Skip to content
2000
Volume 29, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In this study, a simple, mild, and environmentally friendly process was used for the pseudo-seven component reaction between readily available benzene-1,3,5-tricarboxylic acid, isocyano-cyclohexane, and various aldehydes. This rapid method produced the tris-cyclohexylamino-oxo-benzene-1,3,5-tricarboxylates in relatively acceptable and more reasonable reaction times (10-15 min) and high achievable efficiencies (85-95%) by employing a Passerini reaction. Water was used as an eco-friendly and low-cost solvent for the green synthesis of benzene tris-carboxamides. The reactions were carried out a Passerini approach at 50℃ for relatively shorter reaction times. The antibacterial action of the synthetic tris-carboxamides was investigated, and some of them gave satisfactory and promising antibacterial results. Target tris-Passerini molecules recrystallized from 96% EtOH. The structures of the resulting molecules were evaluated and confirmed with the help of spectral data and elemental analyses.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728269992241030054239
2025-01-02
2025-06-03
Loading full text...

Full text loading...

References

  1. (a FotopoulouE. FragkiadakisM. NeochoritisC.G. Macrocyclization tactics: The MCR approach.Tetrahedron Lett.202312015445310.1016/j.tetlet.2023.154453
    [Google Scholar]
  2. (b ZhangS. HuangD. WuJ. WangZ. Decade advance of isatin in three‐component reactions.Asian J. Org. Chem.2023122e20220059110.1002/ajoc.202200591
    [Google Scholar]
  3. (c ChaudharyB. SinglaD. AryaP. DabraA. KumarP. AfzalO. AltamimiA.S.A. AlzareaS.I. KazmiI. Al-AbbasiF.A. GuptaG. GuptaM.M. Versatile imidazole synthesis via multicomponent reaction approach.J. Heterocycl. Chem.202360452353610.1002/jhet.4583
    [Google Scholar]
  4. (d WiemannJ. HellerL. CsukR. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions.Eur. J. Med. Chem.201815017619410.1016/j.ejmech.2018.02.06029529499
    [Google Scholar]
  5. (e AyvazA. DemirbaşS.G. DemirbaşA. DemirbaşN. One-pot multicomponent reactions in deep eutectic solvents.Curr. Org. Chem.202327758562010.2174/1385272827666230427101210
    [Google Scholar]
  6. (a BaoL. LiM. ZhangL. XueY. DongJ. XuX. Isocyanide heterodimerization-triggered three-component reaction: Diversity-oriented synthesis of quinoxalines.Org. Lett.202325132366237110.1021/acs.orglett.3c0079436988211
    [Google Scholar]
  7. (b MaG.H. JiangB. TuX.J. NingY. TuS.J. LiG. Synthesis of isocoumarins with different substituted patterns via Passerini-aldol sequence.Org. Lett.201416174504450710.1021/ol502048e25140818
    [Google Scholar]
  8. (a ZhangC.L. WangH.Y. HuangY. WangX.H. YeS. N-heterocyclic carbene catalyzed three-component reaction for the synthesis of multi-substituted benzenes.Org. Lett.202224427747775110.1021/acs.orglett.2c0306136264013
    [Google Scholar]
  9. (b TashrifiZ. Mohammadi KhanaposhtaniM. GholamiF. LarijaniB. MahdaviM. Reactions involving multiple isocyanide insertions.Adv. Synth. Catal.2023365792694710.1002/adsc.202200995
    [Google Scholar]
  10. (c LamberthC. Multicomponent reactions in crop protection chemistry.Bioorg. Med. Chem.2020281011547110.1016/j.bmc.2020.11547132253096
    [Google Scholar]
  11. (d BhatS.I. One‐pot construction of bis‐heterocycles through isocyanide based multicomponent reactions.ChemistrySelect20205278040806110.1002/slct.202002154
    [Google Scholar]
  12. (e ShaabaniA. FarhidH. RostamiM.M. NotashB. Synthesis of depsipeptides via isocyanide-based consecutive Bargellini–Passerini multicomponent reactions.SynOpen20215316717210.1055/a‑1533‑3823
    [Google Scholar]
  13. (f HooshmandS.E. YazdaniH. HulmeC. Six‐component reactions and beyond: The nuts and bolts.Eur. J. Org. Chem.2022202234e20220056910.1002/ejoc.202200569
    [Google Scholar]
  14. PasseriniM. SimoneL. Sopra gli Isonitrili (I). Composto del p-isonitrilazobenzolo con acetone ed acido Acetico.Gazz. Chim. Ital.192151126129
    [Google Scholar]
  15. (a RemyL. SudreG. CharlotA. FleuryE. α-Substituted ketones as reagent for Passerini modification of carboxymethyl cellulose: Toward dually functionalized derivatives and thermo-sensitive chemical hydrogels.Carbohydr. Polym.202332012122810.1016/j.carbpol.2023.12122837659816
    [Google Scholar]
  16. (b KumarS. AroraA. KumarS. KumarR. MaityJ. SinghB.K. Passerini reaction: Synthesis and applications in polymer chemistry.Eur. Polym. J.202319011200410.1016/j.eurpolymj.2023.112004
    [Google Scholar]
  17. (a AyoupM.S. WahbyY. Abdel-HamidH. RamadanE.S. TelebM. Abu-SerieM.M. NobyA. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators.Eur. J. Med. Chem.201916834035610.1016/j.ejmech.2019.02.05130826510
    [Google Scholar]
  18. (b AyoupM.S. MansourA.F. Abdel-HamidH. Abu-SerieM.M. MohyeldinS.M. TelebM. Nature-inspired new isoindole-based Passerini adducts as efficient tumor-selective apoptotic inducers via caspase-3/7 activation.Eur. J. Med. Chem.2023245Pt 111486510.1016/j.ejmech.2022.11486536335743
    [Google Scholar]
  19. (c AyoupM.S. WahbyY. Abdel-HamidH. Abu-SerieM.M. RamadanS. BarakatA. TelebM. IsmailM.M.F. Reinvestigation of Passerini and Ugi scaffolds as multistep apoptotic inducers via dual modulation of caspase 3/7 and P53-MDM2 signaling for halting breast cancer.RSC Advances20231340277222773710.1039/D3RA04029A37736568
    [Google Scholar]
  20. (a WuY. ChengH. LiJ. LiuJ. SunJ. Microdroplet chemistry accelerating a three-component Passerini reaction for α-acyloxy carboxamide synthesis.J. Org. Chem.20238815111861119610.1021/acs.joc.3c0120637493511
    [Google Scholar]
  21. (b BrunelliF. CeresaC. FracchiaL. TronG.C. AprileS. Expanding the chemical space of drug-like Passerini compounds: Can α-acyloxy carboxamides be considered hard drugs?ACS Med. Chem. Lett.202213121898190410.1021/acsmedchemlett.2c0042036518692
    [Google Scholar]
  22. WangR. LiuZ.Q. Passerini three-component adducts as radical scavengers.Tetrahedron Lett.201556507028703310.1016/j.tetlet.2015.11.009
    [Google Scholar]
  23. (a WuJ. ZhaoW. CaoS. Synthesis of difluoromethyl‐containing α‐acyloxycarboxamide derivatives through a Passerini reaction and desulfonylation.Eur. J. Org. Chem.2012201271380138710.1002/ejoc.201101518
    [Google Scholar]
  24. (b GravestockD. RousseauA.L. LourensA.C.U. HoppeH.C. NkabindeL.A. BodeM.L. Novel branched isocyanides as useful building blocks in the Passerini-amine deprotection-acyl migration (PADAM) synthesis of potential HIV-1 protease inhibitors.Tetrahedron Lett.201253263225322910.1016/j.tetlet.2012.04.018
    [Google Scholar]
  25. WahbyY. Abdel-HamidH. AyoupM.S. Two decades of recent advances of Passerini reactions: Synthetic and potential pharmaceutical applications.New J. Chem.20224641445146810.1039/D1NJ03832J
    [Google Scholar]
  26. SalamiS.A. SafariJ.B. SmithV.J. KrauseR.W.M. Mechanochemically‐assisted Passerini reactions: A practical and convenient method for the synthesis of novel α‐acyloxycarboxamide derivatives.ChemistryOpen2023125e20220026810.1002/open.20220026837198143
    [Google Scholar]
  27. SalamiS.A. SmithV.J. KrauseR.W.M. Water‐assisted Passerini reactions under mechanochemical activation: A simple and straightforward access to oxindole derivatives.ChemistrySelect202384e20220432510.1002/slct.202204325
    [Google Scholar]
  28. SelaT. VigalokA. Salt‐controlled selectivity in “on water” and “in water” passerini‐type multicomponent reactions.Adv. Synth. Catal.2012354132407241110.1002/adsc.201200448
    [Google Scholar]
  29. (a SalamiS.A. ManyerukeM. Siwe-NoundouX. KrauseR.W.M. Immobilized sulfuric acid on silica gel as highly efficient and heterogeneous catalyst for the one-pot synthesis of novel α-acyloxycarboxamides in aqueous media.Int. J. Mol. Sci.20222317952910.3390/ijms2317952936076923
    [Google Scholar]
  30. (b SalamiS.A. SmithV.J. KrauseR.W.M. N -Formamide as a carbonyl precursor in the catalytic synthesis of Passerini adducts under aqua and mechanochemical conditions.RSC Advances20231364019403110.1039/D2RA06189A36756572
    [Google Scholar]
  31. LiM. QiuB. KongX.J. WenL.R. Synthesis of Passerini adducts from aldehydes and isocyanides under the auxiliary of water.Org. Chem. Front.20152101326133310.1039/C5QO00202H
    [Google Scholar]
  32. (a ShaabaniA. AfshariR. HooshmandS.E. Passerini three-component cascade reactions in deep eutectic solvent: An environmentally benign and rapid system for the synthesis of α-acyloxyamides.Res. Chem. Intermed.20164265607561610.1007/s11164‑015‑2390‑x
    [Google Scholar]
  33. (b YavariI. Khajeh-KhezriA. GhorbanzadehM. HalvagarM.R. Synthesis of novel α-acyloxyamides using choline chloride-based deep eutectic solvent.Monatsh. Chem.201915071317132410.1007/s00706‑019‑02448‑w
    [Google Scholar]
  34. (c AntenucciA. MarraF. DugheraS. Silica gel-immobilised chiral 1,2-benzenedisulfonimide: A Brønsted acid heterogeneous catalyst for enantioselective multicomponent Passerini reaction.RSC Advances20211142260832609210.1039/D1RA05297G35479468
    [Google Scholar]
  35. (d DezfooliS. HashemiM.M. A green and simple approach to α-acyloxycarboxamides.Sci. Iran. C20152222492253
    [Google Scholar]
  36. PaprockiD. KoszelewskiD. WaldeP. OstaszewskiR. Efficient Passerini reactions in an aqueous vesicle system.RSC Advances2015512410282810283510.1039/C5RA22258C
    [Google Scholar]
  37. (a YavariI. ShahvelayatiA.S. GhanbariM. GhazviniM. PiltanM. One-pot synthesis of functionalized α-acyloxythioamides from N-protected α-amino acids as an acid component in the Passerini reaction in an ionic liquid.J. Indian Chem. Soc.20118363664210.1007/BF03245894
    [Google Scholar]
  38. (b HokmabadV.R. AbbasiH. SafaK.D. Synthesis of novel α-acyloxycarboxamides containing vinylbis(silanes) through three-component Passerini reactions.J. Indian Chem. Soc.201714366567010.1007/s13738‑016‑1018‑4
    [Google Scholar]
  39. (c FanX. LiY. ZhangX. QuG. WangJ. A novel and green version of the Passerini reaction in an ionic liquid ([bmim][BF4]).Can. J. Chem.200684579479910.1139/v06‑070
    [Google Scholar]
  40. ShaabaniA. KhodkariV. NazeriM.T. GhasemiS. MohammadianR. ShaabaniS. Vitamin C as a green and robust catalyst for the fast and efficient synthesis of valuable organic compounds via multi-component reactions in water.J. Indian Chem. Soc.20191681793180010.1007/s13738‑019‑01655‑w
    [Google Scholar]
  41. JivaniA.J. KapadiyaK.M. KhuntR.C. Miscellaneous Passerini reaction for α-acyloxy carboxamide: Synthesis and process optimization study.Lett. Org. Chem.202219432633210.2174/1570178618666210125161922
    [Google Scholar]
  42. VishwanathaT.M. GiepmansB. GodaS.K. DömlingA. Tubulysin synthesis featuring stereoselective catalysis and highly convergent multicomponent assembly.Org. Lett.202022145396540010.1021/acs.orglett.0c0171832584589
    [Google Scholar]
  43. (a MartinhoL.A. RosalbaT.P.F. AndradeC.K.Z. Passerini reaction to access α‐hydroxy amides by facile decarbonylation/decarboxylation of oxalic acid.Eur. J. Org. Chem.2022202248e20220119910.1002/ejoc.202201199
    [Google Scholar]
  44. (b MartinhoL.A. RosalbaT.P.F. SousaG.G. GattoC.C. PolitiJ.R.S. AndradeC.K.Z. Cyrene: A very reactive bio-based chiral ketone in diastereoselective Passerini reactions.Mol. Divers.202328111112310.1007/s11030‑023‑10618‑636787083
    [Google Scholar]
  45. (c IngoldM. LópezG.V. PorcalW. Green conditions for Passerini three-component synthesis of tocopherol analogues.ACS Sustain. Chem. Eng.2014251093109710.1021/sc5002116
    [Google Scholar]
  46. CuiC. ZhuC. DuX.J. WangZ.P. LiZ.M. ZhaoW.G. Ultrasound-promoted sterically congested Passerini reactions under solvent-free conditions.Green Chem.201214113157316310.1039/c2gc36095k
    [Google Scholar]
  47. WangS.X. WangM.X. WangD.X. ZhuJ. Catalytic enantioselective Passerini three-component reaction.Angew. Chem. Int. Ed.200847238839110.1002/anie.20070431518008290
    [Google Scholar]
  48. (a OkandejiB.O. SelloJ.K. Brønsted acidity of substrates influences the outcome of Passerini three-component reactions.J. Org. Chem.200974145067507010.1021/jo900831n19476325
    [Google Scholar]
  49. (b LiS. ChenZ. DuH. ZhangM. YinJ. ZhengJ. DengK. ZhangX. Facile preparation of poly(indole/thiophene) for energy storage and sensor applications.Electrochim. Acta202035813691910.1016/j.electacta.2020.136919
    [Google Scholar]
  50. (a SerafiniM. GriglioA. AprileS. SeitiF. TravelliC. PattarinoF. GrosaG. SorbaG. GenazzaniA.A. Gonzalez-RodriguezS. ButronL. DevesaI. Fernandez-CarvajalA. PiraliT. Ferrer-MontielA. Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) channel softly: The discovery of Passerini adducts as a topical treatment for inflammatory skin disorders.J. Med. Chem.201861104436445510.1021/acs.jmedchem.8b0010929722529
    [Google Scholar]
  51. (b Vlahoviček-KahlinaK. VazdarM. JakasA. SmrečkiV. JerićI. Synthesis of glycomimetics by diastereoselective passerini reaction.J. Org. Chem.20188321131461315610.1021/acs.joc.8b0187430354108
    [Google Scholar]
  52. (c GlavašM. GredičakM. JerićI. Enediyne-comprising amino aldehydes in the Passerini reaction.ACS Comb. Sci.201820315115510.1021/acscombsci.7b0016729338199
    [Google Scholar]
  53. (d AndreanaP.R. LiuC.C. SchreiberS.L. Stereochemical control of the Passerini reaction.Org. Lett.20046234231423310.1021/ol048289315524450
    [Google Scholar]
  54. (e CouturaudB. HoustonZ.H. CowinG.J. ProkešI. FosterJ.C. ThurechtK.J. O’ReillyR.K. Supramolecular fluorine magnetic resonance spectroscopy probe polymer based on Passerini bifunctional monomer.ACS Macro Lett.20198111479148310.1021/acsmacrolett.9b0062635651191
    [Google Scholar]
  55. (f TravanutA. MonteiroP.F. OelmannS. HowdleS.M. GrabowskaA.M. ClarkeP.A. RitchieA.A. MeierM.A.R. AlexanderC. Synthesis of Passerini‐3CR polymers and assembly into cytocompatible polymersomes.Macromol. Rapid Commun.2021426200032110.1002/marc.20200032133249682
    [Google Scholar]
  56. (g RavanelloB.B. SeixasN. RodriguesO.E.D. da SilvaR.S. VillettiM.A. FrolovA. RiveraD.G. WestermannB. Diversity driven decoration and ligation of fullerene by Ugi and Passerini multicomponent reactions.Chemistry201824399788979310.1002/chem.20180241429882608
    [Google Scholar]
  57. (h KouristR. NguyenG.S. StrübingD. BöttcherD. LiebetonK. NaumerC. EckJ. BornscheuerU.T. Hydrolase-catalyzed stereoselective preparation of protected α,α-dialkyl-α-hydroxycarboxylic acids.Tetrahedron Asymmetry200819151839184310.1016/j.tetasy.2008.07.005
    [Google Scholar]
  58. ButeraR. ShrinidhiA. KurpiewskaK. Kalinowska-TłuścikJ. DömlingA. Fourfold symmetric MCR’s via the tetraisocyanide 1,3-diisocyano-2,2-bis(isocyanomethyl)propane.Chem. Commun. (Camb.)20205673106621066510.1039/D0CC04522E32785316
    [Google Scholar]
  59. ZhangJ. LinS.X. ChengD.J. LiuX.Y. TanB. Phosphoric acid-catalyzed asymmetric classic Passerini reaction.J. Am. Chem. Soc.201513744140391404210.1021/jacs.5b0911726488384
    [Google Scholar]
  60. DeveciG. KahveciM.U. One-pot one-step synthesis of a photo-cleavable cross-linker via Passerini reaction for fabrication of responsive polymeric particles.Polym. Bull.20197631471148710.1007/s00289‑018‑2449‑0
    [Google Scholar]
  61. AndradeC. TakadaS. SuarezP. AlvesM. Revisiting the Passerini reaction under eco-friendly reaction conditions.Synlett20062006101539154210.1055/s‑2006‑941606
    [Google Scholar]
  62. Reza KazemizadehA. RamazaniA. Synthetic applications of Passerini reaction.Curr. Org. Chem.201216441845010.2174/138527212799499868
    [Google Scholar]
  63. (a LamberthC. FreyR. GalbraithS.G. GuelfiS. ZellerM. First examples of a highly stereoselective Passerini reaction: A new access to enantiopuremandelamides.Synlett20032003101536153810.1055/s‑2003‑40846
    [Google Scholar]
  64. (b SalvadorC.E.M. AndradeC.K.Z. A mild, fast, and scalable synthesis of substituted α-acyloxy ketones via multicomponent reaction using a continuous flow approach.Front. Chem.2019753110.3389/fchem.2019.00531
    [Google Scholar]
  65. AlizadehA. OskueyanQ. RostamniaS. Facile and rapid synthesis of α-amidoester derivatives based on the three-component Passerini reaction (P-3CR).Synth. Commun.200838244337434410.1080/00397910802326570
    [Google Scholar]
  66. (a LiR.K. YangQ.L. LiuY. LiD.W. HuangN.Y. LiuM.G. A novel and green synthesis of indolone-N-amino acid derivatives via the Passerini three-component reactions in water.Chin. Chem. Lett.201627334534810.1016/j.cclet.2015.11.008
    [Google Scholar]
  67. (b SerafinM. PriestO.P. Identifying Passerini products using a green, guided-inquiry, collaborative approach combined with spectroscopic lab techniques.J. Chem. Educ.201592357958110.1021/ed5007184
    [Google Scholar]
  68. (c HooperM.M. DeBoefB. A green multicomponent reaction for the organic chemistry laboratory. The aqueous Passerini reaction.J. Chem. Educ.20098691077107910.1021/ed086p1077
    [Google Scholar]
  69. (d PirrungM.C. SarmaK.D. Multicomponent reactions are accelerated in water.J. Am. Chem. Soc.2004126244444510.1021/ja038583a14719923
    [Google Scholar]
  70. ChandgudeA.L. DömlingA. Unconventional Passerini reaction toward α-aminoxy-amides.Org. Lett.201618246396639910.1021/acs.orglett.6b0329327978705
    [Google Scholar]
  71. (a ChandaA. FokinV.V. Organic synthesis “on water”.Chem. Rev.2009109272574810.1021/cr800448q19209944
    [Google Scholar]
  72. (b SoleimaniE. GhorbaniS. TaranM. SarvaryA. Synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives in water.C. R. Chim.20121511-1295596110.1016/j.crci.2012.07.003
    [Google Scholar]
  73. (a WenJ. FuY. ZhangR.Y. ZhangJ. ChenS.Y. YuX.Q. A simple and efficient synthesis of pyrazoles in water.Tetrahedron201167499618962110.1016/j.tet.2011.09.074
    [Google Scholar]
  74. (b KarcheA.D. KamalakannanP. PowarR. ShenoyG.G. PadiyaK.J. “On-Water” reaction of (thio)isocyanate: A sustainable process for the synthesis of unsymmetrical (thio)ureas.Org. Process Res. Dev.202226113141315210.1021/acs.oprd.2c00266
    [Google Scholar]
  75. (c TankamT. SrisaJ. SukwattanasinittM. WacharasindhuS. Microwave-enhanced on-water amination of 2-mercaptobenzoxazoles to prepare 2-aminobenzoxazoles.J. Org. Chem.20188319119361194310.1021/acs.joc.8b0182430192148
    [Google Scholar]
  76. (d KumarS. LalB. TittalR.K. Green synthesis of 1,4-disubstituted 1,2,3-triazoles: A sustainable approach.Green Chem.20242641725176910.1039/D3GC04346K
    [Google Scholar]
  77. (a ZhangR.Z. NiuK.K. BiY.S. LiuH. YuS.S. WangY.B. XingL.B. A water-soluble type II photosensitizer for selective photooxidation reactions of hydroazaobenzenes, olefins, and hydrosilanes in water.Green Chem.20242642241224710.1039/D3GC04412B
    [Google Scholar]
  78. (b TianY.M. SilvaW. GschwindR.M. KönigB. Accelerated photochemical reactions at oil-water interface exploiting melting point depression.Science2024383668475075610.1126/science.adl309238359135
    [Google Scholar]
  79. (a SelaT. VigalokA. Organic synthesis “on water” vs “on liquids”: A comparative analysis.Org. Lett.20141671964196710.1021/ol500518n24660988
    [Google Scholar]
  80. (b GuoD. ZhuD. ZhouX. ZhengB. Accelerating the “on water” reaction: By organic–water interface or by hydrodynamic effects?Langmuir20153151137591376310.1021/acs.langmuir.5b0403126624935
    [Google Scholar]
  81. (c PanH. HanM.Y. LiP. WangL. “On water” direct catalytic vinylogous aldol reaction of silyl glyoxylates.J. Org. Chem.20198421142811429010.1021/acs.joc.9b0194531578866
    [Google Scholar]
  82. MamaghaniM. ShiriniF. MahmoodiN.O. Azimi-RoshanA. HashemlouH. A green, efficient and recyclable Fe+3@K10 catalyst for the synthesis of bioactive pyrazolo[3,4-b]pyridin-6(7H)-ones under “on water” conditions.J. Mol. Struct.2013105116917610.1016/j.molstruc.2013.07.060
    [Google Scholar]
/content/journals/coc/10.2174/0113852728269992241030054239
Loading
/content/journals/coc/10.2174/0113852728269992241030054239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test