Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

A highly interconnected network of diverse brain regions is necessary for the precise execution of human behaviors, including cognitive, psychiatric, and motor functions. Unfortunately, degeneration of specific brain regions causes several neurodegenerative disorders, but the mechanisms that elicit selective neuronal vulnerability remain unclear. This knowledge gap greatly hinders the development of effective mechanism-based therapies, despite the desperate need for new treatments. Here, we emphasize the importance of the Rhes (Ras homolog-enriched in the striatum) protein as an emerging therapeutic target. Rhes, an atypical small GTPase with a SUMO (small ubiquitin-like modifier) E3-ligase activity, modulates biological processes such as dopaminergic transmission, alters gene expression, and acts as an inhibitor of motor stimuli in the brain striatum. Mutations in the Rhes gene have also been identified in selected patients with autism and schizophrenia. Moreover, Rhes SUMOylates pathogenic form of mutant huntingtin (mHTT) and tau, enhancing their solubility and cell toxicity in Huntington's disease and tauopathy models. Notably, Rhes uses membrane projections resembling tunneling nanotubes to transport mHTT between cells and Rhes deletion diminishes mHTT spread in the brain. Thus, we predict that effective strategies aimed at diminishing brain Rhes levels will prevent or minimize the abnormalities that occur in HD and tauopathies and potentially in other brain disorders. We review the emerging technologies that enable specific targeting of Rhes in the brain to develop effective disease-modifying therapeutics.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666230320103518
2024-01-01
2025-01-06
Loading full text...

Full text loading...

References

  1. NapolitanoF. D’AngeloL. de GirolamoP. AvalloneL. de LangeP. UsielloA. The thyroid hormone-target gene rhes a novel crossroad for neurological and psychiatric disorders: New insights from animal models.Neuroscience201838441942810.1016/j.neuroscience.2018.05.02729857029
    [Google Scholar]
  2. HarrisonL.M. LaHosteG.J. RuskinD.N. Ontogeny and dopaminergic regulation in brain of Ras homolog enriched in striatum (Rhes).Brain Res.20081245162510.1016/j.brainres.2008.09.06618929545
    [Google Scholar]
  3. VargiuP. AbajoR.D. Garcia-RaneaJ.A. The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors.Oncogene200423255956810.1038/sj.onc.120716114724584
    [Google Scholar]
  4. SubramaniamS. MealerR.G. SixtK.M. BarrowR.K. UsielloA. SnyderS.H. Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9.J. Biol. Chem.201028527204282043210.1074/jbc.C110.12719120424159
    [Google Scholar]
  5. SubramaniamS. SnyderS.H. Huntington’s Disease is a disorder of the corpus striatum: Focus on Rhes (Ras homologue enriched in the striatum).Neuropharmacology2011607-81187119210.1016/j.neuropharm.2010.10.02521044641
    [Google Scholar]
  6. OscarR.M.S. NeelamS. Ramírez-JarquínU.N. Rhes, a Striatal Enriched Protein, Regulates Post-Translational Small-Ubiquitin-like-Modifier (SUMO) Modification of Nuclear Proteins and Alters Gene Expression.BioRxiv2020202016004410.1101/2020.06.18.160044
    [Google Scholar]
  7. SubramaniamS. Striatal induction and spread of the Huntington’s disease protein: A Novel Rhes Route.J. Huntingtons Dis.202211328129010.3233/JHD‑22054835871361
    [Google Scholar]
  8. SubramaniamS. SixtK.M. BarrowR. SnyderS.H. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity.Science200932459321327133010.1126/science.117287119498170
    [Google Scholar]
  9. ShahaniN. SwarnkarS. GiovinazzoV. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network (“Rhesactome”) in the striatum.Sci. Signal.20169454ra11110.1126/scisignal.aaf667027902448
    [Google Scholar]
  10. HernandezJ. ShahaniN. SwarnkarS. SubramaniamS. Rhes deletion prevents age-dependent selective motor deficits and reduces phosphorylation of S6K in Huntington disease Hdh150Q (CAG) Knock-In Mice.BioRxiv202110.1101/2021.06.16.448681
    [Google Scholar]
  11. SwarnkarS. ChenY. PryorW.M. ShahaniN. PageD.T. SubramaniamS. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington’s disease.Neurobiol. Dis.201582667710.1016/j.nbd.2015.05.01126048156
    [Google Scholar]
  12. OkamotoS. PouladiM.A. TalantovaM. YaoD. XiaP. EhrnhoeferD.E. ZaidiR. ClementeA. KaulM. GrahamR.K. ZhangD. Vincent ChenH.S. TongG. HaydenM.R. LiptonS.A. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin.Nat. Med.200915121407141319915593
    [Google Scholar]
  13. SeredeninaT. GokceO. Luthi-CarterR. Decreased striatal RGS2 expression is neuroprotective in Huntington’s disease (HD) and exemplifies a compensatory aspect of HD-induced gene regulation.PLoS One201167e2223110.1371/journal.pone.002223121779398
    [Google Scholar]
  14. BaiamonteB.A. LeeF.A. BrewerS.T. SpanoD. LaHosteG.J. Attenuation of Rhes activity significantly delays the appearance of behavioral symptoms in a mouse model of Huntington’s disease.PLoS One201381e5360610.1371/journal.pone.005360623349722
    [Google Scholar]
  15. SbodioJ.I. PaulB.D. MachamerC.E. SnyderS.H. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington’s disease.Cell Rep.20134589089710.1016/j.celrep.2013.08.00124012756
    [Google Scholar]
  16. LuB. PalacinoJ. A novel human embryonic stem cell‐derived Huntington’s disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT‐dependent neurodegeneration.FASEB J.20132751820182910.1096/fj.12‑21922023325320
    [Google Scholar]
  17. ArgentiM. The role of mitochondrial dysfunction in Huntington’s Disease pathogenesis and its relation with striatal Rhes protein2014
    [Google Scholar]
  18. DouaudG. GauraV. RibeiroM.J. Distribution of grey matter atrophy in Huntington’s disease patients: A combined ROI-based and voxel-based morphometric study.Neuroimage20063241562157510.1016/j.neuroimage.2006.05.05716875847
    [Google Scholar]
  19. PoudelG.R. StoutJ.C. DomínguezD.J.F. White matter connectivity reflects clinical and cognitive status in Huntington’s disease.Neurobiol. Dis.20146518018710.1016/j.nbd.2014.01.01324480090
    [Google Scholar]
  20. TabriziS.J. ScahillR.I. OwenG. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data.Lancet Neurol.201312763764910.1016/S1474‑4422(13)70088‑723664844
    [Google Scholar]
  21. RuoccoH.H. BonilhaL. LiL.M. Lopes-CendesI. CendesF. Longitudinal analysis of regional grey matter loss in Huntington disease: Effects of the length of the expanded CAG repeat.J. Neurol. Neurosurg. Psychiatry200879213013510.1136/jnnp.2007.11624417615168
    [Google Scholar]
  22. AylwardE.H. NopoulosP.C. RossC.A. Longitudinal change in regional brain volumes in prodromal Huntington disease.J. Neurol. Neurosurg. Psychiatry201182440541010.1136/jnnp.2010.20826420884680
    [Google Scholar]
  23. PoudelG.R. HardingI.H. EganG.F. Georgiou-KaristianisN. Network spread determines severity of degeneration and disconnection in Huntington’s disease.Hum. Brain Mapp.201940144192420110.1002/hbm.2469531187915
    [Google Scholar]
  24. GerdesH.H. BukoreshtlievN.V. BarrosoJ.F.V. Tunneling nanotubes: A new route for the exchange of components between animal cells.FEBS Lett.2007581112194220110.1016/j.febslet.2007.03.07117433307
    [Google Scholar]
  25. ZurzoloC. Tunneling nanotubes: Reshaping connectivity.Curr. Opin. Cell Biol.20217113914710.1016/j.ceb.2021.03.00333866130
    [Google Scholar]
  26. BruntL. GreiciusG. RogersS. Vangl2 promotes the formation of long cytonemes to enable distant Wnt/β-catenin signaling.Nat. Commun.2021121205810.1038/s41467‑021‑22393‑933824332
    [Google Scholar]
  27. KorenkovaO. PepeA. ZurzoloC. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges?Cell Stress202042304310.15698/cst2020.02.21232043076
    [Google Scholar]
  28. WoodB.M. BaenaV. HuangH. JorgensD.M. TerasakiM. KornbergT.B. Cytonemes with complex geometries and composition extend into invaginations of target cells.J. Cell Biol.20212205e20210111610.1083/jcb.20210111633734293
    [Google Scholar]
  29. ZhuC. ShiY. YouJ. Immune cell connection by tunneling nanotubes: the impact of intercellular cross-talk on the immune response and its therapeutic applications.Mol. Pharm.202118377278610.1021/acs.molpharmaceut.0c0124833529022
    [Google Scholar]
  30. ZaccardC.R. RinaldoC.R. MailliardR.B. Linked in: Immunologic membrane nanotube networks.J. Leukoc. Biol.20161001819410.1189/jlb.4VMR0915‑395R26931578
    [Google Scholar]
  31. WatkinsS.C. SalterR.D. Functional connectivity between immune cells mediated by tunneling nanotubules.Immunity200523330931810.1016/j.immuni.2005.08.00916169503
    [Google Scholar]
  32. Alarcon-MartinezL. Villafranca-BaughmanD. QuinteroH. Interpericyte tunnelling nanotubes regulate neurovascular coupling.Nature20205857823919510.1038/s41586‑020‑2589‑x32788726
    [Google Scholar]
  33. ZurzoloC. Evidence that tunnelling nanotube-like structures connect cells in mice.Nature20205857823323310.1038/d41586‑020‑02315‑332788697
    [Google Scholar]
  34. RostamiJ. FotakiG. SiroisJ. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain.J. Neuroinflammation202017111910.1186/s12974‑020‑01776‑732299492
    [Google Scholar]
  35. ZhaoJ. WuH. TangX. Tau internalization: A complex step in tau propagation.Ageing Res. Rev.20216710127210.1016/j.arr.2021.10127233571704
    [Google Scholar]
  36. LjubojevicN. HendersonJ.M. ZurzoloC. The ways of actin: Why tunneling nanotubes are unique cell protrusions.Trends Cell Biol.202131213014210.1016/j.tcb.2020.11.00833309107
    [Google Scholar]
  37. Martins-MarquesT. HausenloyD.J. SluijterJ.P.G. LeybaertL. GiraoH. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia.Trends Mol. Med.2020Epub 2020/11/04.10.1016/j.molmed.2020.10.00233139169
    [Google Scholar]
  38. AugusteM. BalbiT. CiacciC. CanesiL. Conservation of cell communication systems in invertebrate host-defence mechanisms: Possible role in immunity and disease.Biology20209823410.3390/biology908023432824821
    [Google Scholar]
  39. SubramaniamS. Rhes tunnels: A radical new way of communication in the brain’s striatum?BioEssays2020426190023110.1002/bies.20190023132236969
    [Google Scholar]
  40. PintoG. BrouC. ZurzoloC. Tunneling nanotubes: The fuel of tumor progression?Trends Cancer202061087488810.1016/j.trecan.2020.04.01232471688
    [Google Scholar]
  41. ScheiblichH. DansokhoC. MercanD. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes.Cell20211842050895106.e2110.1016/j.cell.2021.09.00734555357
    [Google Scholar]
  42. ValdinocciD. RadfordR. SiowS. ChungR. PountneyD. Potential modes of intercellular α-synuclein transmission.Int. J. Mol. Sci.201718246910.3390/ijms1802046928241427
    [Google Scholar]
  43. SharmaM. JarquínU.N.R. RiveraO. Rhes, a striatal-enriched protein, promotes mitophagy via Nix.Proc. Natl. Acad. Sci.201911647237602377110.1073/pnas.191286811631676548
    [Google Scholar]
  44. SharmaM. SubramaniamS. Rhes travels from cell to cell and transports Huntington disease protein via TNT-like protrusion.J. Cell Biol.201921861972199310.1083/jcb.20180706831076452
    [Google Scholar]
  45. EhrenbergA.J. LengK. LetourneauK.N. Patterns of neuronal Rhes as a novel hallmark of tauopathies.Acta Neuropathol.2021141565166610.1007/s00401‑021‑02279‑233677647
    [Google Scholar]
  46. HernandezI. LunaG. RauchJ.N. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy.Sci. Transl. Med.201911485eaat300510.1126/scitranslmed.aat300530918111
    [Google Scholar]
  47. LiuY.L. FannC.S.J. LiuC.M. RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function.Biol. Psychiatry200864978979610.1016/j.biopsych.2008.04.03518571626
    [Google Scholar]
  48. YangH.C. LiuC.M. LiuY.L. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population.PLoS One201383e6009910.1371/journal.pone.006009923555897
    [Google Scholar]
  49. VadgamaN. PittmanA. SimpsonM. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes.Eur. J. Hum. Genet.20192771121113310.1038/s41431‑019‑0376‑730886340
    [Google Scholar]
  50. ZaczekR. SimontonS. CoyleJ.T. Local and distant neuronal degeneration following intrastriatal injection of kainic acid.J. Neuropathol. Exp. Neurol.198039324526410.1097/00005072‑198005000‑000036154134
    [Google Scholar]
  51. CoyleJ.T. SchwarczR. The discovery and characterization of targeted perikaryal-specific brain lesions with excitotoxins.Front. Neurosci.20201492710.3389/fnins.2020.0092733013307
    [Google Scholar]
  52. MattsonM.P. GuthrieP.B. KaterS.B. Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons.Prog. Clin. Biol. Res.19893173333512690106
    [Google Scholar]
  53. Rasia-FilhoA.A. GuerraK.T.K. VásquezC.E. The subcortical-allocortical- neocortical continuum for the emergence and morphological heterogeneity of pyramidal neurons in the human brain.Front. Synaptic Neurosci.20211361660710.3389/fnsyn.2021.61660733776739
    [Google Scholar]
  54. SimsN.R. Energy metabolism and selective neuronal vulnerability following global cerebral ischemia.Neurochem. Res.199217992393110.1007/BF009932691407279
    [Google Scholar]
  55. SchreiberS.S. BaudryM. Selective neuronal vulnerability in the hippocampus - a role for gene expression?Trends Neurosci.1995181044645110.1016/0166‑2236(95)94495‑Q8545911
    [Google Scholar]
  56. GrilliM. DiodatoE. LozzaG. Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically.Proc. Natl. Acad. Sci. USA20009723128221282710.1073/pnas.97.23.1282211070093
    [Google Scholar]
  57. CalabresiP. CentonzeD. GubelliniP. Synaptic transmission in the striatum: from plasticity to neurodegeneration.Prog. Neurobiol.200061323126510.1016/S0301‑0082(99)00030‑110727775
    [Google Scholar]
  58. SaulleE. GubelliniP. PicconiB. Neuronal vulnerability following inhibition of mitochondrial complex II: A possible ionic mechanism for Huntington’s disease.Mol. Cell. Neurosci.200425192010.1016/j.mcn.2003.09.01314962736
    [Google Scholar]
  59. SulzerD. SurmeierD.J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease.Mov. Disord.2013281415010.1002/mds.2509522791686
    [Google Scholar]
  60. Pons-EspinalM. Blasco-AgellL. ConsiglioA. Dissecting the non-neuronal cell contribution to Parkinson’s disease pathogenesis using induced pluripotent stem cells.Cell. Mol. Life Sci.20217852081209410.1007/s00018‑020‑03700‑x33210214
    [Google Scholar]
  61. Gonzalez-RodriguezP. ZampeseE. SurmeierD.J. Selective neuronal vulnerability in Parkinson’s disease. Prog Brain Res202025261-8910.1016/bs.pbr.2020.02.00532247375
    [Google Scholar]
  62. FairlessR. WilliamsS.K. DiemR. Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease.Int. J. Mol. Sci.2019209214610.3390/ijms2009214631052285
    [Google Scholar]
  63. SubramaniamS. Selective neuronal death in neurodegenerative diseases: The ongoing mystery.Yale J. Biol. Med.201992469570531866784
    [Google Scholar]
  64. BallM.J. Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study.Acta Neuropathol.1978422738010.1007/BF00690970654888
    [Google Scholar]
  65. ChenX.Q. MobleyW.C. Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric aβ and tau species.Front. Neurosci.20191365910.3389/fnins.2019.0065931293377
    [Google Scholar]
  66. JellingerK. Neuropathological substrates of Alzheimer’s disease and Parkinson’s disease.J. Neural Transm. Suppl.1987241091293316494
    [Google Scholar]
  67. HirschE.C. GraybielA.M. DuyckaertsC. Javoy-AgidF. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy.Proc. Natl. Acad. Sci.198784165976598010.1073/pnas.84.16.59763475716
    [Google Scholar]
  68. MinakakiG. KraincD. BurbullaL.F. The Convergence of alpha-synuclein, mitochondrial, and lysosomal pathways in vulnerability of midbrain dopaminergic neurons in Parkinson’s disease.Front. Cell Dev. Biol.2020858063410.3389/fcell.2020.58063433381501
    [Google Scholar]
  69. NishiyamaK. MurayamaS. GotoJ. Regional and cellular expression of the machado-joseph disease gene in brains of normal and affected individuals.Ann. Neurol.199640577678110.1002/ana.4104005148957019
    [Google Scholar]
  70. TomiokaI. NagaiY. SekiK. Generation of common marmoset model lines of spinocerebellar ataxia type 3.Front. Neurosci.20201454800210.3389/fnins.2020.54800233071733
    [Google Scholar]
  71. BergonzoniG. DöringJ. BiagioliM. D1R- and D2R-medium-sized spiny neurons diversity: Insights into striatal vulnerability to Huntington’s disease mutation.Front. Cell. Neurosci.20211562801010.3389/fncel.2021.62801033642998
    [Google Scholar]
  72. KatsunoM. TanakaF. AdachiH. Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA).Prog. Neurobiol.201299324625610.1016/j.pneurobio.2012.05.00722609045
    [Google Scholar]
  73. PievaniM. BocchettaM. BoccardiM. Striatal morphology in early-onset and late-onset Alzheimer’s disease: A preliminary study.Neurobiol. Aging20133471728173910.1016/j.neurobiolaging.2013.01.01623428181
    [Google Scholar]
  74. HanseeuwB.J. LoperaF. SperlingR.A. Striatal amyloid is associated with tauopathy and memory decline in familial Alzheimer’s disease.Alzheimers Res. Ther.20191111710.1186/s13195‑019‑0468‑130717814
    [Google Scholar]
  75. SeldenN. MesulamM.M. GeulaC. Human striatum: The distribution of neurofibrillary tangles in Alzheimer’s disease.Brain Res.1994648232733110.1016/0006‑8993(94)91136‑37922549
    [Google Scholar]
  76. HamasakiH. HondaH. SuzukiS.O. Tauopathy in basal ganglia involvement is exacerbated in a subset of patients with Alzheimer’s disease: The Hisayama study.Alzheimers Dement.201911141542310.1016/j.dadm.2019.04.00831206007
    [Google Scholar]
  77. IwasakiY. The Braak hypothesis in prion disease with a focus on Creutzfeldt–Jakob disease.Neuropathology202040543644910.1111/neup.1265432363728
    [Google Scholar]
  78. VargiuP. MorteB. ManzanoJ. Thyroid hormone regulation of rhes, a novel Ras homolog gene expressed in the striatum.Brain Res. Mol. Brain Res.2001941-21810.1016/S0169‑328X(01)00140‑111597759
    [Google Scholar]
  79. CarboM. BrandiV. PascarellaG. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington’s disease therapy.Int. J. Mol. Med.20194462223223310.3892/ijmm.2019.437331638189
    [Google Scholar]
  80. ErricoF. SantiniE. MigliariniS. The GTP-binding protein Rhes modulates dopamine signalling in striatal medium spiny neurons.Mol. Cell. Neurosci.200837233534510.1016/j.mcn.2007.10.00718035555
    [Google Scholar]
  81. SciamannaG. NapolitanoF. PelosiB. Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons.Neurobiol. Dis.20157814616110.1016/j.nbd.2015.03.02125818655
    [Google Scholar]
  82. NapolitanoF. De RosaA. RussoR. The striatal-enriched protein Rhes is a critical modulator of cocaine-induced molecular and behavioral responses.Sci. Rep.2019911529410.1038/s41598‑019‑51839‑w31653935
    [Google Scholar]
  83. GhiglieriV. NapolitanoF. PelosiB. Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion.Sci. Rep.2015511093310.1038/srep1093326190541
    [Google Scholar]
  84. BrugnoliA. NapolitanoF. UsielloA. MorariM. Genetic deletion of Rhes or pharmacological blockade of mTORC1 prevent striato-nigral neurons activation in levodopa-induced dyskinesia.Neurobiol. Dis.20168515516310.1016/j.nbd.2015.10.02026522958
    [Google Scholar]
  85. SubramaniamS. Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia.Nat. Neurosci.2011152191193
    [Google Scholar]
  86. FeyderM. PlewniaC. LiebermanO.J. Involvement of autophagy in levodopa‐induced dyskinesia.Mov. Disord.20213651137114610.1002/mds.2848033460487
    [Google Scholar]
  87. MealerR.G. MurrayA.J. ShahaniN. SubramaniamS. SnyderS.H. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy.J. Biol. Chem.201428963547355410.1074/jbc.M113.53691224324270
    [Google Scholar]
  88. CheahJ.H. KimS.F. HesterL.D. NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1.Neuron200651443144010.1016/j.neuron.2006.07.01116908409
    [Google Scholar]
  89. O’RourkeJ.G. GareauJ.R. OchabaJ. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation.Cell Rep.20134236237510.1016/j.celrep.2013.06.03423871671
    [Google Scholar]
  90. SteffanJ.S. AgrawalN. PallosJ. SUMO modification of Huntingtin and Huntington’s disease pathology.Science2004304566710010410.1126/science.109219415064418
    [Google Scholar]
  91. LiuQ. ChengS. YangH. Loss of Hap1 selectively promotes striatal degeneration in Huntington disease mice.Proc. Natl. Acad. Sci. USA202011733202652027310.1073/pnas.200228311732747555
    [Google Scholar]
  92. Ramirez-JarquinUN SharmaM ZhouW ShahaniN SubramaniamS Deletion of SUMO1 attenuates behavioral and anatomical deficits by regulating autophagic activities in Huntington disease. Proc Natl Acad Sci USA.2022119535086928
    [Google Scholar]
  93. CicchettiF. LacroixS. CisbaniG. Mutant huntingtin is present in neuronal grafts in huntington disease patients.Ann. Neurol.2014761314210.1002/ana.2417424798518
    [Google Scholar]
  94. Pecho-VrieselingE. RiekerC. FuchsS. Transneuronal propagation of mutant huntingtin contributes to non–cell autonomous pathology in neurons.Nat. Neurosci.20141781064107210.1038/nn.376125017010
    [Google Scholar]
  95. JeonI. CicchettiF. CisbaniG. Human-to-mouse prion-like propagation of mutant huntingtin protein.Acta Neuropathol.2016132457759210.1007/s00401‑016‑1582‑927221146
    [Google Scholar]
  96. BabcockD.T. GanetzkyB. Transcellular spreading of huntingtin aggregates in the Drosophila brain.Proc. Natl. Acad. Sci.201511239E5427E543310.1073/pnas.151621711226351672
    [Google Scholar]
  97. PearceM.M.P. SpartzE.J. HongW. LuoL. KopitoR.R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain.Nat. Commun.201561676810.1038/ncomms776825866135
    [Google Scholar]
  98. DonnellyK.M. DeLorenzoO.R. ZayaA.D.A. Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses.eLife20209e5849910.7554/eLife.5849932463364
    [Google Scholar]
  99. KovacsG.G. Invited review: Neuropathology of tauopathies: Principles and practice.Neuropathol. Appl. Neurobiol.201541132310.1111/nan.1220825495175
    [Google Scholar]
  100. GötzJ. HallidayG. NisbetR.M. Molecular pathogenesis of the tauopathies.Annu. Rev. Pathol.201914123926110.1146/annurev‑pathmechdis‑012418‑01293630355155
    [Google Scholar]
  101. LeeC.Y.D. CantleJ.P. YangX.W. Genetic manipulations of mutant huntingtin in mice: new insights into Huntington’s disease pathogenesis.FEBS J.2013280184382439410.1111/febs.1241823829302
    [Google Scholar]
  102. GrayM. “Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice,” (in eng).J. Neurosci.2008282461826195
    [Google Scholar]
  103. SchulteJ. LittletonJ.T. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology.Curr. Trends Neurol.20115657822180703
    [Google Scholar]
  104. RubinszteinD.C. How does the Huntington’s disease mutation damage cells?Sci. SAGE KE2003200337PE2610.1126/sageke.2003.37.pe2613679594
    [Google Scholar]
  105. EhrenbergAJ LengK LetourneauKN HernandezI LewC SeeleyWW SpinaS MillerB HeinsenH KampmannM KosikKS GrinbergLT Patterns of neuronal Rhes as a novel hallmark of tauopathies. Acta Neuropathol.20211415651-6633677647
    [Google Scholar]
  106. LeeJ.H. SowadaM.J. BoudreauR.L. Rhes suppression enhances disease phenotypes in Huntington’s disease mice.J. Huntingtons Dis.201431657110.3233/JHD‑14009425062765
    [Google Scholar]
  107. PryorW.M. BiagioliM. ShahaniN. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease.Sci. Signal.20147349ra10310.1126/scisignal.200563325351248
    [Google Scholar]
  108. CaballeroB. BourdenxM. LuengoE. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice.Nat. Commun.2021121223810.1038/s41467‑021‑22501‑933854069
    [Google Scholar]
  109. TabriziS.J. LeavittB.R. LandwehrmeyerG.B. Targeting Huntingtin Expression in patients with Huntington’s Disease.N. Engl. J. Med.2019380242307231610.1056/NEJMoa190090731059641
    [Google Scholar]
  110. MarxreiterF. StemickJ. KohlZ. Huntingtin lowering strategies.Int. J. Mol. Sci.2020216214610.3390/ijms2106214632245050
    [Google Scholar]
  111. SwarupV. HinzF.I. RexachJ.E. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia.Nat. Med.201925115216410.1038/s41591‑018‑0223‑330510257
    [Google Scholar]
  112. DhindsaR.S. ZoghbiA.W. KrizayD.K. VasavdaC. GoldsteinD.B. A transcriptome‐based drug discovery paradigm for neurodevelopmental disorders.Ann. Neurol.202189219921110.1002/ana.2595033159466
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1871527322666230320103518
Loading
/content/journals/cnsnddt/10.2174/1871527322666230320103518
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test