Skip to content
2000
Volume 28, Issue 20
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

This study outlines the development of a novel approach utilizing microwave assistance for the alcohol dehydrogenative reaction. The process is catalyzed by manganese (II) and cobalt (II) in conjunction with chroman-4-one amino ligands. This research introduces a unique catalytic system capable of synthesizing various heterocyclic compounds, including pyrroles, pyridines, Betti bases, chromenes, and coumarins alcohol dehydrogenation. The synthesis involved the preparation and characterization of a series of chroman-4-one amino ligands () using standard analytical techniques. These ligands, in combination with MnCl‧4HO and CoCl, demonstrated remarkable catalytic activity, effectively driving alcohol dehydrogenation. The catalytic cycle was initiated by the formation of metal complexes with the ligands during the reaction. Characterization using ESI-MS confirmed the presence of metal complexes () and other intermediates ( and ) throughout the catalytic cycle. Additionally, the controlled experiment corroborated the efficacy of the catalytic system, evidenced by the evolution of H gas.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728304957240628180342
2024-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. NallagangulaM. SubaramanianM. KumarR. BalaramanE. Transition metal-catalysis in interrupted borrowing hydrogen strategy.Chem. Commun.202359517847786210.1039/D3CC01517C 37259885
    [Google Scholar]
  2. BorthakurI. SauA. KunduS. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect.Coord. Chem. Rev.202245121425710.1016/j.ccr.2021.214257
    [Google Scholar]
  3. DiezA.S. PiquerasC.M. AraizaD.G. DíazG. VolpeM.A. Preparation and characterization of Cu single bond CeO2 catalytic materials for the oxidation of benzyl alcohol to benzaldehyde in water.Mater. Chem. Phys.201923226527110.1016/j.matchemphys.2019.04.053
    [Google Scholar]
  4. LiuC. LiT. DaiX. ZhaoJ. HeD. LiG. WangB. CuiX. Catalytic activity enhancement on alcohol dehydrogenation via directing reaction pathways from single- to double-atom catalysis.J. Am. Chem. Soc.2022144114913492410.1021/jacs.1c12705 35261231
    [Google Scholar]
  5. MiaoJ. GeH. Recent advances in first‐row‐transition‐metal‐catalyzed dehydrogenative Cou pling of C(sp3)–H bonds.Eur. J. Org. Chem.20152015367859786810.1002/ejoc.201501186
    [Google Scholar]
  6. MariaA. PhillipsF. PombeiroA. J. L. Recent developments in transition metal‐catalyzed cross‐dehydrogenative coupling reactions of ethers and thioethers. chemcatchem., 2018103354338310.1002/cctc.201800582
    [Google Scholar]
  7. HeraviM.R.P. HosseinianA. RahmaniZ. EbadiA. VessallyE. Transition‐metal‐catalyzed dehydrogenative coupling of alcohols and amines: A novel and atom‐economical access to amides.J. Chin. Chem. Soc. 202168572373710.1002/jccs.202000301
    [Google Scholar]
  8. XieJ. HuangZ-Z. Cross‐dehydrogenative coupling reactions by transition‐metal and aminocatalysis for the synthesis of amino acid derivatives.Angew. Chem.201012252103791038310.1002/ange.201004940
    [Google Scholar]
  9. MurataM. WatanabeS. MasudaY. Rhodium-catalyzed dehydrogenative coupling reaction of vinylarenes with pinacolborane to vinylboronates.Tetrahedron Lett.199940132585258810.1016/S0040‑4039(99)00253‑1
    [Google Scholar]
  10. RanaJ. BabuR. SubaramanianM. BalaramanE. Ni-Catalyzed dehydrogenative coupling of primary and secondary alcohols with methyl-N-heteroaromatics.Org. Chem. Front.20185223250325510.1039/C8QO00764K
    [Google Scholar]
  11. ItazakiM. UedaK. NakazawaH. Iron-catalyzed dehydrogenative coupling of tertiary silanes.Angew. Chem. Int. Ed.200948183313331610.1002/anie.200805112 19338005
    [Google Scholar]
  12. ZhangM.J. GeX.L. YoungD.J. LiH.X. Recent advances in co-catalyzed C–C and C–N bond formation via ADC and ATH reactions.Tetrahedron20219313230910.1016/j.tet.2021.132309
    [Google Scholar]
  13. HigasioY.S. ShojiT. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins.Appl. Catal. A Gen.20012211-219720710.1016/S0926‑860X(01)00815‑8
    [Google Scholar]
  14. BorahB. Dhar DwivediK. ChowhanL.R. 4‐Hydroxycoumarin: A versatile substrate for transition‐metal‐free multicomponent synthesis of bioactive heterocycles.Asian J. Org. Chem.202110123101312610.1002/ajoc.202100550
    [Google Scholar]
  15. SreedeviR. SaranyaS. RohitK.R. AnilkumarG. Recent trends in iron‐catalyzed reactions towards the synthesis of nitrogen‐containing heterocycles.Adv. Synth. Catal.2019361102236224910.1002/adsc.201801471
    [Google Scholar]
  16. ObaidR.J. NaeemN. MughalE.U. Al-RooqiM.M. SadiqA. JassasR.S. MoussaZ. AhmedS.A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase.RSC Adv.20221231197641985510.1039/D2RA03081K 35919585
    [Google Scholar]
  17. Küpeli AkkolE. GençY. KarpuzB. Sobarzo-SánchezE. CapassoR. Coumarins and coumarin-related compounds in pharmacotherapy of cancer.Cancers 2020127195910.3390/cancers12071959 32707666
    [Google Scholar]
  18. KeriR.S. BudagumpiS. Balappa SomappaS. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure–activity relationship.J. Clin. Pharm. Ther.202247791593110.1111/jcpt.13644 35288962
    [Google Scholar]
  19. PanjaS.K. DwivediN. SahaS. First report of the application of simple molecular complexes as organo-catalysts for Knoevenagel condensation.RSC Advances2015580655266553110.1039/C5RA09036A
    [Google Scholar]
  20. SharmaS. SinghU.P. SinghA.P. Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhydroquinoline derivatives.Polyhedron202119911510210.1016/j.poly.2021.115102
    [Google Scholar]
  21. GaoH. ZhouL. WanJ.P. LiuY. Rongalite as C1 synthon in the synthesis of divergent pyridines and quinolines.J. Org. Chem.202388117188719810.1021/acs.joc.3c00428 37171406
    [Google Scholar]
  22. FuL. WanJ.P. ZhouL. LiuY. Copper-catalyzed C–H/N–H annulation of enaminones and alkynyl esters for densely substituted pyrrole synthesis.Chem. Commun. 202258111808181110.1039/D1CC06768K 35040446
    [Google Scholar]
  23. ZahoorA.F. IftikharR. AhmadS. HaqA. NaheedS. Revisiting the synthesis of betti bases: facile, one-pot, and efficient synthesis of betti bases promoted by FeCl3•6H2O.Curr. Org. Synth.202219556957710.2174/1570179419666220127144352 35086451
    [Google Scholar]
  24. FuL. LiuY. WanJ.P. Pd-catalyzed triple-fold C(sp2)–H activation with enaminones and alkenes for pyrrole synthesis via hydrogen evolution.Org. Lett.202123114363436710.1021/acs.orglett.1c01301 34013729
    [Google Scholar]
  25. BegumA.F. BalasubramanianK.K. ShanmugasundaramB. Acid activated montmorillonite K-10 mediated intramolecular acylation: Simple and convenient synthesis of 4-chromanones.Tetrahedron Lett.20218215337210.1016/j.tetlet.2021.153372
    [Google Scholar]
  26. YangL. WanJ.P. Ethyl lactate-involved three-component dehydrogenative reactions: Biomass feedstock in diversity-oriented quinoline synthesis.Green Chem.202022103074307810.1039/D0GC00738B
    [Google Scholar]
  27. SunY. LiuZ. LiuD. ZhangM. ChenL. ChaiZ. ChenX.B. YuF. Synthesis of 4-alkylated 1,4-dihydropyridines: Fe(II)-mediated oxidative cascade cyclization reaction of cyclic ethers with enaminones.J. Org. Chem.20238816116271163610.1021/acs.joc.3c00925 37556793
    [Google Scholar]
  28. AlberolaA. González OrtegaA. Luisa SádabaM. SañudoC. Versatility of Weinreb amides in the Knorr pyrrole synthesis.Tetrahedron199955216555656610.1016/S0040‑4020(99)00289‑6
    [Google Scholar]
  29. RoomiM.W. MacDonaldS.F. The Hantzsch pyrrole synthesis.Can. J. Chem.197048111689169710.1139/v70‑279
    [Google Scholar]
  30. Vanden EyndeJ.J. MayenceA. Synthesis and aromatization of hantzsch 1,4-dihydropyridines under microwave irradiation. an overview.Molecules20038438139110.3390/80400381
    [Google Scholar]
  31. AntonyrajC.A. KannanS. Hantzsch pyridine synthesis using hydrotalcites or hydrotalcite-like materials as solid base catalysts.Appl. Catal. A Gen.20083381-212112910.1016/j.apcata.2007.12.028
    [Google Scholar]
  32. OlyaeiA. SadeghpourM. Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and bis-Betti base derivatives.RSC Adv.2019932184671849710.1039/C9RA02813G 35515249
    [Google Scholar]
  33. MushtaqA. ZahoorA.F. AhmadS. ParveenB. AliK.G. Novel synthetic methods toward the synthesis of Betti bases: An update.Chem. Zvesti20237794751479510.1007/s11696‑023‑02825‑0
    [Google Scholar]
  34. KhanD. MukhtarS. AlsharifM.A. AlahmdiM.I. AhmedN.PhI. (OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives.Tetrahedron Lett.201758323183318710.1016/j.tetlet.2017.07.018
    [Google Scholar]
  35. BorahB. DwivediK.D. KumarB. ChowhanL.R. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles.Arab. J. Chem.202215310365410.1016/j.arabjc.2021.103654
    [Google Scholar]
  36. KahveciB. MenteşeE. Microwave assisted synthesis of coumarins: A review from 2007 to 2018.Curr. Microw. Chem.20195316217810.2174/2213335606666181122101724
    [Google Scholar]
  37. KhalighN.G. MihankhahT. JohanM.R. One-pot synthesis of coumarins using 1,1′-butylenebis (3-sulfo-3H-imidazol-1-ium) chloride as an efficient task-specific ionic liquid.Polycycl. Aromat. Compd.20214181712172110.1080/10406638.2019.1695215
    [Google Scholar]
  38. LončarićM. SušjenkaM. MolnarM. An extensive study of coumarin synthesis via knoevenagel condensation in choline chloride based deep eutectic solvents.Curr. Org. Synth.20201729810810.2174/1570179417666200116155704 32418515
    [Google Scholar]
  39. HiremathP.B. KamannaK. A microwave accelerated sustainable approach for the synthesis of 2-amino-4H-chromenes catalysed by WEPPA: A green strategy.Curr. Microw. Chem.201961304310.2174/2213335606666190820091029
    [Google Scholar]
  40. ChatterjeeR. BhuktaS. DandelaR. Ionic liquid‐assisted synthesis of 2‐amino‐3‐cyano‐4H‐chromenes: A sustainable overview.J. Heterocycl. Chem.202259463365410.1002/jhet.4417
    [Google Scholar]
  41. MeeraG. RohitK.R. SaranyaS. AnilkumarG. Microwave assisted synthesis of five membered nitrogen heterocycles.RSC Adv.20201059360313604110.1039/D0RA05150K 35517065
    [Google Scholar]
  42. YanC.G. CaiX.M. WangQ.F. WangT.Y. ZhengM. Microwave-assisted four-component, one-pot condensation reaction: An efficient synthesis of annulated pyridines.Org. Biomol. Chem.20075694595110.1039/b617256c 17340010
    [Google Scholar]
  43. KhanD. Shaily; Maurya, N. Microwave-assisted IBX-mediated one-pot four-component synthesis of 4-arylhexahydroquinoline derivatives from benzyl alcohols: A metal-free approach.Russ. J. Org. Chem.202359469570310.1134/S107042802304019X
    [Google Scholar]
  44. MajiM. PanjaD. BorthakurI. KunduS. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols.Org. Chem. Front.20218112673270910.1039/D0QO01577F
    [Google Scholar]
  45. WaibaS. MajiB. Manganese catalyzed acceptorless dehydrogenative coupling reactions.ChemCatChem20201271891190210.1002/cctc.201902180
    [Google Scholar]
  46. DasK. WaibaS. JanaA. MajiB. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions.Chem. Soc. Rev.202251114386446410.1039/D2CS00093H 35583150
    [Google Scholar]
  47. FilonenkoG.A. van PuttenR. HensenE.J.M. PidkoE.A. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field.Chem. Soc. Rev.20184741459148310.1039/C7CS00334J 29334388
    [Google Scholar]
  48. MidyaS.P. LandgeV.G. SahooM.K. RanaJ. BalaramanE. Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives.Chem. Commun.2018541909310.1039/C7CC07427A 29211066
    [Google Scholar]
  49. HofmannN. HultzschK.C. Borrowing hydrogen and acceptorless dehydrogenative coupling in the multicomponent synthesis of N‐Heterocycles: A comparison between base and noble metal catalysis.Eur. J. Org. Chem.20212021466206622310.1002/ejoc.202100695
    [Google Scholar]
  50. DasK. MondalA. PalD. SrimaniD. Sustainable synthesis of quinazoline and 2-aminoquinoline via dehydrogenative coupling of 2-aminobenzyl alcohol and nitrile catalyzed by phosphine-free manganese pincer complex.Org. Lett.20192193223322710.1021/acs.orglett.9b00939 31008616
    [Google Scholar]
  51. WangZ. LinQ. MaN. LiuS. HanM. YanX. LiuQ. SolanG.A. SunW.H. Direct synthesis of ring-fused quinolines and pyridines catalyzed by NNHY-ligated manganese complexes (Y = NR2 or SR).Catal. Sci. Technol.202111248026803610.1039/D1CY01945G
    [Google Scholar]
  52. MajiA. GuptaS. MajiM. KunduS. Well-defined phosphine-free manganese(II)-complex-catalyzed synthesis of quinolines, pyrroles, and pyridines.J. Org. Chem.202287138351836710.1021/acs.joc.2c00167 35726206
    [Google Scholar]
  53. GoswamiB. KhatuaM. ChatterjeeR. Kamal; Samanta, S. Amine functionalized pincer-like azo-aromatic complexes of cobalt and their catalytic activities in the synthesis of quinoline via acceptorless dehydrogenation of alcohols.Organometallics202342151854186810.1021/acs.organomet.3c00078
    [Google Scholar]
  54. MishraS. PrakashC. TripathiB.P. Role of aurone ligands in microwave enhanced Mn (II) and Co (II) catalyzed dehydrogenative coupling reaction: An efficient ligand for the synthesis of quinoline, pyridine, and pyrrole.J. Heterocycl. Chem.202461340742010.1002/jhet.4769
    [Google Scholar]
  55. KhanD. ParveenI. Chroman‐4‐one‐based amino bidentate ligand: An efficient ligand for suzuki‐miyaura and mizoroki‐heck coupling reactions in aqueous medium.Eur. J. Org. Chem.20212021354946495710.1002/ejoc.202100866
    [Google Scholar]
  56. YangC.H. ChenX. LiH. WeiW. YangZ. ChangJ. Iodine catalyzed reduction of quinolines under mild reaction conditions.Chem. Commun. 201854628622862510.1039/C8CC04262D 30019712
    [Google Scholar]
  57. KhanD. ParveenI. Shaily; Sharma, S. Design, synthesis and characterization of aurone based α,β‐unsaturated carbonyl‐amino ligands and their application in microwave assisted suzuki, heck and buchwald reactions.Asian J. Org. Chem.2022111e20210063810.1002/ajoc.202100638
    [Google Scholar]
  58. KallmeierF. DudziecB. IrrgangT. KempeR. Manganese‐catalyzed sustainable synthesis of pyrroles from alcohols and amino alcohols.Angew. Chem. Int. Ed.201756257261726510.1002/anie.201702543 28510273
    [Google Scholar]
  59. BorghsJ.C. AzofraL.M. BibergerT. LinnenbergO. CavalloL. RuepingM. El-SepelgyO. Manganese‐catalyzed multicomponent synthesis of pyrroles through acceptorless dehydrogenation hydrogen autotransfer catalysis: experiment and computation.ChemSusChem201912133083308810.1002/cssc.201802416 30589227
    [Google Scholar]
/content/journals/coc/10.2174/0113852728304957240628180342
Loading
/content/journals/coc/10.2174/0113852728304957240628180342
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): Betti base; catalysis; chroman-4-one; dehydrogenative coupling; heterocycles; pyridine; pyrrole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test