Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Bacillus Calmette-Guérin (BCG) is the first developed vaccine to prevent tuberculosis (TB) and is the world's most widely used vaccine. It has a reconcilable defense in opposition to tuberculosis, meningitis, and miliary disease in children but changeable protection against pulmonary TB. Immune activation is responsible for regulating neural development by activating it. The effect of the BCG vaccine on neuronal disorders due to subordinate immune provocation is useful. BCG vaccine can prevent neuronal degeneration in different neurological disorders by provoking auto-reactive T-cells. In the case of TB, CD4+ T-cells effectively protect the immune response by protecting the central defense. Because of the preceding fact, BCG induces protection by creating precise T-cells like CD4+ 
T-cells and CD8+ T-cells. Hence, vaccination-induced protection generates specific T-cells and CD4+ T-cells, and CD8+ T-cells. The BCG vaccine may have an essential effect on motor disorders and play a crucial role in neuroprotective management. The present review describes how the BCG vaccine might be interrelated with motor disorders and play a key role in such diseases.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666221223142813
2024-01-01
2025-01-04
Loading full text...

Full text loading...

References

  1. BarretoM.L. PereiraS.M. FerreiraA.A. BCG vaccine: Efficacy and indications for vaccination and revaccination.J. Pediatr.2006827455410.2223/JPED.149916826312
    [Google Scholar]
  2. HagbergH. GressensP. MallardC. Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults.Ann. Neurol.201271444445710.1002/ana.2262022334391
    [Google Scholar]
  3. ZwerlingA. BehrM.A. VermaA. BrewerT.F. MenziesD. PaiM. The BCG World Atlas: A database of global BCG vaccination policies and practices.PLoS Med.201183e100101210.1371/journal.pmed.100101221445325
    [Google Scholar]
  4. RawlinsM.D. WexlerN.S. WexlerA.R. The prevalence of Huntington’s disease.Neuroepidemiology201646214415310.1159/00044373826824438
    [Google Scholar]
  5. RawlinsMD WexlerNS WexlerAR The prevalence of Huntington's disease Neuroepidemiology.201646214453doi: 10.1159/000443738. Epub 2016 Jan 30.26824438
    [Google Scholar]
  6. Ramos-ArroyoM.A. MorenoS. ValienteA. Incidence and mutation rates of Huntington’s disease in Spain: experience of 9 years of direct genetic testing.J. Neurol. Neurosurg. Psychiatry200576333734210.1136/jnnp.2004.03680615716522
    [Google Scholar]
  7. PanasM. KaradimaG. VassosE. Huntington’s disease in Greece: The experience of 14 years.Clin. Genet.201180658659010.1111/j.1399‑0004.2010.01603.x21166788
    [Google Scholar]
  8. CarrassiE. PugliattiM. GovoniV. SensiM. CasettaI. GranieriE. Epidemiological study of Huntington’s disease in the province of Ferrara, Italy.Neuroepidemiology2017491-2182310.1159/00047969728803251
    [Google Scholar]
  9. GofritO.N. KleinB.Y. CohenI.R. Ben-HurT. GreenblattC.L. BercovierH. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients.PLoS One.20191411e022443310.1371/journal.pone.022443331697701
    [Google Scholar]
  10. BakhtaK. CecillonE. LacombeE. LamyM. LeboucherA. PhilippeJ. Alzheimer’s disease and neurodegenerative diseases in France.Lancet20193941019746646710.1016/S0140‑6736(19)31633‑231402022
    [Google Scholar]
  11. Laćan G, Dang H, Middleton B, et al. Bacillus Calmette-Guerin vaccine-mediated neuroprotection is associated with regulatory Tcell induction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease.J Neurosci Res20139110129230210.1002/jnr.2325323907992
    [Google Scholar]
  12. ChungK.T. BiggersC.J. Albert Léon Charles Calmette (1863-1933) and the antituberculous BCG vaccination.Perspect. Biol. Med.200144337938910.1353/pbm.2001.004411482007
    [Google Scholar]
  13. OettingerT. JørgensenM. LadefogedA. HasløvK. AndersenP. Development of the Mycobacterium bovis BCG vaccine: Review of the historical and biochemical evidence for a genealogical tree.Tuber. Lung Dis.199979424325010.1054/tuld.1999.020610692993
    [Google Scholar]
  14. PetroffS.A. BranchA. SteenkenW.Jr Microbic Dissociation III. BCG (Bacillus Calmette-Guerin).Exp. Biol. Med.1927251141710.3181/00379727‑25‑3674
    [Google Scholar]
  15. RubinB.P. SingerS. TsaoC. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors.Cancer Res.200161228118812111719439
    [Google Scholar]
  16. LittleG. The Canadian Public Health Association 1951-1952: Part II.Canadienne de Sante'e Publique1952437303317
    [Google Scholar]
  17. LeslieC. What caused India’s massive community health workers scheme: A sociology of knowledge.Soc. Sci. Med.198521892393010.1016/0277‑9536(85)90150‑94071126
    [Google Scholar]
  18. JacobsS. WarmanA. RoehrigN. Mycobacterium tuberculosis infection in First Nations preschool children in Alberta: Implications for BCG (bacille Calmette-Guérin) vaccine withdrawal.Can. J. Public Health200798211612010.1007/BF0340432117441534
    [Google Scholar]
  19. MosesM.W. ZwerlingA. CattamanchiA. Serial testing for latent tuberculosis using QuantiFERON-TB Gold In-Tube: A Markov model.Sci. Rep.2016613078110.1038/srep3078127469388
    [Google Scholar]
  20. NevoU. KipnisJ. GoldingI. Autoimmunity as a special case of immunity: removing threats from within.Trends Mol. Med.200393889310.1016/S1471‑4914(03)00024‑812657429
    [Google Scholar]
  21. ChenY.H. KuoT.T. ChuM.T. MaH.I. ChiangY.H. HuangE.Y.K. Postnatal systemic inflammation exacerbates impairment of hippocampal synaptic plasticity in an animal seizure model.Neuroimmunomodulation201320422323210.1159/00034844023736043
    [Google Scholar]
  22. YongJ. LacanG. DangH. HsiehT. MiddletonB. WasserfallC. TianJ. MelegaW.P. KaufmanD.L. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease.PLoS One.2011Jan 3161e1661010.1371/journal.pone.001661021304945
    [Google Scholar]
  23. CunninghamC. Microglia and neurodegeneration: The role of systemic inflammation.Glia2013611719010.1002/glia.2235022674585
    [Google Scholar]
  24. SchütteD. PluschkeG. Immunosuppression and treatment-associated inflammatory response in patients with Mycobacterium ulcerans infection (Buruli ulcer).Expert Opin. Biol. Ther.20099218720010.1517/1471259080263185419236249
    [Google Scholar]
  25. ArtsR.J.W. CarvalhoA. La RoccaC. Immunometabolic pathways in BCG-induced trained immunity.Cell Rep.201617102562257110.1016/j.celrep.2016.11.01127926861
    [Google Scholar]
  26. YangJ. QiF. GuH. Neonatal BCG vaccination of mice improves neurogenesis and behavior in early life.Brain Res. Bull.2016120253310.1016/j.brainresbull.2015.10.01226536170
    [Google Scholar]
  27. ZuoZ. QiF. XingZ. Bacille Calmette-Guérin attenuates vascular amyloid pathology and maximizes synaptic preservation in APP/PS1 mice following active amyloid-β immunotherapy.Neurobiol. Aging20211019410810.1016/j.neurobiolaging.2021.01.00133610062
    [Google Scholar]
  28. ZuoZ. QiF. YangJ. Immunization with Bacillus Calmette-Guérin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain.Neurobiol. Dis.2017101273910.1016/j.nbd.2017.02.00128189498
    [Google Scholar]
  29. LiQ. QiF. YangJ. Neonatal vaccination with bacillus Calmette-Guérin and hepatitis B vaccines modulates hippocampal synaptic plasticity in rats.J. Neuroimmunol.201528811210.1016/j.jneuroim.2015.08.01926531688
    [Google Scholar]
  30. LiQ. XuanA. QiF. YangJ. ZouJ. YaoZ. Synergistic effects of combined vaccination with BCG and influenza vaccines on spatial cognition and hippocampal plasticity in rats.Brain Res. Bull.201914926827810.1016/j.brainresbull.2019.04.02531051226
    [Google Scholar]
  31. SongD. QiF. LiuS. TangZ. DuanJ. YaoZ. The adoptive transfer of BCG-induced T lymphocytes contributes to hippocampal cell proliferation and tempers anxiety-like behavior in immune deficient mice.PLoS One2020154e022587410.1371/journal.pone.022587432240169
    [Google Scholar]
  32. MatsuzakiG. TeruyaN. Kiyohara KohamaH. Mycobacterium bovis BCG-mediated suppression of Th17 response in mouse experimental autoimmune encephalomyelitis.Immunopharmacol. Immunotoxicol.202143220321110.1080/08923973.2021.187821533541144
    [Google Scholar]
  33. QiF. ZuoZ. YangJ. Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization.J. Neuroinflammation20171413210.1186/s12974‑017‑0808‑728183352
    [Google Scholar]
  34. McFarlandC.T. LyL. JeevanA. YamamotoT. WeeksB. IzzoA. McMurrayD. BCG vaccination in the cotton rat (Sigmodon hispidus) infected by the pulmonary route with virulent Mycobacterium tuberculosis.Tuberculosis (Edinb).2010Jul; 904262267doi: 10.1016/j.tube.2010.03.014. Epub 2010 May 6.20451457
    [Google Scholar]
  35. KohmanR.A. RhodesJ.S. Neurogenesis, inflammation and behavior.Brain Behav. Immun.2013271223210.1016/j.bbi.2012.09.00322985767
    [Google Scholar]
  36. ChughD. NilssonP. AfjeiS.A. BakochiA. EkdahlC.T. Brain inflammation induces post-synaptic changes during early synapse formation in adult-born hippocampal neurons.Exp. Neurol.201325017618810.1016/j.expneurol.2013.09.00524047952
    [Google Scholar]
  37. GodalyG. YoungD.B. Mycobacterium bovis bacille Calmette Guerin infection of human neutrophils induces CXCL8 secretion by MyD88-dependent TLR2 and TLR4 activation.Cell. Microbiol.20057459160110.1111/j.1462‑5822.2004.00489.x15760459
    [Google Scholar]
  38. GiordanoS. Darley-UsmarV. ZhangJ. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease.Redox Biol.20142829010.1016/j.redox.2013.12.01324494187
    [Google Scholar]
  39. KunisG. BaruchK. MillerO. SchwartzM. Immunization with a myelin-derived antigen activates the brain’s choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS.J. Neurosci.201535166381639310.1523/JNEUROSCI.3644‑14.201525904790
    [Google Scholar]
  40. DereckiN.C. CardaniA.N. YangC.H. Regulation of learning and memory by meningeal immunity: A key role for IL-4.J. Exp. Med.201020751067108010.1084/jem.2009141920439540
    [Google Scholar]
  41. StellwagenD. MalenkaR.C. Synaptic scaling mediated by glial TNF-α.Nature200644070871054105910.1038/nature0467116547515
    [Google Scholar]
  42. SantelloM. BezziP. VolterraA. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus.Neuron2011695988100110.1016/j.neuron.2011.02.00321382557
    [Google Scholar]
  43. DauerW. PrzedborskiS. Parkinson’s disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑312971891
    [Google Scholar]
  44. GreenamyreJ.T. HastingsT.G. Biomedicine. Parkinson’s - divergent causes, convergent mechanisms.Science200430456741120112210.1126/science.109896615155938
    [Google Scholar]
  45. McGeerP.L. YasojimaK. McGeerE.G. Inflammation in Parkinson’s disease.Adv. Neurol.200186838911554012
    [Google Scholar]
  46. Kurkowska-Jastrzębska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse.Exp. Neurol.19991561506110.1006/exnr.1998.699310192776
    [Google Scholar]
  47. Kurkowska-Jastrzębska I, Bałkowiec-Iskra E, Joniec I, Litwin T, Członkowski A, Członkowska A. Immunization with myelin oligodendrocyte glycoprotein and complete Freund adjuvant partially protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage in mouse model of Parkinson’s disease.Neuroscience2005131124725410.1016/j.neuroscience.2004.10.02715680707
    [Google Scholar]
  48. BoskaM.D. LewisT.B. DestacheC.J. Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease.J. Neurosci.20052571691170010.1523/JNEUROSCI.4364‑04.200515716405
    [Google Scholar]
  49. LaurieC. ReynoldsA. CoskunO. BowmanE. GendelmanH.E. MosleyR.L. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease.J. Neuroimmunol.20071831-2606810.1016/j.jneuroim.2006.11.00917196666
    [Google Scholar]
  50. StojkovskaI. WagnerB.M. MorrisonB.E. Parkinson’s disease and enhanced inflammatory response.Exp. Biol. Med.2015240111387139510.1177/153537021557631325769314
    [Google Scholar]
  51. DongY. FischerR. NaudéP.J. MaierO. NyakasC. DuffeyM. Van der ZeeE.A. DekensD. DouwengaW. HerrmannA. GuenziE. KontermannR.E. PfizenmaierK. EiselU.L. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration.Proc Natl Acad Sci U S A.2016Oct 25; 113431230412309doi: 10.1073/pnas.1605195113. Epub 2016 Oct 10.27791020
    [Google Scholar]
  52. ZhuM. GuF. ShiJ. HuJ. HuY. ZhaoZ. Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2.Free Radic. Biol. Med.200845101493149910.1016/j.freeradbiomed.2008.08.02718822370
    [Google Scholar]
  53. HunotS. DugasN. FaucheuxB. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells.J. Neurosci.19991993440344710.1523/JNEUROSCI.19‑09‑03440.199910212304
    [Google Scholar]
  54. NomuraD.K. MorrisonB.E. BlankmanJ.L. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation.Science2011334605780981310.1126/science.120920022021672
    [Google Scholar]
  55. NorouziS. AghamohammadiA. MamishiS. RosenzweigS.D. RezaeiN. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases.J. Infect.201264654355410.1016/j.jinf.2012.03.01222430715
    [Google Scholar]
  56. MalikM. ParikhI. VasquezJ.B. Genetics ignite focus on microglial inflammation in Alzheimer’s disease.Mol. Neurodegener.20151015210.1186/s13024‑015‑0048‑126438529
    [Google Scholar]
  57. RogersJ. WebsterS. LueL.F. Inflammation and Alzheimer’s disease pathogenesis.Neurobiol. Aging199617568168610.1016/0197‑4580(96)00115‑78892340
    [Google Scholar]
  58. IbáñezP. BonnetA-M. DébargesB. Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease.Lancet200436494401169117110.1016/S0140‑6736(04)17104‑315451225
    [Google Scholar]
  59. PribiagH. StellwagenD. TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors.J. Neurosci.20133340158791589310.1523/JNEUROSCI.0530‑13.201324089494
    [Google Scholar]
  60. SharmaV. ThakurV. SinghS.N. GuleriaR. Tumor necrosis factor and Alzheimer’s disease: a cause and consequence relationship.Klinik Psikofarmakol. BBülteni2012221869710.5455/bcp.20120112064639
    [Google Scholar]
  61. OlmosG. LladóJ. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity.Mediators of inflammation201410.1155/2014/861231
    [Google Scholar]
  62. WojteraM. SobówT. Kłoszewska I, Liberski PP, Brown DR, Sikorska B. Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: Morphometric study and review of the literature.Folia Neuropathol.2012501748422505366
    [Google Scholar]
  63. VezzaniA. GranataT. Brain inflammation in epilepsy: Experimental and clinical evidence.Epilepsia200546111724174310.1111/j.1528‑1167.2005.00298.x16302852
    [Google Scholar]
  64. WalterS. LetiembreM. LiuY. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease.Cell. Physiol. Biochem.200720694795610.1159/00011045517982277
    [Google Scholar]
  65. MustoA.E. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism.Sci. Rep.20166111628442746
    [Google Scholar]
  66. ChoiJ. KohS. Role of brain inflammation in epileptogenesis.Yonsei Med. J.200849111810.3349/ymj.2008.49.1.118306464
    [Google Scholar]
  67. ButlerT. LiY. TsuiW. Transient and chronic seizure-induced inflammation in human focal epilepsy.Epilepsia2016579e191e19410.1111/epi.1345727381590
    [Google Scholar]
  68. KulkarniS.K. NaiduP.S. Pathophysiology and drug therapy of tardive dyskinesia: Current concepts and future perspectives.Med. Actual.2003391194910.1358/dot.2003.39.1.79943012669107
    [Google Scholar]
  69. BishnoiM. ChopraK. KulkarniS.K. Activation of striatal inflammatory mediators and caspase-3 is central to haloperidol-induced orofacial dyskinesia.Eur. J. Pharmacol.20085901-324124510.1016/j.ejphar.2008.06.03318590723
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1871527322666221223142813
Loading
/content/journals/cnsnddt/10.2174/1871527322666221223142813
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): autoimmunity; BCG vaccine; movement disorders; neuroinflammation; neuroprotection; PD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test