Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensin-converting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer’s disease (EOAD). Despite this data, Alzheimer’s disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666221226145141
2024-01-01
2025-01-07
Loading full text...

Full text loading...

References

  1. Center for Disease Control and Prevention. World Map | CDC. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/index.html
  2. De FeliceF.G. Tovar-mollF. MollJ. MunozD.P. FerreiraS.T. Trends in neurosciences science Society Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the central nervous system trends in neurosciences.Trends Neurosci.20191310.1016/j.tins.2020.04.00432359765
    [Google Scholar]
  3. DasS. RamachandranA.K. BirangalS.R. AkbarS. AhmedB. JosephA. The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: A comprehensive review.Med Drug Discov20211010008510.1016/j.medidd.2021.10008533846702
    [Google Scholar]
  4. SantosI.A. GroscheV.R. BergaminiF.R.G. Sabino-SilvaR. JardimA.C.G. Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment?Front. Microbiol.202011181810.3389/fmicb.2020.0181832903349
    [Google Scholar]
  5. OliveiraT.L. MeloI.S. Cardoso-SousaL. Pathophysiology of SARS-CoV-2 in Lung of Diabetic Patients.Front. Physiol.2020111258701310.3389/fphys.2020.58701333362575
    [Google Scholar]
  6. GhotbizadehF NazariF HantoushzadehS PanahiZ NaeijiZ. Investigation of SARS-CoV-2 Ability to Pass Through the Placenta202110.5812/semj.110047
    [Google Scholar]
  7. AnuK.R. DasS. JosephA. ShenoyG.G. AlexA.T. MudgalJ. Neurodegenerative pathways in alzheimer’s disease: A review.Curr. Neuropharmacol.2021191567969210.2174/1570159X18666200807130637
    [Google Scholar]
  8. DasS. AkbarS. AhmedB. Recent advancement of pyrazole scaffold based neuroprotective agents: A review.CNS Neurol. Disord. Drug Targets2022211094095110.2174/187152732066621060215230834080970
    [Google Scholar]
  9. DasS. AkbarS. AhmedB. Structural activity relationship-based medicinal perspectives of pyrimidine derivatives as anti-alzheimer’s agent: A comprehensive review.CNS Neurol. Disord. Drug Targets2022211092693910.2174/187152732066621080416140034348636
    [Google Scholar]
  10. RamachandranA.K. DasS. JosephA. Crosstalk between Covid-19 and associated neurological disorders: A review.Curr. Neuropharmacol.202119101688170010.2174/1570159X1966621011315434233441073
    [Google Scholar]
  11. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X1131103000624179466
    [Google Scholar]
  12. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a00618922229116
    [Google Scholar]
  13. GiauV.V. BagyinszkyE. YounY.C. AnS.S.A. KimS. APP, PSEN1, and PSEN2 Mutations in Asian patients with early-onset Alzheimer disease.Int. J. Mol. Sci.20192019475710.3390/ijms2019475731557888
    [Google Scholar]
  14. LiuC.C. KanekiyoT. XuH. BuG. BuG. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy.Nat. Rev. Neurol.20139210611810.1038/nrneurol.2012.26323296339
    [Google Scholar]
  15. MontufarS. CaleroC. VinuezaR. Association between the APOE ε4 Allele and Late-Onset Alzheimer’s Disease in an Ecuadorian Mestizo Population.Int. J. Alzheimers Dis.20172017105967810.1155/2017/1059678
    [Google Scholar]
  16. GordonD.E. JangG.M. BouhaddouM. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature2020583781645946810.1038/s41586‑020‑2286‑932353859
    [Google Scholar]
  17. KuoC PillingL C AtkinsJ L APOE E4 genotype predicts severe COVID-19 in the UK biobank community cohort.2020XXXx1210.1093/gerona/glaa131
    [Google Scholar]
  18. DasH.K. McPhersonJ. BrunsG.A. KarathanasisS.K. BreslowJ.L. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene.J. Biol. Chem.1985260106240624710.1016/S0021‑9258(18)88963‑33922972
    [Google Scholar]
  19. KimH. YooJ. ShinJ. Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer’s disease in an induced neuron.Brain201714082193220910.1093/brain/awx14428899010
    [Google Scholar]
  20. MahleyR.W. RallS.C.Jr ApolipoproteinE. ApolipoproteinE. Far more than a lipid transport protein.Annu. Rev. Genomics Hum. Genet.20001150753710.1146/annurev.genom.1.1.50711701639
    [Google Scholar]
  21. SandoS.B. MelquistS. CannonA. APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; A case control study from central Norway.BMC Neurol.200881910.1186/1471‑2377‑8‑918416843
    [Google Scholar]
  22. FarrerL.A. CupplesL.A. HainesJ.L. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.JAMA1997278161349135610.1001/jama.1997.035501600690419343467
    [Google Scholar]
  23. XuQ BrechtW J WeisgraberK H MahleyR W HuangY. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer.20042792425511610.1074/jbc.M311256200
    [Google Scholar]
  24. LiaoF. YoonH. KimJ. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease.Curr. Opin. Lipidol.2017281606710.1097/MOL.000000000000038327922847
    [Google Scholar]
  25. PitassjtR.E. BoylessjJ.K. LeesS.H. HuisoD. WeisgrabersoK.H. Lipoproteins and Their Receptors in the Central Nervous System198771435214360
    [Google Scholar]
  26. HarrisF M BrechtW J XuQ Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice.200310019109671
    [Google Scholar]
  27. MichaelsonD.M. APOE ε4: The most prevalent yet understudied risk factor for Alzheimer’s disease.Alzheimers Dement.201410686186810.1016/j.jalz.2014.06.01525217293
    [Google Scholar]
  28. GetzG. ReardonC. Apoprotein E and reverse cholesterol transport.Int. J. Mol. Sci.20181911347910.3390/ijms1911347930404132
    [Google Scholar]
  29. SafiehM. KorczynA.D. MichaelsonD.M. ApoE4: An emerging therapeutic target for Alzheimer’s disease.BMC Med.20191716410.1186/s12916‑019‑1299‑430890171
    [Google Scholar]
  30. HarrisF.M. BrechtW.J. XuQ. MahleyR.W. HuangY. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: Modulation by zinc.J. Biol. Chem.200427943447954480110.1074/jbc.M40812720015322121
    [Google Scholar]
  31. CaselliR.J. DueckA.C. LockeD.E.C. Longitudinal modeling of frontal cognition in APOE 4 homozygotes, heterozygotes, and noncarriers.Neurology201176161383138810.1212/WNL.0b013e318216714721502596
    [Google Scholar]
  32. RiesM. SastreM. Mechanisms of Aβ clearance and degradation by glial cells.Front. Aging Neurosci.2016816010.3389/fnagi.2016.0016027458370
    [Google Scholar]
  33. YeS. HuangY. MüllendorffK. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target.Proc. Natl. Acad. Sci. USA200510251187001870510.1073/pnas.050869310216344478
    [Google Scholar]
  34. LiuC.C. HuJ. ZhaoN. Astrocytic LRP1 mediates brain Aβ clearance and impacts amyloid deposition.J. Neurosci.201737154023403110.1523/JNEUROSCI.3442‑16.201728275161
    [Google Scholar]
  35. PrasadH. RaoR. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH.Proc. Natl. Acad. Sci. USA201811528E6640E664910.1073/pnas.180161211529946028
    [Google Scholar]
  36. BasakJ.M. VergheseP.B. YoonH. KimJ. HoltzmanD.M. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes.J. Biol. Chem.201228717139591397110.1074/jbc.M111.28874622383525
    [Google Scholar]
  37. MaJ. YeeA. BrewerH.B.Jr DasS. PotterH. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments.Nature19943726501929410.1038/372092a07969426
    [Google Scholar]
  38. SananD.A. WeisgraberK.H. RussellS.J. Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3.J. Clin. Invest.199494286086910.1172/JCI1174078040342
    [Google Scholar]
  39. LynchJ.R. MorganD. ManceJ. MatthewW.D. LaskowitzD.T. ApolipoproteinE. Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response.J. Neuroimmunol.20011141-210711310.1016/S0165‑5728(00)00459‑811240021
    [Google Scholar]
  40. GuoL. LaDuM.J. Van EldikL.J. A dual role for apolipoprotein e in neuroinflammation: Anti- and pro-inflammatory activity.J. Mol. Neurosci.200423320521210.1385/JMN:23:3:20515181248
    [Google Scholar]
  41. ParhizkarS. HoltzmanD.M. APOE Mediated Neuroinflammation and Neurodegeneration in Alzheimer’s Disease.Semin. Immunol.202210159410.1016/j.smim.2022.101594
    [Google Scholar]
  42. ZhuY. Nwabuisi-HeathE. DumanisS.B. APOE genotype alters glial activation and loss of synaptic markers in mice.Glia201260455956910.1002/glia.2228922228589
    [Google Scholar]
  43. AllanL.L. HoeflK. ZhengD.J. Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells.Blood2009114122411241610.1182/blood‑2009‑04‑21141719620401
    [Google Scholar]
  44. HongC. TontonozP. LiverX. Liver X receptors in lipid metabolism: Opportunities for drug discovery.Nat. Rev. Drug Discov.201413643344410.1038/nrd428024833295
    [Google Scholar]
  45. KimJ. EltoraiA.E.M. JiangH. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis.J. Exp. Med.2012209122149215610.1084/jem.2012127423129750
    [Google Scholar]
  46. MahleyR.W. HuangY. Small-molecule structure correctors target abnormal protein structure and function: Structure corrector rescue of apolipoprotein E4-associated neuropathology.J. Med. Chem.201255218997900810.1021/jm300861823013167
    [Google Scholar]
  47. PerlmanS. NetlandJ. Coronaviruses post-SARS: Update on replication and pathogenesis.Nat. Rev. Microbiol.20097643945010.1038/nrmicro214719430490
    [Google Scholar]
  48. WeissS.R. Navas-MartinS. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus.Microbiol. Mol. Biol. Rev.200569463566410.1128/MMBR.69.4.635‑664.200516339739
    [Google Scholar]
  49. PandeyA. NikamA.N. ShreyaA.B. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements.Life Sci.202025611788310.1016/j.lfs.2020.11788332497632
    [Google Scholar]
  50. WuF. ZhaoS. YuB. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑332015508
    [Google Scholar]
  51. LiF. Structure.Function, and Evolution of Coronavirus Spike Proteins201623726410.1146/annurev‑virology‑110615‑042301
    [Google Scholar]
  52. DasS K R A, Birangal SR, et al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review.Life Sci.202025811820210.1016/j.lfs.2020.11820232758625
    [Google Scholar]
  53. GoldsteinM.R. PolandG.A. GraeberC.W. Does apolipoprotein E genotype predict COVID-19 severity?QJM2020113852953010.1093/qjmed/hcaa14232339247
    [Google Scholar]
  54. MahleyRW WeisgraberKH HuangY ApolipoproteinE Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS.J Lipid Res200950Suppl Suppl.):S183810.1194/jlr.R800069‑JLR20019106071
    [Google Scholar]
  55. BurtT.D. AganB.K. MarconiV.C. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE ε4/ε4 genotype accelerates HIV disease progression.Proc. Natl. Acad. Sci. USA2008105258718872310.1073/pnas.080352610518562290
    [Google Scholar]
  56. GaleS.C. GaoL. MikacenicC. APOε4 is associated with enhanced in vivo innate immune responses in human subjects.J. Allergy Clin. Immunol.20141341127134.e910.1016/j.jaci.2014.01.03224655576
    [Google Scholar]
  57. GordonE.M. YaoX. XuH. Apolipoprotein E is a concentration-dependent pulmonary danger signal that activates the NLRP3 inflammasome and IL-1β secretion by bronchoalveolar fluid macrophages from asthmatic subjects.J. Allergy Clin. Immunol.2019144242644110.1016/j.jaci.2019.02.02730872118
    [Google Scholar]
  58. YangX YuY XuJ Clinical course and outcomes of critically ill patients with SARS-CoV-2 Pneumonia in Wuhan , China: A single-centered , retrospective , observational study.Lancet Respir854758110.1016/S2213‑2600(20)30079‑5
    [Google Scholar]
  59. MaoL. JinH. WangM. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China.JAMA Neurol.202077668369010.1001/jamaneurol.2020.112732275288
    [Google Scholar]
  60. ArabiY.M. HarthiA. HusseinJ. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV).Infection201543449550110.1007/s15010‑015‑0720‑y25600929
    [Google Scholar]
  61. ReinekeL.C. LloydR.E. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses.J. Virol.20158952575258910.1128/JVI.02791‑1425520508
    [Google Scholar]
  62. PapadopoliD. BoulayK. KazakL. mTOR as a central regulator of lifespan and aging.F1000 Res.2019899810.12688/f1000research.17196.131316753
    [Google Scholar]
  63. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging.Cell201315361194121710.1016/j.cell.2013.05.03923746838
    [Google Scholar]
  64. YeZ. WongC.K. LiP. XieY. A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis.Biochim. Biophys. Acta, Gen. Subj.20081780121383138710.1016/j.bbagen.2008.07.00918708124
    [Google Scholar]
  65. Solis-MoreiraJ. Alzheimer’s symptoms linked to COVID induced brain injury. Available from: https://www.news-medical.net/news/20210324/Alzheimere28099s-symptoms-linked-to-COVID-induced-brain-injury.aspx
  66. ErausquinG.A. SnyderH. CarrilloM. HosseiniA.A. BrughaT.S. SeshadriS. The chronic neuropsychiatric sequelae of COVID‐19: The need for a prospective study of viral impact on brain functioning.Alzheimers Dement.20211761056106510.1002/alz.1225533399270
    [Google Scholar]
  67. LiJ. LongX. HuangH. Resilience of Alzheimer’s disease to COVID-19.J. Alzheimers Dis.2020771677310.3233/JAD‑20064932804094
    [Google Scholar]
  68. WangC. ZhangM. GarciaG.Jr ApoE-Isoform-dependent SARS-CoV-2 neurotropism and cellular response.Cell Stem Cell202128233134210.1016/j.stem.2020.12.01833450186
    [Google Scholar]
  69. XiongN. SchillerM.R. LiJ. ChenX. LinZ. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again?Alzheimers Res. Ther.202113111110.1186/s13195‑021‑00858‑934118974
    [Google Scholar]
  70. GhannamM. AlshaerQ. Al-ChalabiM. ZakarnaL. RobertsonJ. ManousakisG. Neurological involvement of coronavirus disease 2019: A systematic review.J. Neurol.20202673135315310.1007/s00415‑020‑09990‑2
    [Google Scholar]
  71. JastiM NalleballeK DanduV OntedduS. A review of pathophysiology and Neuropsychiatric Manifestations of COVID-19.J Neurol2020012345678910.1007/s00415‑020‑09950‑w32494854
    [Google Scholar]
  72. MeinhardtJ. RadkeJ. DittmayerC. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.Nat. Neurosci.202124216817510.1038/s41593‑020‑00758‑533257876
    [Google Scholar]
  73. LeonardiM. PadovaniA. McArthurJ.C. Neurological manifestations associated with COVID-19: A review and a call for action.J. Neurol.202026761573157610.1007/s00415‑020‑09896‑z32436101
    [Google Scholar]
  74. WangL. ShenY. LiM. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis.J. Neurol.2020267102777278910.1007/s00415‑020‑09974‑232529575
    [Google Scholar]
  75. PantherE.J. Lucke-WoldB. Subarachnoid hemorrhage: Management considerations for COVID-19.Exploration of Neuroprotective Therapy202222657310.37349/ent.2022.0001835340712
    [Google Scholar]
  76. QureshiA.I. BaskettW.I. HuangW. Subarachnoid Hemorrhage and COVID-19: An Analysis of 282,718 Patients.World Neurosurg.2021151Maye615e62010.1016/j.wneu.2021.04.08933940263
    [Google Scholar]
  77. SmallC. MehkriY. PantherE. FelismaP. Lucke-WoldB. Coronavirus Disease-2019 and Stroke: Pathophysiology and Management.Can. J. Neurol. Sci.20221810.1017/cjn.2022.26735762309
    [Google Scholar]
  78. EzzatiA. WangC. KatzM.J. The temporal relationship between pain intensity and pain interference and incident dementia.Curr. Alzheimer Res.201916210911510.2174/156720501666618121216242430543173
    [Google Scholar]
  79. IkramM. InnesK. SambamoorthiU. Association of osteoarthritis and pain with Alzheimer’s Diseases and Related Dementias among older adults in the United States. Osteoarthritis Cartilage201927101470-8010.1016/j.joca.2019.05.02131200005
    [Google Scholar]
  80. ColtonC.A. Heterogeneity of microglial activation in the innate immune response in the brain.J. Neuroimmune Pharmacol.20094439941810.1007/s11481‑009‑9164‑419655259
    [Google Scholar]
  81. InoueK. TsudaM. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential.Nat. Rev. Neurosci.201819313815210.1038/nrn.2018.229416128
    [Google Scholar]
  82. Drożdżal S, Rosik J, Lechowicz K, et al. COVID-19: Pain management in patients with SARS-CoV-2 infection—molecular mechanisms, challenges, and perspectives.Brain Sci202010746510.3390/brainsci1007046532698378
    [Google Scholar]
  83. El-TallawyS.N. NalamasuR. PergolizziJ.V. GhariboC. Pain management during the COVID-19 pandemic.Pain Ther.20209245346610.1007/s40122‑020‑00190‑432840756
    [Google Scholar]
  84. MahaseE. Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds.BMJ2020369m242210.1136/bmj.m242232546467
    [Google Scholar]
  85. CaiQ. YangM. LiuD. Experimental treatment with favipiravir for COVID-19: An open-label control study.Engineering20206101192119810.1016/j.eng.2020.03.00732346491
    [Google Scholar]
  86. SahebnasaghA. AvanR. SaghafiF. Pharmacological treatments of COVID-19.Pharmacol. Rep.20207261446147810.1007/s43440‑020‑00152‑932816200
    [Google Scholar]
  87. SandersJ.M. MonogueM.L. JodlowskiT.Z. CutrellJ.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19).JAMA2020323181824183610.1001/jama.2020.601932282022
    [Google Scholar]
  88. National Institute of HealthTherapeutic Management of Patients with COVID-19 Coronavirus 2019 Treat.Guidel2021130
    [Google Scholar]
  89. Coronavirus disease (COVID-19): Vaccines. Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines
/content/journals/cnsnddt/10.2174/1871527322666221226145141
Loading
/content/journals/cnsnddt/10.2174/1871527322666221226145141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test