Skip to content
2000
Volume 28, Issue 20
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The triazolopyrimidine scaffold indeed holds a prominent place in medicinal chemistry due to its versatile pharmacological properties. Researchers have explored the scaffold and its derivatives for various therapeutic applications. The unique structure of triazolopyrimidine has made it a valuable template for designing medicinally active molecules. The literature is full of studies showcasing the synthesis and biological activities of compounds containing the triazolopyrimidine ring, either fused or coupled with other heterocycles. The aim of this review is to provide a comprehensive and general summary of the recent advancements in the synthesis of triazolopyrimidine derivatives (Year 2021 to present).

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728313437240607095009
2024-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. NedaI. KaukoratT. SchmutzlerR. Verbindungen mit dem 1,3,2 benzodiazaphosphorinan 4 on grundgerüst: synthese von neuartigen n,n′,n′ trimethylethylendiaminsubstituierten derivaten mit drei und vierfach koordiniertem phosphor.Phosphorus Sulfur Silicon Relat. Elem.1993801-424125010.1080/10426509308036896
    [Google Scholar]
  2. NedaI. FischerA. JonesP.G. SchmutzlerR. Verbindungen mit dem 1,3,2 benzodiazaphosphorinan 4 on grundgerüst: synthese von neuartigen, n,n dimethyl amino und bis 2 chlorethylamino-substituierten derivaten mit drei, vier und fünffach koordiniertem phosphor.Phosphorus Sulfur Silicon Relat. Elem.1993781-427128710.1080/10426509308032443
    [Google Scholar]
  3. FarkensM. NedaI. FischerA. JonesP.G. SchmutzlerR. ChemInform abstract: Chemistry of the 1,3,5 Triaza 2 phosphinane 4,6 diones. Part 4. Hydrolysis of and thermal elimination from 1,3,5 Triaza 2λ4 phosphinimide 4,6 diones and 1,3,5 Triaza 1,4 dioxa 5λ5 phosphaspiro(4.5)decane 7,9 diones. ChemInform19932445 chin.199345249.10.1002/chin.199345249
    [Google Scholar]
  4. KadyrovA. NedaI. KaukoratT. SonnenburgR. FischerA. JonesP.G. SchmutzlerR. Neue phospholen und phosphepin derivate aus λ3 phosphorverbindungen und hexafluoraceton oder perfluorierten α diketonen.Chem. Ber.1996129672573210.1002/cber.19961290620
    [Google Scholar]
  5. MafteiC.V. FodorE. JonesP.G. DaniliucC.G. FranzM.H. KelterG. FiebigH.H. TammM. NedaI. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: synthesis, structural analysis and investigation of their antitumor activity.Tetrahedron20167291185119910.1016/j.tet.2016.01.011
    [Google Scholar]
  6. MafteiE. MafteiC.V. JonesP.G. FreytagM. FranzM.H. KelterG. FiebigH.H. TammM. NedaI. Trifluoromethylpyridine-substituted N-heterocyclic carbenes related to natural products: synthesis, structure, and potential antitumor activity of some corresponding gold(I), rhodium(I), and iridium(I) complexes.Helv. Chim. Acta201699646948110.1002/hlca.201500529
    [Google Scholar]
  7. MafteiC.V. FodorE. JonesP.G. FranzM.H. KelterG. FiebigH. NedaI. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties.Beilstein J. Org. Chem.201392202221510.3762/bjoc.9.259 24222789
    [Google Scholar]
  8. MalikM.A. DarO.A. GullP. WaniM.Y. HashmiA.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy.MedChemComm20189340943610.1039/C7MD00526A 30108933
    [Google Scholar]
  9. KhoseV. JohnM. PandeyA. BorovkovV. KarnikA. Chiral heterocycle-based receptors for enantioselective recognition.Symmetry (Basel)20181023410.3390/sym10020034
    [Google Scholar]
  10. SharmaM. PandeyV. PoliG. TuccinardiT. LolliM.L. VyasV.K. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds.Bioorg. Chem.202414610724910.1016/j.bioorg.2024.107249 38493638
    [Google Scholar]
  11. MyersS.H. PoppiL. RinaldiF. VeronesiM. CiamaroneA. PrevitaliV. BagnoliniG. SchipaniF. Ortega MartínezJ.A. GirottoS. Di StefanoG. FarabegoliF. WalshN. De FrancoF. RobertiM. CavalliA. An 19F NMR fragment-based approach for the discovery and development of BRCA2-RAD51 inhibitors to pursuit synthetic lethality in combination with PARP inhibition in pancreatic cancer.Eur. J. Med. Chem.202426511611410.1016/j.ejmech.2023.116114 38194775
    [Google Scholar]
  12. MousaviH. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings.Int. J. Biol. Macromol.20211861003116610.1016/j.ijbiomac.2021.06.123 34174311
    [Google Scholar]
  13. MohiteP. NaharD. PawaraR. AlqahtaniT. EldinS.M. MukherjeN. Rahman Mohammad Said Al-TawahaA. IqbalR. BawazeerS. AliI. Triazolopyridine, a leitmotif of synthetic methods and pharmacological attributes: An extensive review.Arab. J. Chem.2023161010518110.1016/j.arabjc.2023.105181
    [Google Scholar]
  14. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  15. FeitosaL.M. FrancaR.R.F. FerreiraM.L.G. AguiarA.C.C. de SouzaG.E. MalufS.E.C. de SouzaJ.O. ZapataL. DuarteD. MoraisI. NogueiraF. NonatoM.C. PinheiroL.C.S. GuidoR.V.C. BoechatN. Discovery of new piperaquine hybrid analogs linked by triazolopyrimidine and pyrazolopyrimidine scaffolds with antiplasmodial and transmission blocking activities.Eur. J. Med. Chem.202426711616310.1016/j.ejmech.2024.116163 38290351
    [Google Scholar]
  16. Abu-HashemA.A. Al-HussainS.A. The synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-triazole, 1, 2, 4-triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones.Pharmaceuticals (Basel)20221510123210.3390/ph15101232 36297343
    [Google Scholar]
  17. AbdelhamidA.E. KhattabR.R. SwelamS.A. SolimanA.M. Abd El-MoezS.I. BelasyS.F. El-SayedA.A. Antimicrobial evaluation of composite films based on polyvinyl alcohol/triazolopyrimidenes/selenium nanoparticles.Egyptian Pharmaceutical Journal2024231354510.4103/epj.epj_172_23
    [Google Scholar]
  18. AbdelkhalekA.S. AttiaM.S. KamalM.A. Triazolopyrimidine derivatives: An updated review on recent advances in synthesis, biological activities and drug delivery aspects.Curr. Med. Chem.202330124 36852819
    [Google Scholar]
  19. PundeerR. SinghS. YadavS. MinakshiM. Green synthesis of pyrazoles: recent developments in aqueous methods.SynOpen20237329731210.1055/a‑2123‑8102
    [Google Scholar]
  20. SinghS. PrakashR. DuaN. SharmaC. PundeerR. Some new pyrazolyl pyrazolones and cyanopyrazolyl acrylates: Design, synthesis and biological evaluation.ChemistrySelect20194236849685310.1002/slct.201900118
    [Google Scholar]
  21. FischerG. 1,2,4-Triazolo[1,5-a]pyrimidines. In: Advances in Heterocyclic Chemistry; Elsevier, 1993578113810.1016/S0065‑2725(08)60887‑9
    [Google Scholar]
  22. FischerG. Recent progress in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. In: Advances in Heterocyclic Chemistry; Elsevier, 20079514321910.1016/S0065‑2725(07)95003‑5
    [Google Scholar]
  23. FischerG. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry In: Advances in Heterocyclic Chemistry; Elsevier2019128110110.1016/bs.aihch.2018.10.002
    [Google Scholar]
  24. EdreesM.M. FarghalyT.A. Synthesis and antitumor activity of benzo[6″,7″]cyclohepta[1″,2″:4′,5′]pyrido[2′,3′-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones.Arab. J. Chem.201710S1613S161810.1016/j.arabjc.2013.06.002
    [Google Scholar]
  25. El AshryE.S.H. AwadL.F. TelebM. IbrahimN.A. Abu-SerieM.M. Abd Al MoatyM.N. Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology.Bioorg. Chem.20209610361610.1016/j.bioorg.2020.103616 32032847
    [Google Scholar]
  26. HorchaniM. HajlaouiA. HarrathA.H. MansourL. Ben JannetH. RomdhaneA. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies.J. Mol. Struct.2020119912700710.1016/j.molstruc.2019.127007
    [Google Scholar]
  27. BülowC. HaasK. Synthetische versuche zur darstellung von derivaten des heterokondensierten, heterocyclischen 1.3‐triazo‐7.0′‐pyrimidins.Ber. Dtsch. Chem. Ges.19094244638464410.1002/cber.19090420468
    [Google Scholar]
  28. TenorE. LudwigR. Drug chemical studies of the s-triazolo-1.5-a-pyrimidine series. Die Pharmazie1971534539
    [Google Scholar]
  29. FüllerH. HauschildF. ModersohnD. ThomasE. Pharmacology of 6-methyl-7-diethylamino-s-triazolo-(1, 5-a) pyrimidine (Trapymin, Rocornal), a new compound with vasodilative effects. Die Pharmazie1971269554562
    [Google Scholar]
  30. WatanabeI. OkumuraY. NagashimaK. KofuneM. OhkuboK. ManoH. SonodaK. KasamakiY. HirayamaA. Effects of the antianginal drug trapidil on atrioventricular conduction disturbances during acute myocardial ischemia.Int. Heart J.201253318719210.1536/ihj.53.187 22790688
    [Google Scholar]
  31. LiH. TatlockJ. LintonA. GonzalezJ. JewellT. PatelL. LudlumS. DrownsM. RahavendranS.V. SkorH. HunterR. ShiS.T. HerlihyK.J. PargeH. HickeyM. YuX. ChauF. NonomiyaJ. LewisC. Discovery of (R)-6-Cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihyd-ropyran-2-one (PF-00868554) as a potent and orally available hepatitis C] virus polymerase inhibitor.J. Med. Chem.20095251255125810.1021/jm8014537 19209845
    [Google Scholar]
  32. SingerR.A. RaganJ.A. BowlesP. ChisowaE. ConwayB.G. CordiE.M. LeemanK.R. LetendreL.J. SieserJ.E. SluggettG.W. StanchinaC.L. StrohmeyerH. BluntJ. TaylorS. ByrneC. LynchD. MullaneS. O’SullivanM.M. WhelanM. Synthesis of filibuvir. part I. Diastereoselective preparation of a β-hydroxy alkynyl oxazolidinone and conversion to a 6,6-disubstituted 2H-pyranone.Org. Process Res. Dev.2014181263510.1021/op4002356
    [Google Scholar]
  33. FandzlochM. AugustyniakA.W. DobrzańskaL. JędrzejewskiT. SitkowskiJ. WypijM. GolińskaP. First dinuclear rhodium(II) complexes with triazolopyrimidines and the prospect of their potential biological use.J. Inorg. Biochem.202021011107210.1016/j.jinorgbio.2020.111072 32563102
    [Google Scholar]
  34. RutaL.L. FarcasanuI.C. BacalumM. RăileanuM. RostasA.M. DaniliucC. ChifiriucM.C. MăruțescuL. PopaM. BadeaM. IorgulescuE.E. OlarR. Biological activity of triazolopyrimidine copper(II) complexes modulated by an auxiliary N-N-chelating heterocycle ligands.Molecules20212622677210.3390/molecules26226772 34833864
    [Google Scholar]
  35. HanL.R. ChengL. HuD.S. ChenQ.W. HanL. XuT.M. LiuX.H. WuN.J. Design, synthesis and biological activities of 1,2, 4‐triazolo[1,5‐a]pyrimidine‐7‐amine derivatives bearing 1,2, 4‐oxadiazole motif.J. Heterocycl. Chem.202360224125110.1002/jhet.4576
    [Google Scholar]
  36. LowY.S. GarciaM.D. LonhienneT. FraserJ.A. SchenkG. GuddatL.W. Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads.Sci. Rep.20211112105510.1038/s41598‑021‑00349‑9 34702838
    [Google Scholar]
  37. SaundaneA.R. HaluA. KirankumarN.M. Synthesis and biological evaluation of some novel indole analogues containing triazolopyrimidine moiety.Monatsh. Chem.201714881497151110.1007/s00706‑017‑1957‑1
    [Google Scholar]
  38. GadaraS.A. LadvaK.D. Solid phase synthesis and antimicrobial activity of novel triazolo[1,5-a]pyrimidine derivatives.Asian J. Chem.20203292298230210.14233/ajchem.2020.22793
    [Google Scholar]
  39. RenyuQ. YuchaoL. KandegamaW.M.W.W. QiongC. GuangfuY. Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry.Mini Rev. Med. Chem.201818978179310.2174/1389557517666171101112850
    [Google Scholar]
  40. IbrahimZ.Y. UzairuA. ShallangwaG. AbechiS. In-silico design of aryl and aralkyl amine-based triazolopyrimidine derivatives with enhanced activity against resistant Plasmodium falciparum.Chemistry Africa20214113714810.1007/s42250‑020‑00199‑4
    [Google Scholar]
  41. ChowdharyS. Shalini; Mosnier, J.; Fonta, I.; Pradines, B.; Cele, N.; Seboletswe, P.; Singh, P.; Kumar, V. Synthesis, Anti-plasmodial activities, and mechanistic insights of 4-aminoquinoline-triazolopyrimidine hybrids.ACS Med. Chem. Lett.20221371068107610.1021/acsmedchemlett.2c00078 35859870
    [Google Scholar]
  42. PhillipsM.A. GujjarR. MalmquistN.A. WhiteJ. El MazouniF. BaldwinJ. RathodP.K. Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum.J. Med. Chem.200851123649365310.1021/jm8001026 18522386
    [Google Scholar]
  43. GujjarR. MarwahaA. El MazouniF. WhiteJ. WhiteK.L. CreasonS. ShacklefordD.M. BaldwinJ. CharmanW.N. BucknerF.S. CharmanS. RathodP.K. PhillipsM.A. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice.J. Med. Chem.20095271864187210.1021/jm801343r 19296651
    [Google Scholar]
  44. GiganteA. Gómez-SanJuanA. DelangL. LiC. BuenoO. GamoA.M. PriegoE.M. CamarasaM.J. JochmansD. LeyssenP. DecrolyE. CoutardB. QueratG. NeytsJ. Pérez-PérezM.J. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1.Antiviral Res.201714421622210.1016/j.antiviral.2017.06.003 28619679
    [Google Scholar]
  45. BaklykovA.V. RusinovG.L. Artem’evG.A. KopchukD.S. ZyryanovG.V. RusinovV.L. CharushinV.N. Synthesis of 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one - a semi-product of the synthesis of antiviral drug triazide® in the conditions of microwave excitation. AIP Conf. Proc.,2019206304000510.1063/1.5087337
    [Google Scholar]
  46. HuangB. KangD. TianY. DaelemansD. De ClercqE. PannecouqueC. ZhanP. LiuX. Design, synthesis, and biological evaluation of piperidinyl‐substituted [1,2,4]triazolo[1,5‐a]pyrimidine derivatives as potential anti‐HIV‐1 agents with reduced cytotoxicity.Chem. Biol. Drug Des.2021971677610.1111/cbdd.13760 32725669
    [Google Scholar]
  47. PinheiroS. PinheiroE.M.C. MuriE.M.F. PessôaJ.C. CadoriniM.A. GrecoS.J. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs.Med. Chem. Res.202029101751177610.1007/s00044‑020‑02609‑1
    [Google Scholar]
  48. OzbekE.N. IstanbulluH. KızrakU. Alan AlbayrakE. SevinG. Yetik-AnacakG. The effects of novel triazolopyrimidine derivatives on H2S production in lung and vascular tonus in aorta.Pharmacology2023108653053910.1159/000533419 37696255
    [Google Scholar]
  49. SaidS.A. AmrA.E.G.E. SabryN.M. AbdallaM.M. Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives.Eur. J. Med. Chem.200944124787479210.1016/j.ejmech.2009.07.013 19682771
    [Google Scholar]
  50. YuG.X. HuY. ZhangW.X. TianX.Y. ZhangS.Y. ZhangY. YuanS. SongJ. Design, synthesis and biological evaluation of [1,2,4]triazolo[1,5-a]pyrimidine Indole derivatives against gastric cancer cells MGC-803 via the suppression of ERK signaling pathway.Molecules20222715499610.3390/molecules27154996 35956943
    [Google Scholar]
  51. KohandelO. Sheikhi-MohammarehS. OroojalianF. MemarianiT. MagueJ. ShiriA. A Dimroth rearrangement approach for the synthesis of selenopheno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines with cytotoxic activity on breast cancer cells.Mol. Divers.20222631621163310.1007/s11030‑021‑10290‑8 34357512
    [Google Scholar]
  52. WiśniewskaJ. FandzlochM. ŁakomskaI. The reduction of ruthenium(III) complexes with triazolopyrimidine ligands by ascorbic acid and mechanistic insight into their action in anticancer therapy.Inorg. Chim. Acta201948430531010.1016/j.ica.2018.09.051
    [Google Scholar]
  53. Sáez-CalvoG. SharmaA. BalaguerF.A. BarasoainI. Rodríguez-SalarichsJ. OliericN. Muñoz-HernándezH. BerbísM.Á. WendebornS. PeñalvaM.A. MatesanzR. CanalesÁ. ProtaA.E. Jímenez-BarberoJ. AndreuJ.M. LamberthC. SteinmetzM.O. DíazJ.F. Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin.Cell Chem. Biol.2017246737750.e610.1016/j.chembiol.2017.05.016 28579361
    [Google Scholar]
  54. HassanG.S. El-SherbenyM.A. El-AshmawyM.B. BayomiS.M. MaaroufA.R. BadriaF.A. Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives.Arab. J. Chem.201710S1345S135510.1016/j.arabjc.2013.04.002
    [Google Scholar]
  55. MokariyaJ.A. RajaniD.P. PatelM.P. 1,2,4‐Triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities.Arch. Pharm. (Weinheim)20233564220054510.1002/ardp.202200545 36534897
    [Google Scholar]
  56. UmarT. GusainS. RazaM.K. ShaliniS. KumarJ. TiwariM. HodaN. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents.Bioorg. Med. Chem.201927143156316610.1016/j.bmc.2019.06.004 31176571
    [Google Scholar]
  57. JameelE. MeenaP. MaqboolM. KumarJ. AhmedW. MumtazuddinS. TiwariM. HodaN. JayaramB. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents.Eur. J. Med. Chem.2017136365110.1016/j.ejmech.2017.04.064 28478343
    [Google Scholar]
  58. ShawS.A. VokitsB.P. DilgerA.K. VietA. ClarkC.G. AbellL.M. LockeG.A. DukeG. KopchoL.M. DongreA. GaoJ. KrishnakumarA. JusufS. KhanJ. SpronkS.A. BassoM.D. ZhaoL. CantorG.H. OnoratoJ.M. WexlerR.R. DuclosF. KickE.K. Discovery and structure activity relationships of 7-benzyl triazolopyridines as stable, selective, and reversible inhibitors of myeloperoxidase.Bioorg. Med. Chem.2020282211572310.1016/j.bmc.2020.115723 33007547
    [Google Scholar]
  59. ChenC.N. ChenQ. LiuY.C. ZhuX.L. NiuC.W. XiZ. YangG.F. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor.Bioorg. Med. Chem.201018144897490410.1016/j.bmc.2010.06.015 20598554
    [Google Scholar]
  60. LiuY-C. QuR-Y. ChenQ. YangJ.-F. Cong-WeiN. ZhenX. YangG.F. Triazolopyrimidines as a new herbicidal lead for combating weed resistance associated with acetohydroxyacid synthase mutation.J. Agric. Food Chem.64244845485710.1021/acs.jafc.6b00720
    [Google Scholar]
  61. OukoloffK. LuceroB. FranciscoK.R. BrundenK.R. BallatoreC. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design.Eur. J. Med. Chem.201916533234610.1016/j.ejmech.2019.01.027 30703745
    [Google Scholar]
  62. Méndez-ArriagaJ.M. OyarzabalI. EscolanoG. Rodríguez-DiéguezA. Sánchez-MorenoM. SalasJ.M. In vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine Cu(II) complexes.J. Inorg. Biochem.2018180263210.1016/j.jinorgbio.2017.11.027 29227923
    [Google Scholar]
  63. Méndez-ArriagaJ.M. Rodríguez-DiéguezA. Sánchez-MorenoM. In vitro leishmanicidal activity of copper (II) 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine complex and analogous transition metal series.Polyhedron202017611427210.1016/j.poly.2019.114272
    [Google Scholar]
  64. ŁakomskaI. FandzlochM. Application of 1,2,4-triazolo[1,5-a]pyrimidines for the design of coordination compounds with interesting structures and new biological properties.Coord. Chem. Rev.2016327-32822124110.1016/j.ccr.2016.04.014
    [Google Scholar]
  65. JrR.O.R. LampenJ.O. EnglishJ.P. ColeQ.P. JrJ.R.V. Studies in chemotherapy. VIII. Methionine and purine antagonists and their relation to the sulfonamides.J. Am. Chem. Soc.67229029410.1021/ja01218a043
    [Google Scholar]
  66. SinghP.K. ChoudharyS. KashyapA. VermaH. KapilS. KumarM. AroraM. SilakariO. An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades.Bioorg. Chem.20198810291910.1016/j.bioorg.2019.102919 31026721
    [Google Scholar]
  67. SalemM.A. BehaloM.S. KhidreR.E. Recent trend in the chemistry of triazolopyrimidines and their applications.Mini Rev. Org. Chem.20211881134114910.2174/1570193X18666210203155358
    [Google Scholar]
  68. RagabS.S. IbrahimN.E. Abdel-AzizM.S. ElrashedyA.A. AllayehA.K. Synthesis, biological activity, and molecular dynamic studies of new triazolopyrimidine derivatives.Results Chem.2023610116310.1016/j.rechem.2023.101163
    [Google Scholar]
  69. HibotA. OumessaoudA. HafidA. KhouiliM. PujolM.D. Different synthetic methods for the preparation of triazolopyrimidines and their biological profile.ChemistrySelect2023823e20230165410.1002/slct.202301654
    [Google Scholar]
  70. AckerD. CastleJ. Notes - A convenient laboratory synthesis of certain 6-hydroxypurines and 7-hydroxy-v-triazolo [d]pyrimidines.J. Org. Chem.195823122010201110.1021/jo01106a616
    [Google Scholar]
  71. PolikarchukV.A. ChertovaY.V. PotapovA.Y. LedenyovaI.V. KoshelevaY.A. KrysinM.Y. KozadyorovO.A. ShatalovG.V. VandyshevD.Y. ShikhalievK.S. PrabhakarC. Novel variants of the multicomponent reaction for the synthesis of 1,2,4-triazolo[1,5-a]pyrimidines and pyrido[3,4-e][1,2,4]triazolo[1,5-a]pyrimidines.Chem. Heterocycl. Compd.20205681054106110.1007/s10593‑020‑02773‑7
    [Google Scholar]
  72. MohamedM.A.A. BekhitA.A. Abd AllahO.A. KadryA.M. IbrahimT.M. BekhitS.A. AmagaseK. El-SaghierA.M.M. Synthesis and antimicrobial activity of some novel 1,2-dihydro-[1,2,4]triazolo[1,5-a]pyrimidines bearing amino acid moiety.RSC Advances20211152905291610.1039/D0RA08189B 35424245
    [Google Scholar]
  73. DesenkoS.M. GorobetsM.Y. LipsonV.V. SakhnoY.I. ChebanovV.A. Dihydroazolopyrimidines: Past, present and perspectives in synthesis, green chemistry and drug discovery.Chem. Rec.2023e20230024410.1002/tcr.202300244 37668291
    [Google Scholar]
  74. ChebanovV.A. DesenkoS.M. LipsonV.V. GorobetsN.Y. Multicomponent‐switched reactions in synthesis of heterocycles. In: Multicomponent Reactions towards Heterocycles.John Wiley Sons202110.1002/9783527832439.ch8
    [Google Scholar]
  75. SutherlandD.R. TennantG. The chemistry of polyazaheterocyclic compounds. Part V. The synthesis and reactivity of the v-triazolo[3,4-a]pyrimidine ring system.J. Chem. Soc. C197102156216210.1039/j39710002156
    [Google Scholar]
  76. BensonF.R. SavellW.L. The chemistry of the vicinal triazoles.Chem. Rev.195046116810.1021/cr60143a001
    [Google Scholar]
  77. ShaabaniA. SeyyedhamzehM. GanjiN. Hamidzad SangachinM. ArmaghanM. One-pot four-component synthesis of highly substituted [1,2,4]triazolo[1,5-a]pyrimidines.Mol. Divers.201519470971510.1007/s11030‑015‑9604‑4
    [Google Scholar]
  78. TamatamR. KimS.H. ShinD. Transition-metal-catalyzed synthesis of quinazolines: A review.Front Chem.202311114056210.3389/fchem.2023.1140562 37007059
    [Google Scholar]
  79. JenaS. ChandaK. Copper catalyzed synthesis of heterocyclic molecules via C-N and C-O bond formation under microwaves: A mini-review.ACS Omega2023826232402325610.1021/acsomega.3c02041 37426233
    [Google Scholar]
  80. ChangY. XieC. LiuH. HuangS. WangP. QinW. YanH. Organocatalytic atroposelective construction of axially chiral N, N- and N, S-1,2-azoles through novel ring formation approach.Nat. Commun.2022131193310.1038/s41467‑022‑29557‑1 35410417
    [Google Scholar]
  81. HezarcheshmehN.K. GodarzbodF. AbdullahM.N. HossainiZ. Green preparation of new pyrimidine triazole derivatives via one-pot multicomponent reactions of guanidine.Mol. Divers.202428121722810.1007/s11030‑023‑10754‑z 37943418
    [Google Scholar]
  82. BadreyM.G. GomhaS.M. ZakiM.E.A. FaragB. El-ReedyA.A.M. Cyanauric chloride as a key precursor and a core component for three-armed triazolopyrimidines: Recent finding about SARs and docking analyses.Results in Chemistry2024710133710.1016/j.rechem.2024.101337
    [Google Scholar]
  83. FrizzoC.P. ScapinE. MarzariM.R.B. MünchenT.S. ZanattaN. BonacorsoH.G. BuriolL. MartinsM.A.P. Ultrasound irradiation promotes the synthesis of new 1,2,4-triazolo[1,5-a]pyrimidine.Ultrason. Sonochem.201421395896210.1016/j.ultsonch.2013.12.007
    [Google Scholar]
  84. El-mahdy MK. M El-kazakA. A simple synthesis and antimicrobial activity of some new 1,2,4-triazolopyrimidine derivatives.Heterocycles2021102473110.3987/COM‑21‑14409
    [Google Scholar]
  85. KamalR. KumarR. KumarV. BhardwajJ.K. SarafP. KumarA. PanditK. KaurS. ChettiP. BeuraS. Diacetoxy iodobenzene mediated regioselective synthesis and characterization of novel [1,2,4]triazolo[4,3-a]pyrimidines: apoptosis inducer, antiproliferative activities and molecular docking studies.J. Biomol. Struct. Dyn.202139124398441410.1080/07391102.2020.1777900 32552396
    [Google Scholar]
  86. SoniR. AnejaD.K. SihagM. RaniN. KingerM. On water synthesis of 3-aryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines using iodobenzene diacetate.Lett. Org. Chem.202320540140610.2174/1570178620666221025160300
    [Google Scholar]
  87. DarapourZ. ShiriA. Synthesis of new derivatives of Alkylselanyl[1,2,4]triazolo[4,3‐a]pyrimidine as selenium‐containing heterocyclic system.J. Heterocycl. Chem.20236061047105710.1002/jhet.4650
    [Google Scholar]
  88. AliwainiS. Abu ThaherB. Al-MasriI. ShurrabN. El-KurdiS. SchollmeyerD. QeshtaB. GhunaimM. CsukR. LauferS. KaiserL. DeignerH.P. Design, synthesis and biological evaluation of novel pyrazolo[1,2,4]triazolopyrimidine derivatives as potential anticancer agents.Molecules20212613406510.3390/molecules26134065 34279406
    [Google Scholar]
  89. MuhammadZ.A. FarghalyT.A. AlthagafiI. Al-HussainS.A. ZakiM.E.A. HarrasM.F. Synthesis of antimicrobial azoloazines and molecular docking for inhibiting COVID‐19.J. Heterocycl. Chem.20215861286130110.1002/jhet.4257 34230687
    [Google Scholar]
  90. PogakuV. KrishnanR. BasavojuS. Synthesis and biological evaluation of new benzo[d][1,2,3]triazol-1-yl-pyrazole-based dihydro-[1,2,4]triazolo[4,3-a]pyrimidines as potent antidiabetic, anticancer and antioxidant agents.Res. Chem. Intermed.202147255157110.1007/s11164‑020‑04285‑7
    [Google Scholar]
  91. TangM.L. WenZ.H. WangJ.H. WangM.L. ZhangH. LiuX.H. JinL. ChangJ. Discovery of pyridone-substituted triazolopyrimidine dual A2A/A1AR antagonists for the treatment of ischemic stroke.ACS Med. Chem. Lett.202213343644210.1021/acsmedchemlett.1c00599 35295085
    [Google Scholar]
  92. ChinnamA.K. StaplesR.J. ShreeveJ.M. Synthesis and energetic properties of trifluoromethyl-substituted 2-nitro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives.J. Fluor. Chem.202124510974310.1016/j.jfluchem.2021.109743
    [Google Scholar]
  93. PismataroM.C. FelicettiT. BertagninC. NiziM.G. BonominiA. BarrecaM.L. CecchettiV. JochmansD. De JongheS. NeytsJ. LoregianA. TabarriniO. MassariS. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors.Eur. J. Med. Chem.202122111349410.1016/j.ejmech.2021.113494 33962311
    [Google Scholar]
  94. SongM. ZhaoW. ZhuY. LiuW. DengX. HuangY. Design, synthesis, and evaluation of anticonvulsant activities of new triazolopyrimidine derivatives.Front Chem.20221092528110.3389/fchem.2022.925281 35815216
    [Google Scholar]
  95. OlivaP. RomagnoliR. CacciariB. ManfrediniS. PadroniC. BrancaleA. FerlaS. HamelE. CoralloD. AveicS. MilanN. MariottoE. ViolaG. BortolozziR. Synthesis and biological evaluation of highly active 7-anilino triazolopyrimidines as potent antimicrotubule agents.Pharmaceutics2022146119110.3390/pharmaceutics14061191 35745764
    [Google Scholar]
  96. FedotovV.V. SavateevK.V. UlomskyE.N. DrokinR.A. SlepukhinP.A. RusinovV.L. 2-Furyl-6-nitro-1,2,4-triazolo[1,5-a]pyrimidin-7-one.Molbank202320231M156310.3390/M1563
    [Google Scholar]
  97. HuoX. MaY. ChenZ. YuanL. ZhengX. LiX. Fengting; Liang; You, W.; Zhao, P. One‐pot, multi‐component synthesis of novel 2‐amino‐[1,2,4]triazolo[1,5‐a]pyrimidine‐6‐carboxamide derivatives as antiproliferative agents.ChemistrySelect20216184562456510.1002/slct.202100985
    [Google Scholar]
  98. BayazeedA.A. AlnomanR.B. Synthesis of polyheterocyclic ring systems included triazolo[1,5-a]pyrimidine as antioxidant agents.Polycycl. Aromat. Compd.202242373574810.1080/10406638.2020.1750042
    [Google Scholar]
  99. MohamedH.S. AminN.H. El-SaadiM.T. Abdel-RahmanH.M. Design, synthesis, biological assessment, and in-silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors.Bioorg. Chem.202212110568710.1016/j.bioorg.2022.105687 35196595
    [Google Scholar]
  100. RomagnoliR. OlivaP. PrencipeF. ManfrediniS. BudassiF. BrancaleA. FerlaS. HamelE. CoralloD. AveicS. ManfredaL. MariottoE. BortolozziR. ViolaG. Design, synthesis and biological investigation of 2-anilino triazolopyrimidines as tubulin polymerization inhibitors with anticancer activities.Pharmaceuticals (Basel)2022158103110.3390/ph15081031 36015179
    [Google Scholar]
  101. KaramiS. BayatM. NasriS. MirzaeiF. A three-component cyclocondensation reaction for the synthesis of new triazolo[1,5-a]pyrimidine scaffolds using 3-aminotriazole, aldehydes and ketene N,S-acetal.Mol. Divers.20212542053206210.1007/s11030‑020‑10096‑0 32388702
    [Google Scholar]
  102. LyapustinD.N. UlomskyE.N. BalyakinI.A. ShchepochkinA.V. RusinovV.L. ChupakhinO.N. Oxidative aromatization of 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines: synthetic possibilities and limitations, mechanism of destruction, and the theoretical and experimental substantiation.Molecules20212616471910.3390/molecules26164719 34443304
    [Google Scholar]
  103. KhattabR. SwelmS. KhalilA. Elsayed AbdelhamidA. SolimanA. El-SayedA. Novel sono-synthesized triazole derivatives conjugated with selenium nanoparticles for cancer treatment.Egypt. J. Chem.20216484675468810.21608/ejchem.2021.81154.4018
    [Google Scholar]
  104. DattaK. MitraB. SharmaB.S. GhoshP. One‐pot three‐component solvent‐free tandem annulations for synthesis of tetrazolo[1,2‐a]pyrimidine and [1,2,4]triazolo[1,5‐a]pyrimidine.ChemistrySelect202277e202103e20260210.1002/slct.202103602
    [Google Scholar]
  105. Ben HassenM. MsalbiD. JismyB. ElghaliF. AifaS. AllouchiH. AbarbriM. ChabchoubF. Three component one-pot synthesis and antiproliferative activity of new [1,2,4]Triazolo[4,3-a]pyrimidines.Molecules2023289391710.3390/molecules28093917 37175327
    [Google Scholar]
  106. NasirmahaleL.N. ShiriniF. BayatY. MazloumiM. Solvent-free synthesis of imidazo[1,2-a]pyrimidine-3-carbonitriles and 1,2,4-triazolo[4,3-a]pyrimidines under the catalytic performance of TiO2-[bip]-NH2+ C(NO2)3- as a novel nanocatalyst.J. Mol. Struct.2023127213421010.1016/j.molstruc.2022.134210
    [Google Scholar]
  107. NazariS. ZabihzadehM. ShiriniF. TajikH. A Dicationic molten salt catalyzed synthesis of 1,2,4-triazolopyrimidine, quinazolinone and biscoumarin derivatives under green conditions.Polycycl. Aromat. Compd.20234321524153510.1080/10406638.2022.2030765
    [Google Scholar]
  108. ReniersF. AnthonissenS. Van MeerveltL. DehaenW. Three-step synthetic pathway toward fully decorated [1,2,3]triazolo[4,5-d]pyrimidine (8-azapurine) derivatives.Org. Lett.202325162820282410.1021/acs.orglett.3c00729 37067154
    [Google Scholar]
  109. SavateevK.V. SlepukhinP.A. KotovskayaS.K. CharushinV.N. RusinovV.L. ChupakhinO.N. Atom-efficient synthesis of hybrid molecules combining fragments of triazolopyrimidines and 3-ethoxycarbonyl-1-ethyl-6-fluoroquinolin-4(1H)-one through 1,2,3-triazole linker.Chem. Heterocycl. Compd.202157214315310.1007/s10593‑021‑02886‑7
    [Google Scholar]
/content/journals/coc/10.2174/0113852728313437240607095009
Loading
/content/journals/coc/10.2174/0113852728313437240607095009
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test