Skip to content
2000
image of Green Pseudo-Seven Component Synthesis of Tris-cyclohexylamino-oxo-benzene-1,3,5-tricarboxylates via Passerini Reaction under Aqueous Conditions

Abstract

In this study, a simple, mild, and environmentally friendly process was used for the -seven component reaction between readily available benzene-1,3,5-tricarboxylic acid, isocyano-cyclohexane, and various aldehydes. This rapid method produced the tris-cyclohexylamino-oxo-benzene-1,3,5-tricarboxylates in relatively acceptable and more reasonable reaction times (10-15 min) and high achievable efficiencies (85-95%) by employing a Passerini reaction. Water was used as an eco-friendly and low-cost solvent for the green synthesis of benzene tris-carboxamides. The reactions were carried out a Passerini approach at 50ºC for relatively shorter reaction times. The antibacterial action of the synthetic tris-carboxamides was investigated, and some of them gave satisfactory and promising antibacterial results. Target tris-Passerini molecules recrystallized from 96% EtOH. The structures of the resulting molecules were evaluated and confirmed with the help of spectral data and elemental analyses.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728269992241030054239
2025-01-02
2025-05-06
Loading full text...

Full text loading...

References

  1. a Fotopoulou E. Fragkiadakis M. Neochoritis C.G. Macrocyclization tactics: The MCR approach. Tetrahedron Lett. 2023 120 154453 10.1016/j.tetlet.2023.154453
    [Google Scholar]
  2. b Zhang S. Huang D. Wu J. Wang Z. Decade Advance of Isatin in Three‐component Reactions. Asian J. Org. Chem. 2023 12 2 e202200591 10.1002/ajoc.202200591
    [Google Scholar]
  3. c Chaudhary B. Singla D. Arya P. Dabra A. Kumar P. Afzal O. Altamimi A.S.A. Alzarea S.I. Kazmi I. Al-Abbasi F.A. Gupta G. Gupta M.M. Versatile imidazole synthesis via multicomponent reaction approach. J. Heterocycl. Chem. 2023 60 4 523 536 10.1002/jhet.4583
    [Google Scholar]
  4. d Wiemann J. Heller L. Csuk R. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions. Eur. J. Med. Chem. 2018 150 176 194 10.1016/j.ejmech.2018.02.060 29529499
    [Google Scholar]
  5. e Ayvaz A. Demirbaş S.G. Demirbaş A. Demirbaş N. One-Pot Multicomponent Reactions in Deep Eutectic Solvents. Curr. Org. Chem. 2023 27 7 585 620 10.2174/1385272827666230427101210
    [Google Scholar]
  6. a Bao L. Li M. Zhang L. Xue Y. Dong J. Xu X. Isocyanide Heterodimerization-Triggered Three-Component Reaction: Diversity-Oriented Synthesis of Quinoxalines. Org. Lett. 2023 25 13 2366 2371 10.1021/acs.orglett.3c00794 36988211
    [Google Scholar]
  7. b Ma G.H. Jiang B. Tu X.J. Ning Y. Tu S.J. Li G. Synthesis of isocoumarins with different substituted patterns via Passerini-aldol sequence. Org. Lett. 2014 16 17 4504 4507 10.1021/ol502048e 25140818
    [Google Scholar]
  8. a Zhang C.L. Wang H.Y. Huang Y. Wang X.H. Ye S. N-Heterocyclic Carbene Catalyzed Three-Component Reaction for the Synthesis of Multi-substituted Benzenes. Org. Lett. 2022 24 42 7747 7751 10.1021/acs.orglett.2c03061 36264013
    [Google Scholar]
  9. b Tashrifi Z. Mohammadi Khanaposhtani M. Gholami F. Larijani B. Mahdavi M. Reactions involving multiple isocyanide insertions. Adv. Synth. Catal. 2023 365 7 926 947 10.1002/adsc.202200995
    [Google Scholar]
  10. c Lamberth C. Multicomponent reactions in crop protection chemistry. Bioorg. Med. Chem. 2020 28 10 115471 10.1016/j.bmc.2020.115471 32253096
    [Google Scholar]
  11. d Ishwar Bhat S. One‐pot construction of bis‐heterocycles through isocyanide based multicomponent reactions. ChemistrySelect 2020 5 27 8040 8061 10.1002/slct.202002154
    [Google Scholar]
  12. e Shaabani A. Farhid H. Rostami M.M. Notash B. Synthesis of depsipeptides via isocyanide-based consecutive bargellini–passerini multicomponent reactions. SynOpen 2021 5 3 167 172 10.1055/a‑1533‑3823
    [Google Scholar]
  13. f Hooshmand S.E. Yazdani H. Hulme C. Six‐Component Reactions and Beyond: The Nuts and Bolts. Eur. J. Org. Chem. 2022 2022 34 e202200569 10.1002/ejoc.202200569
    [Google Scholar]
  14. Passerini M. Simone L. Sopra gli Isonitrili (I). Composto del p-isonitrilazobenzolo con acetone ed acido Acetico. Gazz. Chim. Ital. 1921 51 126 129
    [Google Scholar]
  15. a Remy L. Sudre G. Charlot A. Fleury E. α-Substituted ketones as reagent for Passerini modification of carboxymethyl cellulose: Toward dually functionalized derivatives and thermo-sensitive chemical hydrogels. Carbohydr. Polym. 2023 320 121228 10.1016/j.carbpol.2023.121228 37659816
    [Google Scholar]
  16. b Kumar S. Arora A. Kumar S. Kumar R. Maity J. Singh B.K. Passerini reaction: Synthesis and applications in polymer chemistry. Eur. Polym. J. 2023 190 112004 10.1016/j.eurpolymj.2023.112004
    [Google Scholar]
  17. a Salah Ayoup M. Wahby Y. Abdel-Hamid H. Ramadan E.S. Teleb M. Abu-Serie M.M. Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem. 2019 168 340 356 10.1016/j.ejmech.2019.02.051 30826510
    [Google Scholar]
  18. b Ayoup M.S. Mansour A.F. Abdel-Hamid H. Abu-Serie M.M. Mohyeldin S.M. Teleb M. Nature-inspired new isoindole-based Passerini adducts as efficient tumor-selective apoptotic inducers via caspase-3/7 activation. Eur. J. Med. Chem. 2023 245 Pt 1 114865 10.1016/j.ejmech.2022.114865 36335743
    [Google Scholar]
  19. c Ayoup M.S. Wahby Y. Abdel-Hamid H. Abu-Serie M.M. Ramadan S. Barakat A. Teleb M. Ismail M.M.F. Reinvestigation of Passerini and Ugi scaffolds as multistep apoptotic inducers via dual modulation of caspase 3/7 and P53-MDM2 signaling for halting breast cancer. RSC Advances 2023 13 40 27722 27737 10.1039/D3RA04029A 37736568
    [Google Scholar]
  20. a Wu Y. Cheng H. Li J. Liu J. Sun J. Microdroplet chemistry accelerating a three-component passerini reaction for α-acyloxy carboxamide synthesis. J. Org. Chem. 2023 88 15 11186 11196 10.1021/acs.joc.3c01206 37493511
    [Google Scholar]
  21. b Brunelli F. Ceresa C. Fracchia L. Tron G.C. Aprile S. Expanding the chemical space of drug-like passerini compounds: Can α-acyloxy carboxamides be considered hard drugs? ACS Med. Chem. Lett. 2022 13 12 1898 1904 10.1021/acsmedchemlett.2c00420 36518692
    [Google Scholar]
  22. Wang R. Liu Z.Q. Passerini three-component adducts as radical scavengers. Tetrahedron Lett. 2015 56 50 7028 7033 10.1016/j.tetlet.2015.11.009
    [Google Scholar]
  23. a Wu J. Zhao W. Cao S. Synthesis of Difluoromethyl‐Containing α‐Acyloxycarboxamide Derivatives through a Passerini Reaction and Desulfonylation. Eur. J. Org. Chem. 2012 2012 7 1380 1387 10.1002/ejoc.201101518
    [Google Scholar]
  24. b Gravestock D. Rousseau A.L. Lourens A.C.U. Hoppe H.C. Nkabinde L.A. Bode M.L. Novel branched isocyanides as useful building blocks in the Passerini-amine deprotection-acyl migration (PADAM) synthesis of potential HIV-1 protease inhibitors. Tetrahedron Lett. 2012 53 26 3225 3229 10.1016/j.tetlet.2012.04.018
    [Google Scholar]
  25. Wahby Y. Abdel-Hamid H. Ayoup M.S. Two decades of recent advances of Passerini reactions: Synthetic and potential pharmaceutical applications. New J. Chem. 2022 46 4 1445 1468 10.1039/D1NJ03832J
    [Google Scholar]
  26. Salami S.A. Safari J.B. Smith V.J. Krause R.W.M. Mechanochemically‐assisted passerini reactions: A practical and convenient method for the synthesis of novel α‐acyloxycarboxamide derivatives. ChemistryOpen 2023 12 5 e202200268 10.1002/open.202200268 37198143
    [Google Scholar]
  27. Salami S.A. Smith V.J. Krause R.W.M. Water‐assisted passerini reactions under mechanochemical activation: A simple and straightforward access to oxindole derivatives. ChemistrySelect 2023 8 4 e202204325 10.1002/slct.202204325
    [Google Scholar]
  28. Sela T. Vigalok A. Salt‐Controlled Selectivity in “on Water” and “in Water” Passerini‐Type Multicomponent Reactions. Adv. Synth. Catal. 2012 354 13 2407 2411 10.1002/adsc.201200448
    [Google Scholar]
  29. a Salami S.A. Manyeruke M. Siwe-Noundou X. Krause R.W.M. Immobilized Sulfuric Acid on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of Novel α-Acyloxycarboxamides in Aqueous Media. Int. J. Mol. Sci. 2022 23 17 9529 10.3390/ijms23179529 36076923
    [Google Scholar]
  30. b Salami S.A. Smith V.J. Krause R.W.M. N -Formamide as a carbonyl precursor in the catalytic synthesis of Passerini adducts under aqua and mechanochemical conditions. RSC Advances 2023 13 6 4019 4031 10.1039/D2RA06189A 36756572
    [Google Scholar]
  31. Li M. Qiu B. Kong X.J. Wen L.R. Synthesis of Passerini adducts from aldehydes and isocyanides under the auxiliary of water. Org. Chem. Front. 2015 2 10 1326 1333 10.1039/C5QO00202H
    [Google Scholar]
  32. a Shaabani A. Afshari R. Hooshmand S.E. Passerini three-component cascade reactions in deep eutectic solvent: An environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res. Chem. Intermed. 2016 42 6 5607 5616 10.1007/s11164‑015‑2390‑x
    [Google Scholar]
  33. b Yavari I. Khajeh-Khezri A. Ghorbanzadeh M. Halvagar M.R. Synthesis of novel α-acyloxyamides using choline chloride-based deep eutectic solvent. Monatsh. Chem. 2019 150 7 1317 1324 10.1007/s00706‑019‑02448‑w
    [Google Scholar]
  34. c Antenucci A. Marra F. Dughera S. Silica gel-immobilised chiral 1,2-benzenedisulfonimide: A Brønsted acid heterogeneous catalyst for enantioselective multicomponent Passerini reaction. RSC Advances 2021 11 42 26083 26092 10.1039/D1RA05297G 35479468
    [Google Scholar]
  35. d Dezfooli S. Hashemi M.M. A green and simple approach to α-acyloxycarboxamides. Sci. Iran. C 2015 22 2249 2253
    [Google Scholar]
  36. Paprocki D. Koszelewski D. Walde P. Ostaszewski R. Efficient Passerini reactions in an aqueous vesicle system. RSC Advances 2015 5 124 102828 102835 10.1039/C5RA22258C
    [Google Scholar]
  37. a Yavari I. Shahvelayati A.S. Ghanbari M. Ghazvini M. Piltan M. One-pot synthesis of functionalized α-acyloxythioamides from N-Protected a-amino acids as an acid component in the passerini reaction in an ionic liquid. J. Indian Chem. Soc. 2011 8 3 636 642 10.1007/BF03245894
    [Google Scholar]
  38. b Hokmabad V.R. Abbasi H. Safa K.D. Synthesis of novel α-acyloxycarboxamides containing vinylbis(silanes) through three-component Passerini reactions. J. Indian Chem. Soc. 2017 14 3 665 670 10.1007/s13738‑016‑1018‑4
    [Google Scholar]
  39. c Fan X. Li Y. Zhang X. Qu G. Wang J. A novel and green version of the Passerini reaction in an ionic liquid ([bmim][BF 4 ]). Can. J. Chem. 2006 84 5 794 799 10.1139/v06‑070
    [Google Scholar]
  40. Shaabani A. Khodkari V. Nazeri M.T. Ghasemi S. Mohammadian R. Shaabani S. Vitamin C as a green and robust catalyst for the fast and efficient synthesis of valuable organic compounds via multi-component reactions in water. J. Indian Chem. Soc. 2019 16 8 1793 1800 10.1007/s13738‑019‑01655‑w
    [Google Scholar]
  41. Jivani A.J. Kapadiya K.M. Khunt R.C. Miscellaneous Passerini Reaction for α-Acyloxy Carboxamide: Synthesis and Process Optimization Study. Lett. Org. Chem. 2022 19 4 326 332 10.2174/1570178618666210125161922
    [Google Scholar]
  42. Vishwanatha T.M. Giepmans B. Goda S.K. Dömling A. Tubulysin Synthesis Featuring Stereoselective Catalysis and Highly Convergent Multicomponent Assembly. Org. Lett. 2020 22 14 5396 5400 10.1021/acs.orglett.0c01718 32584589
    [Google Scholar]
  43. a Martinho L.A. Rosalba T.P.F. Andrade C.K.Z. Passerini Reaction to Access α‐Hydroxy Amides by Facile Decarbonylation/Decarboxylation of Oxalic Acid. Eur. J. Org. Chem. 2022 2022 48 e202201199 10.1002/ejoc.202201199
    [Google Scholar]
  44. b Martinho L.A. Rosalba T.P.F. Sousa G.G. Gatto C.C. Politi J.R.S. Andrade C.K.Z. Cyrene: A very reactive bio-based chiral ketone in diastereoselective Passerini reactions. Mol. Divers. 2023 28 1 111 123 10.1007/s11030‑023‑10618‑6 36787083
    [Google Scholar]
  45. c Ingold M. López G.V. Porcal W. Green conditions for passerini three-component synthesis of tocopherol analogues. ACS Sustain. Chem. Eng. 2014 2 5 1093 1097 10.1021/sc5002116
    [Google Scholar]
  46. Cui C. Zhu C. Du X.J. Wang Z.P. Li Z.M. Zhao W.G. Ultrasound-promoted sterically congested Passerini reactions under solvent-free conditions. Green Chem. 2012 14 11 3157 3163 10.1039/c2gc36095k
    [Google Scholar]
  47. Wang S.X. Wang M.X. Wang D.X. Zhu J. Catalytic enantioselective Passerini three-component reaction. Angew. Chem. Int. Ed. 2008 47 2 388 391 10.1002/anie.200704315 18008290
    [Google Scholar]
  48. a Okandeji B.O. Sello J.K. Brønsted acidity of substrates influences the outcome of passerini three-component reactions. J. Org. Chem. 2009 74 14 5067 5070 10.1021/jo900831n 19476325
    [Google Scholar]
  49. b Li S. Chen Z. Du H. Zhang M. Yin J. Zheng J. Deng K. Zhang X. Facile preparation of poly(indole/thiophene) for energy storage and sensor applications. Electrochim. Acta 2020 358 136919 10.1016/j.electacta.2020.136919
    [Google Scholar]
  50. a Serafini M. Griglio A. Aprile S. Seiti F. Travelli C. Pattarino F. Grosa G. Sorba G. Genazzani A.A. Gonzalez-Rodriguez S. Butron L. Devesa I. Fernandez-Carvajal A. Pirali T. Ferrer-Montiel A. Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) channel softly: The discovery of passerini adducts as a topical treatment for inflammatory skin disorders. J. Med. Chem. 2018 61 10 4436 4455 10.1021/acs.jmedchem.8b00109 29722529
    [Google Scholar]
  51. b Vlahoviček-Kahlina K. Vazdar M. Jakas A. Smrečki V. Jerić I. Synthesis of Glycomimetics by Diastereoselective Passerini Reaction. J. Org. Chem. 2018 83 21 13146 13156 10.1021/acs.joc.8b01874 30354108
    [Google Scholar]
  52. c Glavaš M. Gredičak M. Jerić I. Enediyne-Comprising Amino Aldehydes in the Passerini Reaction. ACS Comb. Sci. 2018 20 3 151 155 10.1021/acscombsci.7b00167 29338199
    [Google Scholar]
  53. d Andreana P.R. Liu C.C. Schreiber S.L. Stereochemical control of the Passerini reaction. Org. Lett. 2004 6 23 4231 4233 10.1021/ol0482893 15524450
    [Google Scholar]
  54. e Couturaud B. Houston Z.H. Cowin G.J. Prokeš I. Foster J.C. Thurecht K.J. O’Reilly R.K. Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Lett. 2019 8 11 1479 1483 10.1021/acsmacrolett.9b00626 35651191
    [Google Scholar]
  55. f Travanut A. Monteiro P.F. Oelmann S. Howdle S.M. Grabowska A.M. Clarke P.A. Ritchie A.A. Meier M.A.R. Alexander C. Synthesis of Passerini‐3CR Polymers and Assembly into Cytocompatible Polymersomes. Macromol. Rapid Commun. 2021 42 6 2000321 10.1002/marc.202000321 33249682
    [Google Scholar]
  56. g Ravanello B.B. Seixas N. Rodrigues O.E.D. da Silva R.S. Villetti M.A. Frolov A. Rivera D.G. Westermann B. Diversity Driven Decoration and Ligation of Fullerene by Ugi and Passerini Multicomponent Reactions. Chemistry 2018 24 39 9788 9793 10.1002/chem.201802414 29882608
    [Google Scholar]
  57. h Kourist R. Nguyen G.S. Strübing D. Böttcher D. Liebeton K. Naumer C. Eck J. Bornscheuer U.T. Hydrolase-catalyzed stereoselective preparation of protected α,α-dialkyl-α-hydroxycarboxylic acids. Tetrahedron Asymmetry 2008 19 15 1839 1843 10.1016/j.tetasy.2008.07.005
    [Google Scholar]
  58. Butera R. Shrinidhi A. Kurpiewska K. Kalinowska-Tłuścik J. Dömling A. Fourfold symmetric MCR’s via the tetraisocyanide 1,3-diisocyano-2,2-bis(isocyanomethyl)propane. Chem. Commun. (Camb.) 2020 56 73 10662 10665 10.1039/D0CC04522E 32785316
    [Google Scholar]
  59. Zhang J. Lin S.X. Cheng D.J. Liu X.Y. Tan B. Phosphoric acid-catalyzed asymmetric classic Passerini reaction. J. Am. Chem. Soc. 2015 137 44 14039 14042 10.1021/jacs.5b09117 26488384
    [Google Scholar]
  60. Deveci G. Kahveci M.U. One-pot one-step synthesis of a photo-cleavable cross-linker via Passerini reaction for fabrication of responsive polymeric particles. Polym. Bull. 2019 76 3 1471 1487 10.1007/s00289‑018‑2449‑0
    [Google Scholar]
  61. Andrade C. Takada S. Suarez P. Alves M. Revisiting the passerini reaction under eco-friendly reaction conditions. Synlett 2006 2006 10 1539 1542 10.1055/s‑2006‑941606
    [Google Scholar]
  62. Reza Kazemizadeh A. Ramazani A. Synthetic Applications of Passerini Reaction. Curr. Org. Chem. 2012 16 4 418 450 10.2174/138527212799499868
    [Google Scholar]
  63. a Lamberth C. Frey R. Galbraith S.G. Guelfi S. Zeller M. First examples of a highlystereoselective passerini reaction: A new access to enantiopuremandelamides. Synlett 2003 2003 10 1536 1538 10.1055/s‑2003‑40846
    [Google Scholar]
  64. b Salvador C.E.M. Andrade C.K.Z. A A mild, fast, and scalable synthesis of substituted α-acyloxy ketones via multicomponent reaction using a continuous flow approach. Front. Chem. 2019 7 531 10.3389/fchem.2019.00531
    [Google Scholar]
  65. Alizadeh A. Oskueyan Q. Rostamnia S. Facile and rapid synthesis of α-amidoester derivatives based on the three-component passerini reaction (P-3CR). Synth. Commun. 2008 38 24 4337 4344 10.1080/00397910802326570
    [Google Scholar]
  66. a Li R.K. Yang Q.L. Liu Y. Li D.W. Huang N.Y. Liu M.G. A novel and green synthesis of indolone-N-amino acid derivatives via the Passerini three-component reactions in water. Chin. Chem. Lett. 2016 27 3 345 348 10.1016/j.cclet.2015.11.008
    [Google Scholar]
  67. b Serafin M. Priest O.P. Identifying Passerini Products Using a Green, Guided-Inquiry, Collaborative Approach Combined with Spectroscopic Lab Techniques. J. Chem. Educ. 2015 92 3 579 581 10.1021/ed5007184
    [Google Scholar]
  68. c Hooper M.M. DeBoef B. A green multicomponent reaction for the organic chemistry laboratory. The aqueous passerini reaction. J. Chem. Educ. 2009 86 9 1077 1079 10.1021/ed086p1077
    [Google Scholar]
  69. d Pirrung M.C. Sarma K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc. 2004 126 2 444 445 10.1021/ja038583a 14719923
    [Google Scholar]
  70. Chandgude A.L. Dömling A. Unconventional Passerini Reaction toward α-Aminoxy-amides. Org. Lett. 2016 18 24 6396 6399 10.1021/acs.orglett.6b03293 27978705
    [Google Scholar]
  71. a Chanda A. Fokin V.V. Organic synthesis “on water”. Chem. Rev. 2009 109 2 725 748 10.1021/cr800448q 19209944
    [Google Scholar]
  72. b Soleimani E. Ghorbani S. Taran M. Sarvary A. Synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives in water. C. R. Chim. 2012 15 11-12 955 961 10.1016/j.crci.2012.07.003
    [Google Scholar]
  73. a Wen J. Fu Y. Zhang R.Y. Zhang J. Chen S.Y. Yu X.Q. A simple and efficient synthesis of pyrazoles in water. Tetrahedron 2011 67 49 9618 9621 10.1016/j.tet.2011.09.074
    [Google Scholar]
  74. b Karche A.D. Kamalakannan P. Powar R. Shenoy G.G. Padiya K.J. “On-Water” Reaction of (Thio)isocyanate: A Sustainable Process for the Synthesis of Unsymmetrical (Thio)ureas. Org. Process Res. Dev. 2022 26 11 3141 3152 10.1021/acs.oprd.2c00266
    [Google Scholar]
  75. c Tankam T. Srisa J. Sukwattanasinitt M. Wacharasindhu S. Microwave-enhanced on-water amination of 2-mercaptobenzoxazoles to prepare 2-aminobenzoxazoles. J. Org. Chem. 2018 83 19 11936 11943 10.1021/acs.joc.8b01824 30192148
    [Google Scholar]
  76. d Kumar S. Lal B. Tittal R.K. Green synthesis of 1,4-disubstituted 1,2,3-triazoles: A sustainable approach. Green Chem. 2024 26 4 1725 1769 10.1039/D3GC04346K
    [Google Scholar]
  77. a Zhang R.Z. Niu K.K. Bi Y.S. Liu H. Yu S.S. Wang Y.B. Xing L.B. A water-soluble type II photosensitizer for selective photooxidation reactions of hydroazaobenzenes, olefins, and hydrosilanes in water. Green Chem. 2024 26 4 2241 2247 10.1039/D3GC04412B
    [Google Scholar]
  78. b Tian Y.M. Silva W. Gschwind R.M. König B. Accelerated photochemical reactions at oil-water interface exploiting melting point depression. Science 2024 383 6684 750 756 10.1126/science.adl3092 38359135
    [Google Scholar]
  79. a Sela T. Vigalok A. Organic synthesis “on water” vs “on liquids”: A comparative analysis. Org. Lett. 2014 16 7 1964 1967 10.1021/ol500518n 24660988
    [Google Scholar]
  80. b Guo D. Zhu D. Zhou X. Zheng B. Accelerating the “On Water” Reaction: By Organic–Water Interface or By Hydrodynamic Effects? Langmuir 2015 31 51 13759 13763 10.1021/acs.langmuir.5b04031 26624935
    [Google Scholar]
  81. c Pan H. Han M.Y. Li P. Wang L. “On Water” Direct Catalytic Vinylogous Aldol Reaction of Silyl Glyoxylates. J. Org. Chem. 2019 84 21 14281 14290 10.1021/acs.joc.9b01945 31578866
    [Google Scholar]
  82. Mamaghani M. Shirini F. Mahmoodi N.O. Azimi-Roshan A. Hashemlou H. A green, efficient and recyclable Fe+3@K10 catalyst for the synthesis of bioactive pyrazolo[3,4-b]pyridin-6(7H)-ones under “on water” conditions. J. Mol. Struct. 2013 1051 169 176 10.1016/j.molstruc.2013.07.060
    [Google Scholar]
/content/journals/coc/10.2174/0113852728269992241030054239
Loading
/content/journals/coc/10.2174/0113852728269992241030054239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test