Skip to content
2000
Volume 29, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Effective and “green” synthesis of tetraketone derivatives was elaborated. The last compounds developed prominent bactericide activity against both MIC and MBC (ATCC-6538P) bacteria. The novelty of this approach is concluded in the application of Al(OH) catalyst for the Knoevenagel-Michael cascade reaction of aromatic aldehydes and 1,3-cyclic diketones in water. The process is chemoselective and affords high yield of tetraketones under benign conditions. The catalyst maintained 80% of initial activity within four cycles. The proposed method can be regarded as an alternative to the existing syntheses of biologically active tetraketones that utilize homogeneous and expensive heterogeneous catalysts.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728310688240711064139
2024-07-29
2024-12-26
Loading full text...

Full text loading...

References

  1. KhanK.M. MaharviG.M. KhanM.T.H. Jabbar ShaikhA. PerveenS. BegumS. ChoudharyM.I. Tetraketones: A new class of tyrosinase inhibitors.Bioorg. Med. Chem.200614234435110.1016/j.bmc.2005.08.029 16198580
    [Google Scholar]
  2. KantevariS. BantuR. NagarapuL. HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations.J. Mol. Catal. Chem.20072691-2535710.1016/j.molcata.2006.12.039
    [Google Scholar]
  3. KamaliF. ShiriniF. Melamine: An efficient promoter for some of the multi-component reactions.Polycycl. Aromat. Compd.2021411739410.1080/10406638.2019.1570949
    [Google Scholar]
  4. LiJ.T. LiY.W. SongY.L. ChenG.F. Improved synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound.Ultrason. Sonochem.20121911410.1016/j.ultsonch.2011.05.001 21622016
    [Google Scholar]
  5. LiW.L. WuL.Q. YanF.L. Alum-catalyzed one-pot synthesis of dihydropyrano[3,2-b]chromenediones.J. Braz. Chem. Soc.201122112202220510.1590/S0103‑50532011001100025
    [Google Scholar]
  6. DasP. KumarA. HowladerP. MukherjeeP.S. A self‐assembled trigonal prismatic molecular vessel for catalytic dehydration reactions in water.Chemistry20172351125651257410.1002/chem.201702263 28644555
    [Google Scholar]
  7. RosatiO. PelosiA. TemperiniA. PaceV. CuriniM. Potassium-exchanged zirconium hydrogen phosphate [α-Zr(KPO4)2]-catalyzed synthesis of 2-amino-4H-pyran derivatives under solvent-free conditions.Synthesis201648101533154010.1055/s‑0035‑1560411
    [Google Scholar]
  8. IlangovanA. MuralidharanS. SakthivelP. MalayappasamyS. KaruppusamyS. KaushikM.P. Simple and cost effective acid catalysts for efficient synthesis of 9-aryl-1,8-dioxooctahydroxanthene.Tetrahedron Lett.201354649149410.1016/j.tetlet.2012.11.058
    [Google Scholar]
  9. FerreiraI.M. CasagrandeG.A. PizzutiL. RaminelliC. Ultrasound-promoted rapid and efficient iodination of aromatic and heteroaromatic compounds in the presence of iodine and hydrogen peroxide in water.Synth. Commun.201444142094210210.1080/00397911.2013.879900
    [Google Scholar]
  10. GalloR.D.C. FerreiraI.M. CasagrandeG.A. PizzutiL. Oliveira-SilvaD. RaminelliC. Efficient and eco-friendly synthesis of iodinated aromatic building blocks promoted by iodine and hydrogen peroxide in water: A mechanistic investigation by mass spectrometry.Tetrahedron Lett.201253405372537510.1016/j.tetlet.2012.07.102
    [Google Scholar]
  11. NevesF.B. ZaninL.L. PereiraR.R. JúniorJ.O.C.S. CostaR.M.R. PortoA.L.M. YoshiokaS.A. OliveiraA.N. JimenezD.E.Q. FerreiraI.M. Chitin and silk fibroin biopolymers modified by oxone: efficient heterogeneous catalysts for knoevenagel reaction.Catalysts202212890491810.3390/catal12080904
    [Google Scholar]
  12. JimenezD.E.Q. FerreiraI.M. BirolliW.G. FonsecaL.P. PortoA.L.M. Synthesis and biocatalytic ene-reduction of Knoevenagel condensation compounds by the marine-derived fungus Penicillium citrinum CBMAI 1186.Tetrahedron201672467317732210.1016/j.tet.2016.02.014
    [Google Scholar]
  13. LasemiZ. TajbakhshM. AlinezhadH. MehrparvarF. 1,8-Diazabicyclo [5.4.0] undec-7-ene functionalized cellulose nanofibers as an efficient and reusable nanocatalyst for the synthesis of tetraketones in aqueous medium.Res. Chem. Intermed.20204673667368210.1007/s11164‑020‑04167‑y
    [Google Scholar]
  14. LopesS.Q. HolandaF.H. JimenezD.E.Q. do NascimentoL.A.S. OliveiraA.N. FerreiraI.M. Use of oxone® as a potential catalyst in biodiesel production from palm fatty acid distillate (PFAD).Catal. Lett.202215241009101910.1007/s10562‑021‑03698‑2
    [Google Scholar]
  15. de OliveiraA.N. de OliveiraD.T. AngélicaR.S. AndradeE.H.A. da SilvaJ.K.R. Rocha FilhoG.N. CoralN. PiresL.H.O. LuqueR. do NascimentoL.A.S. Efficient esterification of eugenol using a microwave-activated waste kaolin.React. Kinet. Mech. Catal.2020130263365310.1007/s11144‑020‑01797‑6
    [Google Scholar]
  16. de OliveiraA.N. FerreiraI.M. JimenezD.E.Q. da SilvaL.S. da CostaA.A.F. LimaE.T.L. CostaF.F. da LuzP.T.S. Rocha FilhoG.N. OsmanS.M. LuqueR. NascimentoL.A.S. Mining waste valorisation to catalytically active mesoporous materials for the esterification of fatty acid palm oil waste. Molecu.Cataly.202252811250410.1016/j.mcat.2022.112504
    [Google Scholar]
  17. Safaei-GhomiJ. AsadianS. NazemzadehS.H. Shahbazi-AlaviH. Synthesis of tetraketones using ZnS nanoparticles as an efficient catalyst.J. Chin. Chem. Soc.201865443043410.1002/jccs.201700250
    [Google Scholar]
  18. FallahA. TajbakhshM. VahediH. BekhradniaA. Natural phosphate as an efficient and green catalyst for synthesis of tetraketone and xanthene derivatives.Res. Chem. Intermed.2017431294310.1007/s11164‑016‑2603‑y
    [Google Scholar]
  19. KhuranaJ.M. VijK. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins.J. Chem. Sci.2012124490791210.1007/s12039‑012‑0275‑8
    [Google Scholar]
  20. TajbakhshM. HeidaryM. HosseinzadehR. Nano Fe/NaY zeolite: An efficient and reusable solid-supported catalyst for synthesis of 1-oxo-hexahydroxanthene and tetraketone derivatives.Res. Chem. Intermed.20164221425143910.1007/s11164‑015‑2094‑2
    [Google Scholar]
  21. AttarS.R. ShindeB. KambleS.B. Enhanced catalytic activity of bio-fabricated ZnO NPs prepared by ultrasound-assisted route for the synthesis of tetraketone and benzylidenemalonitrile in hydrotropic aqueous medium.Res. Chem. Intermed.202046104723474810.1007/s11164‑020‑04233‑5
    [Google Scholar]
  22. Hasanzadeh BanakarS. DekaminM.G. YaghoubiA. Selective and highly efficient synthesis of xanthenedione or tetraketone derivatives catalyzed by ZnO nanorod-decorated graphene oxide.New J. Chem.20184217142461426210.1039/C8NJ01053F
    [Google Scholar]
  23. JimenezD.E.Q. ZaninL.L. FerreiraI.M. DeflonV.M. DinizL.F. EllenaJ. HaidukeR.L.A. PortoA.L.M. Sustainable synthesis of benzylidenemalononitrile compounds under microwave- irradiation.Curr. Org. Chem.202226161552156410.2174/1385272827666221125091631
    [Google Scholar]
  24. AraujoJ.T.C. Martin-PastorM. PérezL. PinazoA. SousaF.F.O. Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement.J. Mol. Liq.202133211580810.1016/j.molliq.2021.115808
    [Google Scholar]
/content/journals/coc/10.2174/0113852728310688240711064139
Loading
/content/journals/coc/10.2174/0113852728310688240711064139
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test