Skip to content
2000
image of Synthesis, Characterization, and Molecular Docking of Novel Isatin-thiosemicarbazone containing 1,2,3-triazole Derivatives as Potential Anti-cancer Agents

Abstract

To improve the activity of isatin-1,2,3-triazole hybrids as anticancer agents, new derivatives of isatin-thiosemicarbazone-1,2,3-triazoles were designed and synthesized the condensation of isatin-1,2,3-triazole hybrids with thiosemicarbazide. Spectral and elemental analysis confirmed the structure of the prepared derivatives . Also, as anticancer agents, the latter derivatives were screened against three human cancerous cell lines: human lung fibroblast (WI38), colorectal carcinoma colon cancer (HCT-116), and mammary gland breast cancer (MCF-7). , a standard control, was used to compare viable cell percentages and IC50 values. In general, derivatives and revealed a higher potency against the three human cancerous cell lines. Finally, the molecular descriptors of compounds and were correlated with their observed cytotoxicity.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728332494240919044627
2024-10-28
2025-01-18
Loading full text...

Full text loading...

References

  1. Pragathi Y.J. Sreenivasulu R. Veronica D. Raju R.R. Design, synthesis, and biological evaluation of 1,2,4-thiadiazole-1,2,4-triazole derivatives bearing amide functionality as anticancer agents. Arab. J. Sci. Eng. 2021 46 225 232 10.1007/s13369‑020‑04626‑z
    [Google Scholar]
  2. Jemal A. Bray F. Center M.M. Ferlay J. Ward E. Forman D. Global cancer statistics. CA Cancer J. Clin. 2011 61 2 69 90 10.3322/caac.20107 21296855
    [Google Scholar]
  3. Park S.K. Cho L.Y. Yang J.J. Park B. Chang S.H. Lee K.S. Kim H. Yoo K.Y. Lee C.T. Lung cancer risk and cigarette smoking, lung tuberculosis according to histologic type and gender in a population based case – Control study. Lung Cancer 2010 68 1 20 26 10.1016/j.lungcan.2009.05.017 19545930
    [Google Scholar]
  4. Meffert M.K. Chang J.M. Wiltgen B.J. Fanselow M.S. Baltimore D. NF-κB functions in synaptic signaling and behavior. Nat. Neurosci. 2003 6 10 1072 1078 10.1038/nn1110 12947408
    [Google Scholar]
  5. Clemens M.R. Free radicals in chemical carcinogenesis. Klin. Wochenschr. 1991 69 21-23 1123 1134 10.1007/BF01645172 1798290
    [Google Scholar]
  6. Mantovani A. Allavena P. Sica A. Balkwill F. Cancer-related inflammation. Nature 2008 454 7203 436 444 10.1038/nature07205 18650914
    [Google Scholar]
  7. Clayton P.E. Banerjee I. Murray P.G. Renehan A.G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol. 2011 7 1 11 24 10.1038/nrendo.2010.171 20956999
    [Google Scholar]
  8. Porta C. Riboldi E. Sica A. Mechanisms linking pathogens-associated inflammation and cancer. Cancer Lett. 2011 305 2 250 262 10.1016/j.canlet.2010.10.012 21093147
    [Google Scholar]
  9. Khan F.A. Akhtar S.S. Sheikh M.K. Cancer treatment - Objectives and quality of life issues. Malays. J. Med. Sci. 2005 12 1 3 5 22605940
    [Google Scholar]
  10. Menta E. Palumbo M. Novel antineoplastic agents. Expert Opin. Ther. Pat. 1997 7 12 1401 1426 10.1517/13543776.7.12.1401
    [Google Scholar]
  11. Nussbaumer S. Bonnabry P. Veuthey J.L. Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta 2011 85 5 2265 2289 10.1016/j.talanta.2011.08.034 21962644
    [Google Scholar]
  12. Rebucci M. Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol. 2013 85 9 1219 1226 10.1016/j.bcp.2013.02.017 23435357
    [Google Scholar]
  13. Holohan C. Van Schaeybroeck S. Longley D.B. Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013 13 10 714 726 10.1038/nrc3599 24060863
    [Google Scholar]
  14. Rosa R. Monteleone F. Zambrano N. Bianco R. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr. Med. Chem. 2014 21 14 1595 1606 10.2174/09298673113209990226 23992330
    [Google Scholar]
  15. Srinivas Reddy M. Swamy Thirukovela N. Narsimha S. Ravinder M. Kumar Nukala S. Synthesis of fused 1,2,3-triazoles of Clioquinol via sequential CuAAC and C H arylation; in vitro anticancer activity, in silico DNA topoisomerase II inhibitory activity and ADMET. J. Mol. Struct. 2022 1250 131747 10.1016/j.molstruc.2021.131747
    [Google Scholar]
  16. Ammar U.M. Abdel-Maksoud M.S. Oh C.H. Recent advances of RAF (rapidly accelerated fibrosarcoma) inhibitors as anti-cancer agents. Eur. J. Med. Chem. 2018 158 144 166 10.1016/j.ejmech.2018.09.005 30216849
    [Google Scholar]
  17. Gao F. Zhang X. Wang T. Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem. 2019 165 59 79 10.1016/j.ejmech.2019.01.017
    [Google Scholar]
  18. Zhuang C. Guan X. Ma H. Cong H. Zhang W. Miao Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur. J. Med. Chem. 2019 163 883 895 10.1016/j.ejmech.2018.12.035 30580240
    [Google Scholar]
  19. Sadeghian Z. Bayat M. Synthesis of heterocyclic compounds based on isatins. Curr. Org. Chem. 2022 26 8 756 770 10.2174/1385272826666220430145522
    [Google Scholar]
  20. Shulga S.I. Shulga O.S. Synthesis and some reactions of 6H-indolo[2,3-b]quinoxalines. Russ. J. Org. Chem. 2020 56 12 2104 2108 10.1134/S107042802012009X
    [Google Scholar]
  21. Nain S. Mathur G. Anthwal T. Sharma S. Paliwal S. Synthesis, characterization, and antibacterial activity of new isatin derivatives. Pharm. Chem. J. 2023 57 2 196 203 10.1007/s11094‑023‑02867‑4 37313436
    [Google Scholar]
  22. Gowrivel Vijayakumar B. Ramesh D. Kumari S. Maity A. Pinnaka A.K. Kannan T. Enhancing antifungal properties of chitosan by attaching isatin-piperazine-sulfonyl-acetamide pendant groups via novel imidamide linkage. Int. J. Biol. Macromol. 2023 244 125428 10.1016/j.ijbiomac.2023.125428 37330090
    [Google Scholar]
  23. Cahyana A.H. Saputri Y.L.I.D. Yunarti R.T. Woo S.K. Eco-friendly Cu/NiO nanoparticle synthesis: Catalytic potential in isatin-based chalcone synthesis for anticancer activity. MethodsX 2023 11 102471 10.1016/j.mex.2023.102471 38023319
    [Google Scholar]
  24. Bogdanov A.V. Neganova M. Voloshina A. Lyubina A. Amerhanova S. Litvinov I.A. Tsivileva O. Akylbekov N. Zhapparbergenov R. Valiullina Z. Samorodov A.V. Alabugin I. Anticancer and antiphytopathogenic activity of fluorinated isatins and their water-soluble hydrazone derivatives. Int. J. Mol. Sci. 2023 24 20 15119 10.3390/ijms242015119 37894799
    [Google Scholar]
  25. Elsaman T. Mohamed M.S. Eltayib E.M. Abdel-aziz H.A. Abdalla A.E. Munir M.U. Mohamed M.A. Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Med. Chem. Res. 2022 31 2 244 273 10.1007/s00044‑021‑02832‑4 35039740
    [Google Scholar]
  26. Solangi M. Kanwal Khan K.M. Chigurupati S. Saleem F. Qureshi U. Ul-Haq Z. Jabeen A. Felemban S.G. Zafar F. Perveen S. Taha M. Bhatia S. Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Arch. Pharm. (Weinheim) 2022 355 6 2100481 10.1002/ardp.202100481 35355329
    [Google Scholar]
  27. Dantas L.L.S.F.R. Fonseca A.G. Pereira J.R. Furtado A.A. Gomes P.A.T.M. Fernandes-Pedrosa M.F. Leite A.C.L. Rêgo M.J.B.M. Pitta M.G.R. Lemos T.M.A.M. Anti-inflammatory and antinociceptive effects of the isatin derivative (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenyl-hydrazinecarbothioamide in mice. Braz. J. Med. Biol. Res. 2020 53 10 e10204 10.1590/1414‑431x202010204 32901685
    [Google Scholar]
  28. Karthik K. Priyanka K.B. Manjula S. Sammaiah G. Synthesis and evaluation of new bis-isatin derivatives for antioxidant activity. Int. J. Pharm. Pharm. Sci. 2013 5 224 227
    [Google Scholar]
  29. Thakur R.K. Joshi P. Upadhyaya K. Singh K. Sharma G. Shukla S.K. Tripathi R. Tripathi R.P. Synthesis of isatin based N1-alkylated 3-β-C-glycoconjugated-oxopropylidene oxindoles as potent antiplasmodial agents. Eur. J. Med. Chem. 2019 162 448 454 10.1016/j.ejmech.2018.11.008 30469040
    [Google Scholar]
  30. Raj R. Biot C. Carrère-Kremer S. Kremer L. Guérardel Y. Gut J. Rosenthal P.J. Forge D. Kumar V. 7-chloroquinoline-isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation. Chem. Biol. Drug Des. 2014 83 5 622 629 10.1111/cbdd.12273 24341638
    [Google Scholar]
  31. Saravanan G. Alagarsamy V. Dineshkumar P. Anticonvulsant activity of novel 1-(morpholinomethyl)-3-substituted isatin derivatives. Bull. Fac. Pharm. Cairo Univ. 2014 52 1 115 124 10.1016/j.bfopcu.2014.02.001
    [Google Scholar]
  32. Jiang D. Wang G.Q. Liu X. Zhang Z. Feng L.S. Liu M.L. Isatin derivatives with potential antitubercular activities. J. Heterocycl. Chem. 2018 55 6 1263 1279 10.1002/jhet.3189
    [Google Scholar]
  33. Kumar S. Oh J.M. Prabhakaran P. Awasti A. Kim H. Mathew B. Isatin-tethered halogen-containing acylhydrazone derivatives as monoamine oxidase inhibitor with neuroprotective effect. Sci. Rep. 2024 14 1 1264 10.1038/s41598‑024‑51728‑x 38218887
    [Google Scholar]
  34. Jamil W. Solangi S. Ali M. Khan K.M. Taha M. Khuhawar M.Y. Syntheses, characterization, in vitro antiglycation and DPPH radical scavenging activities of isatin salicylhydrazidehydrazone and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) metal complexes. Arab. J. Chem. 2019 12 8 2262 2269 10.1016/j.arabjc.2015.02.015
    [Google Scholar]
  35. Chinnasamy R. Sundararajan R. Govindaraj S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res. 2010 1 3 342 347 10.4103/0110‑5558.72428 22247869
    [Google Scholar]
  36. Mesripour A. Jafari E. Hajibeiki M.R. Hassanzadeh F. Design, synthesis, docking, and antidepressant activity evaluation of isatin derivatives bearing Schiff bases. Iran. J. Basic Med. Sci. 2023 26 4 438 444 10.22038/IJBMS.2023.68363.14916 37009007
    [Google Scholar]
  37. Singh N.K. Srivastava A. Sodhi A. Ranjan P. In vitro and in vivo antitumor studies of a new thiosemicarbazide derivative and its complexes with 3d-metal ions. Trans. Met. Chem. (Weinh.) 2000 25 2 133 140 10.1023/A:1007081218000
    [Google Scholar]
  38. Shahlaei M. Fassihi A. Nezami A. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res. Pharm. Sci. 2009 4 2 123 131 21589807
    [Google Scholar]
  39. Haj Mohammad Ebrahim Tehrani K. Kobarfard F. Azerang P. Mehravar M. Soleimani Z. Ghavami G. Sardari S. Synthesis and antimycobacterial activity of symmetric thiocarbohydrazone derivatives against mycobacterium bovis BCG. Iran. J. Pharm. Res. 2013 12 2 331 346 24250608
    [Google Scholar]
  40. Altıntop M.D. Atlı Ö. Ilgın S. Demirel R. Özdemir A. Kaplancıklı Z.A. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents. Eur. J. Med. Chem. 2016 108 406 414 10.1016/j.ejmech.2015.11.041 26706351
    [Google Scholar]
  41. Aly M.M. Mohamed Y.A. El-Bayouki K.A.M. Basyouni W.M. Abbas S.Y. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities – Part-1. Eur. J. Med. Chem. 2010 45 8 3365 3373 10.1016/j.ejmech.2010.04.020 20510483
    [Google Scholar]
  42. Yu Y. Kalinowski D.S. Kovacevic Z. Siafakas A.R. Jansson P.J. Stefani C. Lovejoy D.B. Sharpe P.C. Bernhardt P.V. Richardson D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem. 2009 52 17 5271 5294 10.1021/jm900552r 19601577
    [Google Scholar]
  43. Al-Doori L.A. Irzoqi A.A. Jirjes H.M. AL-Obaidi A.H. Alheety M.A. Zn(II)-isatin-3-thiosemicarbazone complexes with phosphines or diamines for hydrogen storage and anticancer studies. Inorg. Chem. Commun. 2022 140 109454 10.1016/j.inoche.2022.109454
    [Google Scholar]
  44. Ilyas M. Muhammad S. Iqbal J. Amin S. Al-Sehemi A.G. Algarni H. Alarfaji S.S. Alshahrani M.Y. Ayub K. Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19. Chem. Zvesti 2022 76 10 6271 6285 10.1007/s11696‑022‑02298‑7 35757111
    [Google Scholar]
  45. El Malah T. Abdel Mageid R.E. Awad H.M. Nour H.F. Copper(i)-catalysed azide–alkyne cycloaddition and antiproliferative activity of mono- and bis-1,2,3-triazole derivatives. New J. Chem. 2020 44 42 18256 18263 10.1039/D0NJ04308G
    [Google Scholar]
  46. El Malah T. Nour H.F. Dehbi O. Abdel-Megeid F.M.E. Mahmoud A.E.E.D. Ali M.M. Soliman S.M. Click synthesis, anticancer activity and molecular docking studies on pyridazinone scaffolds. Curr. Org. Chem. 2018 22 23 2300 2307 10.2174/1385272822666181029111943
    [Google Scholar]
  47. El Malah T. Nour H.F. Nayl A.A. Elkhashab R.A. Abdel-Megeid F.M.E Ali M.M. Anticancer evaluation of tris(triazolyl)triazine derivatives generated via click chemistry. Aust. J. Chem. 2016 69 8 905 910 10.1071/CH16006
    [Google Scholar]
  48. El Malah T. Soliman H.A. Hemdan B.A. Abdel Mageid R.E. Nour H.F. Synthesis and antibiofilm activity of 1,2,3-triazole-pyridine hybrids against methicillin-resistant Staphylococcus aureus (MRSA). New J. Chem. 2021 45 24 10822 10830 10.1039/D1NJ00773D
    [Google Scholar]
  49. El Malah T. Nour H.F. Satti A.A.E. Hemdan B.A. El-Sayed W.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules 2020 25 4 790 10.3390/molecules25040790 32059480
    [Google Scholar]
  50. Kabi A.K. Sravani S. Gujjarappa R. Garg A. Vodnala N. Tyagi U. Kaldhi D. Singh V. Gupta S. Malakar C.C. An overview on biological activities of 1,2,3-triazole derivatives. Nanostructured Biomaterials Singapore Springer Nature Swain B.P. 2022 401 423 10.1007/978‑981‑16‑8399‑2_11
    [Google Scholar]
  51. Rani A. Singh G. Singh A. Maqbool U. Kaur G. Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review. RSC Advances 2020 10 10 5610 5635 10.1039/C9RA09510A 35497465
    [Google Scholar]
  52. Paul R. Dutta D. Paul R. Dash J. Target‐directed azide‐alkyne cycloaddition for assembling HIV‐1 TAR RNA binding ligands. Angew. Chem. Int. Ed. 2020 59 30 12407 12411 10.1002/anie.202003461 32329147
    [Google Scholar]
  53. Dharavath R. Nagaraju N. Reddy M.R. Ashok D. Sarasija M. Vijjulatha M. T V. Jyothi K. Prashanthi G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles. RSC Adv. 2020 10 20 11615 11623 10.1039/D0RA01052A 35496603
    [Google Scholar]
  54. Han L. Sheng W. Li X. Sik A. Lin H. Liu K. Wang L. Novel carbohydrate modified berberine derivatives: Synthesis and in vitro anti-diabetic investigation. MedChemComm 2019 10 4 598 605 10.1039/C9MD00036D 31057739
    [Google Scholar]
  55. Iqbal S. Khan M.A. Javaid K. Sadiq R. Fazal-ur-Rehman S. Choudhary M.I. Basha F.Z. New carbazole linked 1,2,3-triazoles as highly potent non-sugar α-glucosidase inhibitors. Bioorg. Chem. 2017 74 72 81 10.1016/j.bioorg.2017.07.006 28756277
    [Google Scholar]
  56. Singh G. Diksha Singh A. Satija P. Pawan Mohit González-Silvera D. Espinosa-Ruíz C. Esteban M.A. Organosilanes and their magnetic nanoparticles as naked eye red emissive sensors for Ag + ions and potent anti-oxidants. New J. Chem. 2021 45 12 5517 5525 10.1039/D1NJ00242B
    [Google Scholar]
  57. Kabi A.K. Gujjarappa R. Garg A. Roy A. Sahoo A. Gupta S. Malakar C. C. Overview on medicinal impacts of 1,2,4-triazole derivatives. Tailored Functional Materials Singapore Springer Mukherjee K. Layek R.K. De D. 2022 61 79 10.1007/978‑981‑19‑2572‑6_5
    [Google Scholar]
  58. Malah T.E. Nour H.F. Synthesis of dendronic triazolo-pyridazinones and their self-assembly into nanofibers and nanorods. J. Nanostructure Chem. 2018 8 2 159 169 10.1007/s40097‑018‑0262‑9
    [Google Scholar]
  59. El Malah T. Nour H.F. Click synthesis of shape-persistent azodendrimers and their orthogonal self-assembly to nanofibres. Aust. J. Chem. 2018 71 6 463 472 10.1071/CH17644
    [Google Scholar]
  60. El Malah T. Rolf S. Weidner S.M. Thünemann A.F. Hecht S. Amphiphilic folded dendrimer discs and their thermosensitive self-assembly in water. Chemistry 2012 18 19 5837 5842 10.1002/chem.201200414 22461207
    [Google Scholar]
  61. El Malah T. Ciesielski A. Piot L. Troyanov S.I. Mueller U. Weidner S. Samorì P. Hecht S. Conformationally pre-organized and pH-responsive flat dendrons: Synthesis and self-assembly at the liquid–solid interface. Nanoscale 2012 4 2 467 472 10.1039/C1NR11434D 22139437
    [Google Scholar]
  62. Zornik D. Meudtner R.M. El Malah T. Thiele C.M. Hecht S. Designing structural motifs for clickamers: Exploiting the 1,2,3-triazole moiety to generate conformationally restricted molecular architectures. Chemistry 2011 17 5 1473 1484 10.1002/chem.201002491 21268150
    [Google Scholar]
  63. Cadeddu A. Ciesielski A. El Malah T. Hecht S. Samorì P. Modulating the self-assembly of rigid “clicked” dendrimers at the solid–liquid interface by tuning non-covalent interactions between side groups. Chem. Commun. (Camb.) 2011 47 38 10578 10580 10.1039/c1cc13099d 21869953
    [Google Scholar]
  64. Piot L. Meudtner R.M. El Malah T. Hecht S. Samorì P. Modulating large-area self-assembly at the solid-liquid interface by pH-mediated conformational switching. Chemistry 2009 15 19 4788 4792 10.1002/chem.200802566 19322772
    [Google Scholar]
  65. Kumar S. Malakar C.C. Singh V. Cu(II)‐catalysed azide‐alkyne cycloaddition reaction towards synthesis of β‐carboline C1‐tethered 1,2,3‐triazole derivatives. ChemistrySelect 2021 6 16 4005 4010 10.1002/slct.202100002
    [Google Scholar]
  66. Johansson J.R. Beke-Somfai T. Said Stålsmeden A. Kann N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications. Chem. Rev. 2016 116 23 14726 14768 10.1021/acs.chemrev.6b00466 27960271
    [Google Scholar]
  67. Bozorov K. Zhao J. Aisa H.A. 1,2,3-triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019 27 16 3511 3531 10.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  68. El Malah T. Shamroukh A.H. Kotb E.R. Soliman H.A. Mahmoud K. Hegab M.I. Chemical and anticancer activity studies for some 3-chloro-3-chlorosulfenyl-4′-methylspiro[chroman-2,1′-cyclohexane]-4-ones. Phosphorus Sulfur Silicon Relat. Elem. 2021 196 11 970 977 10.1080/10426507.2021.1947275
    [Google Scholar]
  69. El Malah T. Farag H. Awad H.M. Abdelrahman M.T. Shamroukh A.H. Design and click synthesis of novel 1- substituted-4-(3,4-dimethoxyphenyl)-1 H -1,2,3-triazole hybrids for anticancer evaluation and molecular docking. Polycycl. Aromat. Compd. 2023 43 8 7547 7564 10.1080/10406638.2022.2137205
    [Google Scholar]
  70. El Malah T. Farag H. Awad H.M. Soliman H.A. Click chemistry-based synthesis of new 1,2,3-triazolo-benzoquinoline-3-carbonitriles: Anticancer screening and DFT studies. New J. Chem. 2024 48 4 1567 1577 10.1039/D3NJ05003C
    [Google Scholar]
  71. El Malah T. El-Mageid R.E-S.A. Shamroukh A.H. Rashad A.E. El-Rashedy A.A. Awad H.M. Abdel-Megeid F.M.E. Hegab M.I. Click synthesis, anticancer and molecular docking evaluation of some hexahydro-6H-indolo[2,3-b]quinoxalines incorporated triazole moiety. J. Mol. Struct. 2024 1303 137573 10.1016/j.molstruc.2024.137573
    [Google Scholar]
  72. Malah T.E. Farag H. Hemdan B.A. Abdel Mageid R.E. Abdelrahman M.T. El-Manawaty M.A. Nour H.F. Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids. J. Mol. Struct. 2022 1250 131855 10.1016/j.molstruc.2021.131855
    [Google Scholar]
  73. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  74. Denizot F. Lang R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. 1986 89 2 271 277 10.1016/0022‑1759(86)90368‑6
    [Google Scholar]
/content/journals/coc/10.2174/0113852728332494240919044627
Loading
/content/journals/coc/10.2174/0113852728332494240919044627
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test