Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Sulfonamide, imidazole, and triazole chemical nuclei possess good antimicrobial potential. This study aimed to amalgamate sulfonamide, imidazole, and triazole moieties in a single molecular framework with the intent of improving their antimicrobial activities. The objective of this study was the synthesis of conjugates containing sulfonamide and azole moieties along with and evaluation as antimicrobial candidates. A series of sulfonamide-modified azoles (7a-r) was synthesized by multicomponent condensation of 1,2-dicarbonyl compounds, ammonium acetate and aryl-substituted aldehydes in glacial acetic acid. The structure of synthesized molecules was elucidated with the help of various spectroscopic techniques, such as FTIR, NMR, and HRMS. The target molecules were tested for antimicrobial potency against four bacterial strains and two fungal strains. Molecules 7c (MIC 0.0188 μmol/mL), 7f (MIC 0.0170 μmol/mL) and 7i (MIC 0.0181 μmol/mL) were most active against S. aureus and Against , molecules 7d (MIC 0.0179 μmol/mL), 7f (MIC 0.0170 μmol/mL) and 7i (MIC 0.0181 μmol/mL) were found to be highly active. Moreover, the binding conformations were investigated by molecular docking, and QTAIM (Quantitative theory of atoms in the molecule) analysis was also performed. Molecular properties, such as the heat of formation, HOMO energy, LUMO energy and COSMO volume, were found to be in direct correlation with the antimicrobial potency of molecules 7c, 7f and 7i against and . All the synthesized molecules were more potent than clinically approved sulfonamides, namely sulfadiazine and sulfabenzamide.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728296342240216074100
2024-04-01
2025-05-03
Loading full text...

Full text loading...

/content/journals/coc/10.2174/0113852728296342240216074100
Loading

  • Article Type:
    Research Article
Keyword(s): antimicrobial; imidazole; molecular docking; QTAIM; Sulfonamides; triazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test