech.2018.03.127 29636277
    [Google Scholar]
  96. GolobT. MičovićE. BertonceljJ. JamnikM. Sensory acceptability of chocolate with inulin.Acta Agric. Slov.200483222123110.14720/aas.2004.83.2.15426
    [Google Scholar]
  97. KonarN. Influence of conching temperature and some bulk sweeteners on physical and rheological properties of prebiotic milk chocolate containing inulin.Eur. Food Res. Technol.2013236113514310.1007/s00217‑012‑1873‑x
    [Google Scholar]
  98. SołowiejB. GlibowskiP. MuszyńskiS. WydrychJ. GawronA. JelińskiT. The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers.Food Hydrocoll.20154411110.1016/j.foodhyd.2014.08.022
    [Google Scholar]
  99. LiH. YuH. LiuY. WangY. LiH. YuJ. The use of of inulin, maltitol and lecithin as fat replacers and plasticizers in a model reduced‐fat mozzarella cheese‐like product.J. Sci. Food Agric.201999125586559310.1002/jsfa.9835 31152446
    [Google Scholar]
  100. StanojevicS.P. BaraćM.B. PešićM.B. Vucelic-RadovicB.V. Energy value and bioactive proteins of inulin‐enriched tofu produced by hydrothermal process with chymosin‐pepsin rennet.Int. J. Food Sci. Technol.202156115560556810.1111/ijfs.15132
    [Google Scholar]
  101. TeferraT.F. Possible actions of inulin as prebiotic polysaccharide: A review.Food Front.20212440741610.1002/fft2.92
    [Google Scholar]
  102. WeiL. YangW. WangJ. TianQ. HeZ. Synthesis and characterization of calcium phosphorylated inulin complex as a new source of enriched calcium supplement with prebiotic effect in food.Food Sci. Technol.201939123724410.1590/fst.37017
    [Google Scholar]
  103. GiriS. DuttaP. GiriT.K. Inulin-based carriers for colon drug targeting.J. Drug Deliv. Sci. Technol.20216410259510.1016/j.jddst.2021.102595
    [Google Scholar]
  104. ImranS. GillisR.B. KokS.M. HardingS.E. AdamsG.G. Application and use of inulin as a tool for therapeutic drug delivery.Biotechnol. Genet. Eng. Rev.2012281334610.5661/bger‑28‑33 22616480
    [Google Scholar]
  105. AkramW. JoshiR. GarudN. Inulin: A promising carrier for controlled and targeted drug delivery system.J. Drug Deliv. Ther.201991-s43744110.22270/jddt.v9i1‑s.2398
    [Google Scholar]
  106. HufnagelB. MuellnerV. HlatkyK. TallianC. VielnascherR. GuebitzG.M. WirthM. GaborF. Chemically modified inulin for intestinal drug delivery: A new dual bioactivity concept for inflammatory bowel disease treatment.Carbohydr. Polym.202125211709110.1016/j.carbpol.2020.117091 33183582
    [Google Scholar]
  107. CavallaroG. SardoC. ScialabbaC. LicciardiM. GiammonaG. LambertiG. Smart inulin-based polycationic nanodevices for siRNA delivery.Curr. Drug Deliv.2017142224230 27527075
    [Google Scholar]
  108. ScialabbaC. LicciardiM. MauroN. RoccoF. CerutiM. GiammonaG. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy.Eur. J. Pharm. Biopharm.201488369570510.1016/j.ejpb.2014.09.008 25281781
    [Google Scholar]
  109. FaresM.M. SalemM.S. KhanfarM. Inulin and poly(acrylic acid) grafted inulin for dissolution enhancement and preliminary controlled release of poorly water-soluble Irbesartan drug.Int. J. Pharm.20114101-220621110.1016/j.ijpharm.2011.03.029 21421037
    [Google Scholar]
  110. AfinjuomoF. AbdellaS. YoussefS.H. SongY. GargS. Inulin and its application in drug delivery.Pharmaceuticals202114985510.3390/ph14090855 34577554
    [Google Scholar]
  111. VervoortL. VinckierI. MoldenaersP. Van Den MooterG. AugustijnsP. KingetR. Inulin hydrogels as carriers for colonic drug targeting. Rheological characterization of the hydrogel formation and the hydrogel network.J. Pharm. Sci.199988220921410.1021/js9802796 9950640
    [Google Scholar]
  112. MandracchiaD. DenoraN. FrancoM. PitarresiG. GiammonaG. TrapaniG. New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In vitro release of glutathione and oxytocin.J. Biomater. Sci. Polym. Ed.2011221-331332810.1163/092050609X12609582084086 20557715
    [Google Scholar]
  113. CastelliF. SarpietroM.G. MicieliD. OttimoS. PitarresiG. TripodoG. CarlisiB. GiammonaG. Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect.Eur. J. Pharm. Sci.2008351-2768510.1016/j.ejps.2008.06.005 18619534
    [Google Scholar]
  114. TripodoG. PerteghellaS. GrisoliP. TrapaniA. TorreM.L. MandracchiaD. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake.Eur. J. Pharm. Biopharm.201913625025810.1016/j.ejpb.2019.01.022 30685506
    [Google Scholar]
  115. KesharwaniS.S. DachineniR. BhatG.J. TummalaH. Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer.J. Drug Deliv. Sci. Technol.20195410125410.1016/j.jddst.2019.101254
    [Google Scholar]
  116. Jiménez-SánchezM. Pérez-MoralesR. GoycooleaF.M. MuellerM. PraznikW. LoeppertR. Bermúdez-MoralesV. Zavala-PadillaG. AyalaM. OlveraC. Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties.Carbohydr. Polym.201921516016910.1016/j.carbpol.2019.03.060 30981341
    [Google Scholar]
  117. KilimciU. EvliS. ÖndeşB. UygunM. UygunD.A. Inulinase immobilized lectin affinity magnetic nanoparticles for inulin hydrolysis.Appl. Biochem. Biotechnol.202119351415142610.1007/s12010‑020‑03476‑7 33417232
    [Google Scholar]
  118. VaidyanathS. HarishB.S. GayathriG. TrilokeshC. UppuluriK.B. AnbazhaganV. Maximizing the direct recovery and stabilization of cellulolytic enzymes from Trichoderma harzanium BPGF1 fermented broth using carboxymethyl inulin nanoparticles.Int. J. Biol. Macromol.202016096497010.1016/j.ijbiomac.2020.05.185 32464205
    [Google Scholar]
  119. HartzellA.L. Maldonado-GómezM.X. YangJ. HutkinsR.W. RoseD.J. In vitro digestion and fermentation of 5-formyl-aminosailcylate-inulin: A potential prodrug of 5-aminosalicylic acid.Bioact. Carbohydr. Diet. Fib.20132181410.1016/j.bcdf.2013.08.001
    [Google Scholar]
  120. JainA.K. SoodV. BoraM. VasitaR. KattiD.S. Electrosprayed inulin microparticles for microbiota triggered targeting of colon.Carbohydr. Polym.201411222523410.1016/j.carbpol.2014.05.087 25129739
    [Google Scholar]
  121. SrinarongP. HämäläinenS. VisserM.R. HinrichsW.L.J. KetolainenJ. FrijlinkH.W. Surface-active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load.J. Pharm. Sci.201110062333234210.1002/jps.22471 21254065
    [Google Scholar]
  122. VisserM.R. BaertL. KloosterG. SchuellerL. GeldofM. VanwelkenhuysenI. de KockH. De MeyerS. FrijlinkH.W. RosierJ. HinrichsW.L. Inulin solid dispersion technology to improve the absorption of the BCS class IV drug TMC240.Eur. J. Pharm. Biopharm.201074223323810.1016/j.ejpb.2009.10.004 19861163
    [Google Scholar]
  123. EssienH. LaiJ.Y. HwangK.J. Synthesis of diethylenetriaminepentaacetic acid conjugated inulin and utility for cellular uptake of liposomes.J. Med. Chem.198831589890110.1021/jm00400a002 3361577
    [Google Scholar]
  124. WangL. SongY. ParikhA. JoyceP. ChungR. LiuL. AfinjuomoF. HayballJ.D. PetrovskyN. BarclayT.G. GargS. Doxorubicin-loaded delta inulin conjugates for controlled and targeted drug delivery: Development, characterization, and in vitro evaluation.Pharmaceutics2019111158110.3390/pharmaceutics11110581 31698755
    [Google Scholar]
  125. WalzM. HagemannD. TrentzschM. WeberA. HenleT. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine.Carbohydr. Polym.201819910210810.1016/j.carbpol.2018.07.015 30143109
    [Google Scholar]
  126. KokubunS. RatcliffeI. WilliamsP.A. The interfacial, emulsification and encapsulation properties of hydrophobically modified inulin.Carbohydr. Polym.2018194182310.1016/j.carbpol.2018.04.018 29801827
    [Google Scholar]
  127. HartzellA.L. Maldonado-GómezM.X. HutkinsR.W. RoseD.J. Synthesis and in vitro digestion and fermentation of acylated inulin.Bioact. Carbohydr. Diet. Fib.201311818810.1016/j.bcdf.2013.01.004
    [Google Scholar]
  128. WalzM. HirthT. WeberA. Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying.Colloids Surf. A Physicochem. Eng. Asp.2018536475210.1016/j.colsurfa.2017.07.072
    [Google Scholar]
  129. CatenacciL. SorrentiM. PerteghellaS. MandracchiaD. TorreM.L. Trapani, A.; Milanese, C.; Tripodo, G. Combination of inulin and β-] cyclodextrin properties for colon delivery of hydrophobic drugs.Int. J. Pharm.202058911986110.1016/j.ijpharm.2020.119861 32911044
    [Google Scholar]
  130. JayanthiK.G. SujaS.K. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples.Enzyme Microb. Technol.202014010963110.1016/j.enzmictec.2020.109631 32912691
    [Google Scholar]
  131. FayedB. AboodA. El-SayedH.S. HashemA.M. MehannaN.S.H. A synbiotic multiparticulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability.Carbohydr. Polym.201819313714310.1016/j.carbpol.2018.03.068 29773365
    [Google Scholar]
  132. MolinaG.A. Elizalde-MataA. Hernández-MartínezÁ.R. FonsecaG. Cruz SotoM. Rodríguez-MoralesÁ.L. EstevezM. Synthesis and characterization of inulin-based responsive polyurethanes for breast cancer applications.Polymers 202012486510.3390/polym12040865 32283702
    [Google Scholar]
  133. KumarS. KesharwaniS.S. KuppastB. BakkariM.A. TummalaH. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses.J. Control. Release201726126327410.1016/j.jconrel.2017.06.026 28669593
    [Google Scholar]
  134. KirtaniaM.D. KahaliN. MaityA. Inulin-based hydrogel plant and algal hydrogels for drug delivery and regenerative medicine.Woodhead Publishing202126129210.1016/B978‑0‑12‑821649‑1.00005‑2
    [Google Scholar]
  135. TabandehM.R. AminlariM. Synthesis, physicochemical and immunological properties of oxidized inulin-l-asparaginase bioconjugate.J. Biotechnol.20091413-418919510.1016/j.jbiotec.2009.03.020 19433225
    [Google Scholar]
  136. AkramW. GarudN. JoshiR. Role of inulin as prebiotics on inflammatory bowel disease.Drug Discov. Ther.20191311810.5582/ddt.2019.01000 30880316
    [Google Scholar]
  137. SunQ. ArifM. ChiZ. LiG. LiuC.G. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD).Int. J. Biol. Macromol.202116920621510.1016/j.ijbiomac.2020.12.094 33340633
    [Google Scholar]
  138. LewisH.B. The value of inulin as a foodstuff.J. Am. Med. Assoc.1912LVIII161176117710.1001/jama.1912.04260040192004
    [Google Scholar]
  139. RoberfroidM.B. Functional foods: concepts and application to inulin and oligofructose.Br. J. Nutr.200287S2Suppl. 2S139S14310.1079/BJN/2002529 12088510
    [Google Scholar]
  140. ZengX. DuZ. DingX. ZhaoY. JiangW. Preparation, characterization and in vitro hypoglycemic activity of banana condensed tannin–inulin conjugate.Food Funct.20201197973798610.1039/D0FO01652G 32839802
    [Google Scholar]
  141. LiuJ. LuJ. WenX. KanJ. JinC. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury.Int. J. Biol. Macromol.2015721479148410.1016/j.ijbiomac.2014.09.066 25316429
    [Google Scholar]
  142. VerraestD.L. PetersJ.A. van BekkumH. van RosmalenG.M. Carboxymethyl inulin: A new inhibitor for calcium carbonate precipitation.J. Am. Oil Chem. Soc.1996731556210.1007/BF02523448
    [Google Scholar]
  143. López-MolinaD. ChazarraS. HowC.W. PruidzeN. Navarro-PeránE. García-CánovasF. García-RuizP.A. Rojas-MelgarejoF. Rodríguez-LópezJ.N. Cinnamate of inulin as a vehicle for delivery of colonic drugs.Int. J. Pharm.201547919610210.1016/j.ijpharm.2014.12.064 25550210
    [Google Scholar]
/content/journals/coc/10.2174/0113852728318805240627112106
Loading
/content/journals/coc/10.2174/0113852728318805240627112106
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiscalant; biofuel; drug carrier; Inulin; microwave; ultrasonication
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test