Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

The pathophysiological importance of T helper 1 (Th1) and Th2 cell cytokines in pathological pain has been highly debated in recent decades. However, the analgesic strategy targeting individual cytokines still has a long way to go for clinical application. In this review, we focus on the contributions of Th1 cytokines (TNF-α, IFN-γ, and IL-2) and Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in rodent pain models and human pain-related diseases. A large number of studies have shown that Th1 and Th2 cytokines have opposing effects on pain modulation. The imbalance of Th1 and Th2 cytokines might determine the final effect of pain generation or inhibition. However, increasing evidence indicates that targeting the individual cytokine is not sufficient for the treatment of pathological pain. It is practical to suggest a promising therapeutic strategy against the combined effects of Th1 and Th2 cytokines. We summarize the current advances in stem cell therapy for pain-related diseases. Preclinical and clinical studies show that stem cells inhibit proinflammatory cytokines and release enormous Th2 cytokines that exhibit a strong analgesic effect. Therefore, a shift of the imbalance of Th1 and Th2 cytokines induced by stem cells will provide a novel therapeutic strategy against intractable pain. It is extremely important to reveal the cellular and molecular mechanisms of stem cell-mediated analgesia. The efficiency and safety of stem cell therapy should be carefully evaluated in animal models and patients with pathological pain.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666221226145828
2024-01-01
2025-01-07
Loading full text...

Full text loading...

References

  1. MachelskaH. Dual peripheral actions of immune cells in neuropathic pain.Arch. Immunol. Ther. Exp.2011591112410.1007/s00005‑010‑0106‑x21234811
    [Google Scholar]
  2. WatkinsL.R. MaierS.F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states.Physiol. Rev.2002824981101110.1152/physrev.00011.200212270950
    [Google Scholar]
  3. MarchandF. PerrettiM. McMahonS.B. Role of the Immune system in chronic pain.Nat. Rev. Neurosci.20056752153210.1038/nrn170015995723
    [Google Scholar]
  4. MoalemG. TraceyD.J. Immune and inflammatory mechanisms in neuropathic pain.Brain Res. Brain Res. Rev.200651224026410.1016/j.brainresrev.2005.11.00416388853
    [Google Scholar]
  5. ThackerM.A. ClarkA.K. MarchandF. McMahonS.B. Pathophysiology of peripheral neuropathic pain: Immune cells and molecules.Anesth. Analg.2007105383884710.1213/01.ane.0000275190.42912.3717717248
    [Google Scholar]
  6. SchäfersM. SorkinL. Effect of cytokines on neuronal excitability.Neurosci. Lett.2008437318819310.1016/j.neulet.2008.03.05218420346
    [Google Scholar]
  7. Busch-DienstfertigM. SteinC. Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain – Basic and therapeutic aspects.Brain Behav. Immun.201024568369410.1016/j.bbi.2009.10.01319879349
    [Google Scholar]
  8. AustinP.J. Moalem-TaylorG. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines.J. Neuroimmunol.20102291-2265010.1016/j.jneuroim.2010.08.01320870295
    [Google Scholar]
  9. LiuZ. FanH. JiangS. CD4+ T-cell subsets in transplantation.Immunol. Rev.2013252118319110.1111/imr.1203823405905
    [Google Scholar]
  10. RaphaelI. NalawadeS. EagarT.N. ForsthuberT.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases.Cytokine201574151710.1016/j.cyto.2014.09.01125458968
    [Google Scholar]
  11. HiraharaK. NakayamaT. CD4+ T-cell subsets in inflammatory diseases: Beyond the T h 1/T h 2 paradigm.Int. Immunol.201628416317110.1093/intimm/dxw00626874355
    [Google Scholar]
  12. KiddP. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease.Altern. Med. Rev.20038322324612946237
    [Google Scholar]
  13. MartinoM. RocchiG. EscelsiorA. FornaroM. Immunomodulation mechanism of antidepressants: interactions between serotonin/norepinephrine balance and th1/th2 balance.Curr. Neuropharmacol.20121029712310.2174/15701591280060454223204981
    [Google Scholar]
  14. HickieI. LloydA. Are cytokines associated with neuropsychiatric syndromes in humans?Int. J. Immunopharmacol.199517867768310.1016/0192‑0561(95)00054‑68847162
    [Google Scholar]
  15. MosmannT.R. CherwinskiH. BondM.W. GiedlinM.A. CoffmanR.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.J. Immunol.19861367234823572419430
    [Google Scholar]
  16. PalmerM.T. WeaverC.T. Autoimmunity: Increasing suspects in the CD4+ T cell lineup.Nat. Immunol.2010111364010.1038/ni.180220016508
    [Google Scholar]
  17. LondonC.A. AbbasA.K. KelsoA. Helper t cell subsets: Heterogeneity, functions and development.Vet. Immunol. Immunopathol.1998631-2374410.1016/S0165‑2427(98)00080‑49656439
    [Google Scholar]
  18. MoalemG. XuK. YuL. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats.Neuroscience2004129376777710.1016/j.neuroscience.2004.08.03515541898
    [Google Scholar]
  19. ÜçeylerN. SchäfersM. SommerC. Mode of action of cytokines on nociceptive neurons.Exp. Brain Res.20091961677810.1007/s00221‑009‑1755‑z19290516
    [Google Scholar]
  20. MalcangioM. ClarkA.K. OldE.A. Neuropathic pain and cytokines: Current perspectives.J. Pain Res.2013680381410.2147/JPR.S5366024294006
    [Google Scholar]
  21. SommerC. LindenlaubT. TeutebergP. SchäfersM. HartungT. ToykaK.V. Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy.Brain Res.20019131868910.1016/S0006‑8993(01)02743‑311532251
    [Google Scholar]
  22. CunhaF.Q. PooleS. LorenzettiB.B. FerreiraS.H. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia.Br. J. Pharmacol.1992107366066410.1111/j.1476‑5381.1992.tb14503.x1472964
    [Google Scholar]
  23. WagnerR. MyersR.R. Endoneurial injection of TNF-α produces neuropathic pain behaviors.Neuroreport19967182897290210.1097/00001756‑199611250‑000189116205
    [Google Scholar]
  24. SorkinL.S. XiaoW.H. WagnerR. MyersR.R. Tumour necrosis factor-α induces ectopic activity in nociceptive primary afferent fibres.Neuroscience199781125526210.1016/S0306‑4522(97)00147‑49300418
    [Google Scholar]
  25. SchäfersM. LeeD.H. BrorsD. YakshT.L. SorkinL.S. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation.J. Neurosci.20032373028303810.1523/JNEUROSCI.23‑07‑03028.200312684490
    [Google Scholar]
  26. ZelenkaM. SchäfersM. SommerC. Intraneural injection of interleukin-1β and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain.Pain2005116325726310.1016/j.pain.2005.04.01815964142
    [Google Scholar]
  27. SchäfersM. SorkinL.S. SommerC. Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats.Pain2003104357958810.1016/S0304‑3959(03)00115‑512927630
    [Google Scholar]
  28. RibeiroR.A. ValeM.L. ThomazziS.M. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice.Eur. J. Pharmacol.2000387111111810.1016/S0014‑2999(99)00790‑610633169
    [Google Scholar]
  29. RibeiroR.A. ValeM.L. FerreiraS.H. CunhaF.Q. Analgesic effect of thalidomide on inflammatory pain.Eur. J. Pharmacol.20003911-29710310.1016/S0014‑2999(99)00918‑810720640
    [Google Scholar]
  30. Granados-SotoV. Alonso-LópezR. Asomoza-EspinosaR. RufinoM.O. Gomes-LopesL.D. FerreiraS.H. Participation of COX, IL-1 beta and TNF alpha in formalin-induced inflammatory pain.Proc. West. Pharmacol. Soc.200144151711793965
    [Google Scholar]
  31. SchäfersM. BrinkhoffJ. NeukirchenS. MarziniakM. SommerC. Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-alpha and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice.Neurosci. Lett.20013102-311311610.1016/S0304‑3940(01)02077‑811585580
    [Google Scholar]
  32. ChichorroJ.G. LorenzettiB.B. ZampronioA.R. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats.Br. J. Pharmacol.200414171175118410.1038/sj.bjp.070572415006904
    [Google Scholar]
  33. DogrulA. GulH. YesilyurtO. UlasU.H. YildizO. Systemic and spinal administration of etanercept, a tumor necrosis factor alpha inhibitor, blocks tactile allodynia in diabetic mice.Acta Diabetol.201148213514210.1007/s00592‑010‑0237‑x21104419
    [Google Scholar]
  34. MarchandF. TsantoulasC. SinghD. Effects of etanercept and minocycline in a rat model of spinal cord injury.Eur. J. Pain200913767368110.1016/j.ejpain.2008.08.00118849175
    [Google Scholar]
  35. DeLeoJ.A. RutkowskiM.D. StalderA.K. CampbellI.L. Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model.Neuroreport200011359960210.1097/00001756‑200002280‑0003310718321
    [Google Scholar]
  36. QuesadaJ.R. TalpazM. RiosA. KurzrockR. GuttermanJ.U. Clinical toxicity of interferons in cancer patients: A review.J. Clin. Oncol.19864223424310.1200/JCO.1986.4.2.2342418169
    [Google Scholar]
  37. TsudaM. MasudaT. KitanoJ. ShimoyamaH. Tozaki-SaitohH. InoueK. IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain.Proc. Natl. Acad. Sci. USA2009106198032803710.1073/pnas.081042010619380717
    [Google Scholar]
  38. RobertsonB. XuX.J. HaoJ.X. Interferon-γ receptors in nociceptive pathways.Neuroreport1997851311131610.1097/00001756‑199703240‑000509175135
    [Google Scholar]
  39. CostiganM. MossA. LatremoliereA. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity.J. Neurosci.20092946144151442210.1523/JNEUROSCI.4569‑09.200919923276
    [Google Scholar]
  40. FerreiraS.H. LorenzettiB.B. BristowA.F. PooleS. Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue.Nature1988334618469870010.1038/334698a03137474
    [Google Scholar]
  41. RenK. TorresR. Role of interleukin-1β during pain and inflammation.Brain Res. Brain Res. Rev.2009601576410.1016/j.brainresrev.2008.12.02019166877
    [Google Scholar]
  42. FukuokaH. KawataniM. HisamitsuT. TakeshigeC. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat.Brain Res.19946571-213314010.1016/0006‑8993(94)90960‑17820610
    [Google Scholar]
  43. Safieh-GarabedianB. PooleS. AllchorneA. WinterJ. WoolfC.J. Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia.Br. J. Pharmacol.199511571265127510.1111/j.1476‑5381.1995.tb15035.x7582555
    [Google Scholar]
  44. ReeveA.J. PatelS. FoxA. WalkerK. UrbanL. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat.Eur. J. Pain20004324725710.1053/eujp.2000.017710985868
    [Google Scholar]
  45. SungC.S. WenZ.H. ChangW.K. Intrathecal interleukin-1β administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord.Brain Res.200410151-214515310.1016/j.brainres.2004.04.06815223378
    [Google Scholar]
  46. OkaT. AouS. HoriT. Intracerebroventricular injection of interleukin-1β induces hyperalgesia in rats.Brain Res.19936241-2616810.1016/0006‑8993(93)90060‑Z8252417
    [Google Scholar]
  47. KawasakiY. ZhangL. ChengJ.K. JiR.R. Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord.J. Neurosci.200828205189519410.1523/JNEUROSCI.3338‑07.200818480275
    [Google Scholar]
  48. CunhaJ.M. CunhaF.Q. PooleS. FerreiraS.H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist.Br. J. Pharmacol.200013061418142410.1038/sj.bjp.070343410903985
    [Google Scholar]
  49. SweitzerS. MartinD. DeLeoJ.A. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain.Neuroscience2001103252953910.1016/S0306‑4522(00)00574‑111246166
    [Google Scholar]
  50. GuoW. WangH. WatanabeM. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain.J. Neurosci.200727226006601810.1523/JNEUROSCI.0176‑07.200717537972
    [Google Scholar]
  51. WolfG. GabayE. TalM. YirmiyaR. ShavitY. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice.Pain2006120331532410.1016/j.pain.2005.11.01116426759
    [Google Scholar]
  52. Członkowski A, Stein C, Herz A. Peripheral mechanisms of opioid antinociception in inflammation: Involvement of cytokines.Eur. J. Pharmacol.1993242322923510.1016/0014‑2999(93)90246‑E8281987
    [Google Scholar]
  53. DeLEO JAColburn RW, Nichols M, Malhotra A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model.J. Interferon Cytokine Res.199616969570010.1089/jir.1996.16.6958887053
    [Google Scholar]
  54. LeeK.M. JeonS.M. ChoH.J. Interleukin-6 induces microglial CX3CR1 expression in the spinal cord after peripheral nerve injury through the activation of p38 MAPK.Eur. J. Pain2010147682.e1682.e1210.1016/j.ejpain.2009.10.01719959384
    [Google Scholar]
  55. DominguezE. RivatC. PommierB. MauborgneA. PohlM. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat.J. Neurochem.20081071506010.1111/j.1471‑4159.2008.05566.x18636982
    [Google Scholar]
  56. Schoeniger-SkinnerD.K. LedeboerA. FrankM.G. Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120.Brain Behav. Immun.200721566066710.1016/j.bbi.2006.10.01017204394
    [Google Scholar]
  57. RamerM.S. MurphyP.G. RichardsonP.M. BisbyM.A. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice.Pain199878211512110.1016/S0304‑3959(98)00121‑39839821
    [Google Scholar]
  58. MurphyP.G. RamerM.S. BorthwickL. GauldieJ. RichardsonP.M. BisbyM.A. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice.Eur. J. Neurosci.19991172243225310.1046/j.1460‑9568.1999.00641.x10383613
    [Google Scholar]
  59. CunhaF.Q. PooleS. LorenzettiB.B. VeigaF.H. FerreiraS.H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4.Br. J. Pharmacol.19991261455010.1038/sj.bjp.070226610051119
    [Google Scholar]
  60. ValeM.L. MarquesJ.B. MoreiraC.A. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats.J. Pharmacol. Exp. Ther.2003304110210810.1124/jpet.102.03870312490580
    [Google Scholar]
  61. HaoS MataM GloriosoJC FinkDJ HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain.Mol Pain20061744-8069-2610.1186/1744‑8069‑2‑616503976
    [Google Scholar]
  62. ÜçeylerN. Topuzoğlu T, Schießer P, Hahnenkamp S, Sommer C. IL-4 deficiency is associated with mechanical hypersensitivity in mice.PLoS One2011612e2820510.1371/journal.pone.002820522164245
    [Google Scholar]
  63. LeesJ.G. DuffyS.S. PereraC.J. Moalem-TaylorG. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury.Cytokine201571220721410.1016/j.cyto.2014.10.02825461400
    [Google Scholar]
  64. MaF. ZhangL. OzH.S. MashniM. WestlundK.N. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity.Neuroscience201530049350710.1016/j.neuroscience.2015.05.04626033565
    [Google Scholar]
  65. PeriniF. D’AndreaG. GalloniE. Plasma cytokine levels in migraineurs and controls.Headache200545792693110.1111/j.1526‑4610.2005.05135.x15985111
    [Google Scholar]
  66. WagnerR. JanjigianM. MyersR.R. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-α expression.Pain1998741354210.1016/S0304‑3959(97)00148‑69514558
    [Google Scholar]
  67. MilliganE.D. SloaneE.M. LangerS.J. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain.Pain2006126129430810.1016/j.pain.2006.07.00916949747
    [Google Scholar]
  68. LedeboerA. JekichB.M. SloaneE.M. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats.Brain Behav. Immun.200721568669810.1016/j.bbi.2006.10.01217174526
    [Google Scholar]
  69. BorghiS.M. PinhoR.F.A. ZarpelonA.C. Interleukin-10 limits intense acute swimming-induced muscle mechanical hyperalgesia in mice.Exp. Physiol.2015100553154410.1113/EP08502625711612
    [Google Scholar]
  70. LindenlaubT. SommerC. Cytokines in sural nerve biopsies from inflammatory and non-inflammatory neuropathies.Acta Neuropathol.2003105659360210.1007/s00401‑003‑0689‑y12734666
    [Google Scholar]
  71. VerriW.A.Jr CunhaT.M. ParadaC.A. PooleS. CunhaF.Q. FerreiraS.H. Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development?Pharmacol. Ther.2006112111613810.1016/j.pharmthera.2006.04.00116730375
    [Google Scholar]
  72. SaadéN.E. NasrI.W. MassaadC.A. Safieh-GarabedianB. JabburS.J. KanaanS.A. Modulation of ultraviolet-induced hyperalgesia and cytokine upregulation by interleukins 10 and 13.Br. J. Pharmacol.200013171317132410.1038/sj.bjp.070369911090103
    [Google Scholar]
  73. KaramM.C. Al-KoubaJ.E. BazziS.I. SmithC.B. LeungL. Interleukin-13 reduces hyperalgesia and the level of interleukin-1β in BALB/c mice infected with Leishmania major with an up-regulation of interleukin-6.J. Neuroimmunol.20112341-2495410.1016/j.jneuroim.2011.02.00321402416
    [Google Scholar]
  74. KaramM.C. MerckbawiR. El-KoubaJ.E. BazziS.I. Bodman-SmithK.B. In leishmania major-induced inflammation, interleukin-13 reduces hyperalgesia, down-regulates IL-1β and up-regulates IL-6 in an IL-4 independent mechanism1This project was mainly funded by the Balamand Research Grant.1.Exp. Parasitol.2013134220020510.1016/j.exppara.2013.02.00523499883
    [Google Scholar]
  75. WangK. WuH. WangG. LiM. ZhangZ. GuG. The effects of electroacupuncture on TH1/TH2 cytokine mRNA expression and mitogen-activated protein kinase signaling pathways in the splenic T cells of traumatized rats.Anesth. Analg.200910951666167310.1213/ANE.0b013e3181b5a23419843806
    [Google Scholar]
  76. DuL. LongY. KimJ.J. ChenB. ZhuY. DaiN. Protease activated receptor-2 induces immune activation and visceral hypersensitivity in post-infectious irritable bowel syndrome mice.Dig. Dis. Sci.201964372973910.1007/s10620‑018‑5367‑y30446929
    [Google Scholar]
  77. LiuZ. SunJ. LiangT. HuangX. Increased expression of cyclooxygenase 2 in synovium tissues and synovial fluid from patients with knee osteoarthritis is associated with downregulated microRNA 758 3p expression.Exp. Ther. Med.2021223100110.3892/etm.2021.1043334345283
    [Google Scholar]
  78. BriniA.T. AmodeoG. FerreiraL.M. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain.Sci. Rep.201771990410.1038/s41598‑017‑09487‑528851944
    [Google Scholar]
  79. MotrichR.D. BreserM.L. SánchezL.R. GodoyG.J. PrinzI. RiveroV.E. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome.Pain2016157358559710.1097/j.pain.000000000000040526882345
    [Google Scholar]
  80. NoorS. SanchezJ.J. SunM.S. The LFA-1 antagonist BIRT377 reverses neuropathic pain in prenatal alcohol-exposed female rats via actions on peripheral and central neuroimmune function in discrete pain-relevant tissue regions.Brain Behav. Immun.20208733935810.1016/j.bbi.2020.01.00231918004
    [Google Scholar]
  81. LiuJ. LiuS. PanW. LiY. Wogonoside attenuates the articular cartilage injury and the infiltration of Th1/Th2-type cytokines in papain-induced osteoarthritis in rat model via inhibiting the NF-κB and ERK1/2 activation.Immunopharmacol. Immunotoxicol.202143334335210.1080/08923973.2021.191350333881378
    [Google Scholar]
  82. JungH. SonG.M. LeeJ.J. ParkH.S. Therapeutic effects of tonsil-derived mesenchymal stem cells in an atopic dermatitis mouse model.In Vivo202135284585710.21873/invivo.1232533622877
    [Google Scholar]
  83. CañeteJ.D. MartínezS.E. FarrésJ. Differential Th1/Th2 cytokine patterns in chronic arthritis: Interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies.Ann. Rheum. Dis.200059426326810.1136/ard.59.4.26310733472
    [Google Scholar]
  84. MostafazadehA. SaraviM. NiakiH.A. HLA-DRBeta1, circulating Th1/Th2 cytokines and immunological homunculus in coronary atherosclerosis.Iran. J. Allergy Asthma Immunol.2011101111910.01/ijaai.111921358010
    [Google Scholar]
  85. LarussaT. SuraciE. LeoneI. Short-term therapy with celecoxib and lansoprazole modulates Th1/ Th2 immune response in human gastric mucosa.Helicobacter201015544945910.1111/j.1523‑5378.2010.00796.x21083751
    [Google Scholar]
  86. Teixeira-SalumT.B. RodriguesD.B.R. GervásioA.M. SouzaC.J.A. RodriguesV.Jr LoyolaA.M. Distinct Th1, Th2 and treg cytokines balance in chronic periapical granulomas and radicular cysts.J. Oral Pathol. Med.201039325025610.1111/j.1600‑0714.2009.00863.x20102461
    [Google Scholar]
  87. MaW. WangK. DuJ. LuanJ. LouG. Multi-dose parecoxib provides an immunoprotective effect by balancing T helper 1 (Th1), Th2, Th17 and regulatory T cytokines following laparoscopy in patients with cervical cancer.Mol. Med. Rep.20151142999300810.3892/mmr.2014.300325434365
    [Google Scholar]
  88. KaufmannI. EisnerC. RichterP. Lymphocyte subsets and the role of TH1/TH2 balance in stressed chronic pain patients.Neuroimmunomodulation200714527228010.1159/00011504118239379
    [Google Scholar]
  89. KochA. ZacharowskiK. BoehmO. Nitric oxide and pro-inflammatory cytokines correlate with pain intensity in chronic pain patients.Inflamm. Res.2007561323710.1007/s00011‑007‑6088‑417334668
    [Google Scholar]
  90. WesseldijkF. HuygenF.J. Heijmans-AntonissenC. NiehofS.P. ZijlstraF.J. Tumor necrosis factor-α and interleukin-6 are not correlated with the characteristics of Complex Regional Pain Syndrome type 1 in 66 patients.Eur. J. Pain200812671672110.1016/j.ejpain.2007.10.01018055234
    [Google Scholar]
  91. UçeylerN. RogauschJ.P. ToykaK.V. SommerC. Differential expression of cytokines in painful and painless neuropathies.Neurology2007691424910.1212/01.wnl.0000265062.92340.a517606879
    [Google Scholar]
  92. AlexanderG.M. PeterlinB.L. PerreaultM.J. GrothusenJ.R. SchwartzmanR.J. Changes in plasma cytokines and their soluble receptors in complex regional pain syndrome.J. Pain2012131102010.1016/j.jpain.2011.10.00322172450
    [Google Scholar]
  93. RitzB.W. AlexanderG.M. NogusaS. Elevated blood levels of inflammatory monocytes (CD14+CD16+) in patients with complex regional pain syndrome.Clin. Exp. Immunol.2011164110811710.1111/j.1365‑2249.2010.04308.x21303362
    [Google Scholar]
  94. Heijmans-AntonissenC. WesseldijkF. MunnikesR.J.M. Multiplex bead array assay for detection of 25 soluble cytokines in blister fluid of patients with complex regional pain syndrome type 1.Mediators Inflamm.2006200611810.1155/MI/2006/2839816864900
    [Google Scholar]
  95. RussoM.A. FioreN.T. van VredenC. Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome.J. Neuroinflammation20191616310.1186/s12974‑019‑1449‑930885223
    [Google Scholar]
  96. ÜçeylerN. RiedigerN. KafkeW. SommerC. Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies.J. Neurol.2015262120321210.1007/s00415‑014‑7556‑825371017
    [Google Scholar]
  97. Le MaitreC. HoylandJ. FreemontA.J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile.Arthritis Res. Ther.200794R7710.1186/ar227517688691
    [Google Scholar]
  98. KraycheteD.C. SakataR.K. IssyA.M. BacellarO. Santos-JesusR. CarvalhoE.M. Serum cytokine levels in patients with chronic low back pain due to herniated disc: Analytical cross-sectional study.Sao Paulo Med. J.2010128525926210.1590/S1516‑3180201000050000321181064
    [Google Scholar]
  99. LuchtingB. Rachinger-AdamB. ZeitlerJ. Disrupted TH17/Treg balance in patients with chronic low back pain.PLoS One201498e10488310.1371/journal.pone.010488325122126
    [Google Scholar]
  100. LuchtingB. Rachinger-AdamB. HeynJ. HinskeL. KrethS. AzadS. Anti-inflammatory T-cell shift in neuropathic pain.J. Neuroinflammation20151211210.1186/s12974‑014‑0225‑025608762
    [Google Scholar]
  101. RosineN. EtchetoA. Hendel-ChavezH. Increase in il-31 serum levels is associated with reduced structural damage in early axial spondyloarthritis.Sci. Rep.201881773110.1038/s41598‑018‑25722‑z29769586
    [Google Scholar]
  102. MenziesV. LyonD.E. Integrated review of the association of cytokines with fibromyalgia and fibromyalgia core symptoms.Biol. Res. Nurs.201011438739410.1177/109980040934832819933683
    [Google Scholar]
  103. Rodriguez-PintóI. Agmon-LevinN. HowardA. ShoenfeldY. Fibromyalgia and cytokines.Immunol. Lett.2014161220020310.1016/j.imlet.2014.01.00924462815
    [Google Scholar]
  104. ÜçeylerN. KewenigS. KafkeW. Kittel-SchneiderS. SommerC. Skin cytokine expression in patients with fibromyalgia syndrome is not different from controls.BMC Neurol.201414118510.1186/s12883‑014‑0185‑025240423
    [Google Scholar]
  105. WangH. MoserM. SchiltenwolfM. BuchnerM. Circulating cytokine levels compared to pain in patients with fibromyalgia -- a prospective longitudinal study over 6 months.J. Rheumatol.20083571366137018528959
    [Google Scholar]
  106. AlfieriF.M. SantosV.B.L. SoaresA.R. Concentration of cytokines in patients with osteoarthritis of the knee and fibromyalgia.Clin. Interv. Aging2014993994410.2147/CIA.S6033024959074
    [Google Scholar]
  107. WallaceD.J. Linker-IsraeliM. HalleguaD. SilvermanS. SilverD. WeismanM.H. Cytokines play an aetiopathogenetic role in fibromyalgia: A hypothesis and pilot study.Rheumatology200140774374910.1093/rheumatology/40.7.74311477278
    [Google Scholar]
  108. Andrés-RodríguezL. BorràsX. Feliu-SolerA. Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression.Brain Behav. Immun.20208788188910.1016/j.bbi.2019.12.02031887417
    [Google Scholar]
  109. ÜçeylerN. ValenzaR. StockM. SchedelR. SprotteG. SommerC. Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain.Arthritis Rheum.20065482656266410.1002/art.2202616871547
    [Google Scholar]
  110. SturgillJ. McGeeE. MenziesV. Unique cytokine signature in the plasma of patients with fibromyalgia.J. Immunol. Res.201420141510.1155/2014/93857624741634
    [Google Scholar]
  111. ChangD.H. WuP.S. WangY.C. Clinicopathology of immunoglobulin G4–related chronic sclerosing sialadenitis.Otolaryngol. Head Neck Surg.2016155697498110.1177/019459981666560327576683
    [Google Scholar]
  112. TakenakaK. TakadaK. KobayashiD. MoriguchiM. HarigaiM. MiyasakaN. A case of IgG4-related disease with features of Mikulicz’s disease, and retroperitoneal fibrosis and lymphadenopathy mimicking Castleman’s disease.Mod. Rheumatol.201121441041410.3109/s10165‑010‑0410‑721243399
    [Google Scholar]
  113. PeruginoC.A. StoneJ.H. IgG4-related disease: An update on pathophysiology and implications for clinical care.Nat. Rev. Rheumatol.2020161270271410.1038/s41584‑020‑0500‑732939060
    [Google Scholar]
  114. ZenY. FujiiT. HaradaK. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis.Hepatology20074561538154610.1002/hep.2169717518371
    [Google Scholar]
  115. KanariH. KagamiS. KashiwakumaD. Role of Th2 cells in IgG4-related lacrimal gland enlargement.Int. Arch. Allergy Immunol.2010152Suppl. 1475310.1159/00031212520523063
    [Google Scholar]
  116. TanakaA. MoriyamaM. NakashimaH. Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of mikulicz disease.Arthritis Rheum.201264125426310.1002/art.3332021898360
    [Google Scholar]
  117. NakashimaH. MiyakeK. MoriyamaM. An amplification of IL-10 and TGF-beta in patients with IgG4-related tubulointerstitial nephritis.Clin. Nephrol.201073538539110.5414/CNP7338520420800
    [Google Scholar]
  118. TsuboiH. MatsuoN. IizukaM. Analysis of IgG4 class switch-related molecules in IgG4-related disease.Arthritis Res. Ther.2012144R17110.1186/ar392422824292
    [Google Scholar]
  119. MüllerT. BeutlerC. PicóA.H. Increased T-helper 2 cytokines in bile from patients with IgG4-related cholangitis disrupt the tight junction-associated biliary epithelial cell barrier.Gastroenterology201314451116112810.1053/j.gastro.2013.01.05523391819
    [Google Scholar]
  120. TakeuchiM. SatoY. OhnoK. T helper 2 and regulatory T-cell cytokine production by mast cells: A key factor in the pathogenesis of IgG4-related disease.Mod. Pathol.20142781126113610.1038/modpathol.2013.23624390219
    [Google Scholar]
  121. MoriyamaM. TanakaA. MaeharaT. FurukawaS. NakashimaH. NakamuraS. T helper subsets in sjögren’s syndrome and IgG4-related dacryoadenitis and sialoadenitis: A critical review.J. Autoimmun.201451818810.1016/j.jaut.2013.07.00723920005
    [Google Scholar]
  122. YamamotoM. TakahashiH. ShinomuraY. Mechanisms and assessment of IgG4-related disease: Lessons for the rheumatologist.Nat. Rev. Rheumatol.201410314815910.1038/nrrheum.2013.18324296677
    [Google Scholar]
  123. ÜçeylerN. EberleT. RolkeR. BirkleinF. SommerC. Differential expression patterns of cytokines in complex regional pain syndrome.Pain2007132119520510.1016/j.pain.2007.07.03117890011
    [Google Scholar]
  124. UçeylerN. KafkeW. RiedigerN. Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy.Neurology201074221806181310.1212/WNL.0b013e3181e0f7b320513817
    [Google Scholar]
  125. KasashimaS. KawashimaA. KasashimaF. EndoM. MatsumotoY. KawakamiK. Inflammatory features, including symptoms, increased serum interleukin-6, and C-reactive protein, in IgG4-related vascular diseases.Heart Vessels201833121471148110.1007/s00380‑018‑1203‑829931542
    [Google Scholar]
  126. EisenbergE. SandlerI. TreisterR. SuzanE. HaddadM. Anti tumor necrosis factor - alpha adalimumab for complex regional pain syndrome type 1 (CRPS-I): A case series.Pain Pract.201313864965610.1111/papr.1207023668697
    [Google Scholar]
  127. LuD. SongH. ShiG. Anti-TNF-α treatment for pelvic pain associated with endometriosis.Cochrane Libr.20133CD00808810.1002/14651858.CD008088.pub323543560
    [Google Scholar]
  128. KoninckxP.R. CraessaertsM. TimmermanD. CornillieF. KennedyS. Anti-TNF- treatment for deep endometriosis-associated pain: A randomized placebo-controlled trial.Hum. Reprod.20082392017202310.1093/humrep/den17718556683
    [Google Scholar]
  129. PimentelD.C. El AbdO. BenyaminR.M. Anti-tumor necrosis factor antagonists in the treatment of low back pain and radiculopathy: A systematic review and meta-analysis.Pain Physician2014171E27E4424452656
    [Google Scholar]
  130. FromontA. De SezeJ. FleuryM.C. MaillefertJ.F. MoreauT. Inflammatory demyelinating events following treatment with anti-tumor necrosis factor.Cytokine2009452555710.1016/j.cyto.2008.11.00219109035
    [Google Scholar]
  131. NukiG. BresnihanB. BearM.B. McCabeD. Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: Extension phase of a randomized, double-blind, placebo-controlled trial.Arthritis Rheum.200246112838284610.1002/art.1057812428223
    [Google Scholar]
  132. Rubbert-RothA. Assessing the safety of biologic agents in patients with rheumatoid arthritis.Rheumatology201251Suppl. 5v38v4710.1093/rheumatology/kes11422718926
    [Google Scholar]
  133. MaxwellL.J. ZochlingJ. BoonenA. TNF-alpha inhibitors for ankylosing spondylitis.Cochrane Libr.20154CD00546810.1002/14651858.CD005468.pub225887212
    [Google Scholar]
  134. DinarelloC.A. SimonA. van der MeerJ.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.Nat. Rev. Drug Discov.201211863365210.1038/nrd380022850787
    [Google Scholar]
  135. AltenR. GramH. JoostenL.A. The human anti-IL-1β monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis.Arthritis Res. Ther.2008103R6710.1186/ar243818534016
    [Google Scholar]
  136. ChevalierX. GoupilleP. BeaulieuA.D. Intraarticular injection of anakinra in osteoarthritis of the knee: A multicenter, randomized, double-blind, placebo-controlled study.Arthritis Rheum.200961334435210.1002/art.2409619248129
    [Google Scholar]
  137. CohenS.B. ProudmanS. KivitzA.J. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee.Arthritis Res. Ther.2011134R12510.1186/ar343021801403
    [Google Scholar]
  138. ArakiM. Blockade of IL-6 signaling in neuromyelitis optica.Neurochem. Int.201913010431510.1016/j.neuint.2018.10.01230342072
    [Google Scholar]
  139. LotanI. McGowanR. LevyM. Anti-IL-6 therapies for neuromyelitis optica spectrum disorders: A systematic review of safety and efficacy.Curr. Neuropharmacol.202019222023210.2174/1570159X1866620042901082532348222
    [Google Scholar]
  140. OhtoriS. MiyagiM. EguchiY. Efficacy of epidural administration of anti-interleukin-6 receptor antibody onto spinal nerve for treatment of sciatica.Eur. Spine J.201221102079208410.1007/s00586‑012‑2183‑522350007
    [Google Scholar]
  141. RaimondoM.G. BiggioggeroM. CrottiC. BeccioliniA. FavalliE.G. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis.Drug Des. Devel. Ther.2017111593160310.2147/DDDT.S10030228579757
    [Google Scholar]
  142. BoyceE.G. RoganE.L. VyasD. PrasadN. MaiY. Sarilumab: Review of a second il-6 receptor antagonist indicated for the treatment of rheumatoid arthritis.Ann. Pharmacother.201852878079110.1177/106002801876159929482351
    [Google Scholar]
  143. AtzeniF. NuceraV. MasalaI.F. Sarzi-PuttiniP. BonittaG. Il-6 involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of il-6 inhibitor sarilumab.Pharmacol. Res.201914910440210.1016/j.phrs.2019.10440231536783
    [Google Scholar]
  144. BaeS.C. LeeY.H. Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: A bayesian network meta-analysis of randomized controlled trials.Clin. Rheumatol.20183761471147910.1007/s10067‑018‑4006‑529404725
    [Google Scholar]
  145. PaddaJ. KhalidK. ZubairU. Stem cell therapy and its significance in pain management.Cureus2021138e1725810.7759/cureus.1725834540482
    [Google Scholar]
  146. ChenL HuangH SharmaHS ZuoH SanbergPR Cell transplantation as a pain therapy targets both analgesia and neural repair. Cell Transplant2013221_suppl Suppl. 111-910.3727/096368913X67209123992823
    [Google Scholar]
  147. RenJ. LiuN. SunN. ZhangK. YuL. Mesenchymal stem cells and their exosomes: Promising therapeutics for chronic pain.Curr. Stem Cell Res. Ther.201914864465310.2174/1574888X1466619091216250431512998
    [Google Scholar]
  148. WangQ. HeH. XieS. WeiQ. HeC. Mesenchymal stem cells transplantation for neuropathic pain induced by peripheral nerve injury in animal models: A systematic review.Stem Cells Dev.202029221420142810.1089/scd.2020.013132962522
    [Google Scholar]
  149. JoshiH.P. JoH.J. KimY.H. AnS.B. ParkC.K. HanI. Stem cell therapy for modulating neuroinflammation in neuropathic pain.Int. J. Mol. Sci.2021229485310.3390/ijms2209485334063721
    [Google Scholar]
  150. BrykM. KarnasE. MlostJ. Zuba-SurmaE. StarowiczK. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives.Br. J. Pharmacol.2022179174281429910.1111/bph.1556934028798
    [Google Scholar]
  151. VonkL.A. van DooremalenS.F.J. LivN. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro.Theranostics20188490692010.7150/thno.2074629463990
    [Google Scholar]
  152. ChenC. ChenF. YaoC. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats.Neurochem. Res.201641123250326010.1007/s11064‑016‑2051‑527655256
    [Google Scholar]
  153. ShiueS.J. RauR.H. ShiueH.S. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury–induced pain in rats.Pain2019160121022310.1097/j.pain.000000000000139530188455
    [Google Scholar]
  154. MirandaJ.P. CamõesS.P. GasparM.M. The secretome derived from 3d-cultured umbilical cord tissue mscs counteracts manifestations typifying rheumatoid arthritis.Front. Immunol.2019101810.3389/fimmu.2019.0001830804924
    [Google Scholar]
  155. HsuJ.M. ShiueS.J. YangK.D. Locally applied stem cell exosome-scaffold attenuates nerve injury-induced pain in rats.J. Pain Res.2020133257326810.2147/JPR.S28677133304105
    [Google Scholar]
  156. WuL. PanX. ChenH. FuX. JiangJ. DingM. Repairing and analgesic effects of umbilical cord mesenchymal stem cell transplantation in mice with spinal cord injury.BioMed Res. Int.2020202011010.1155/2020/765035432337276
    [Google Scholar]
  157. SongL. SunZ. KimD. Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function.Stem Cell Res. Ther.20178119210.1186/s13287‑017‑0627‑x28854965
    [Google Scholar]
  158. MertT. KurtA.H. Altun İ Celik A, Baran F, Gunay I. Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model.Bioelectromagnetics201738425526410.1002/bem.2203828130880
    [Google Scholar]
  159. EbbinghausM. Jenei-LanzlZ. Segond von BanchetG. A Promising new approach for the treatment of inflammatory pain: Transfer of stem cell-derived tyrosine hydroxylase-positive cells.Neuroimmunomodulation201825422523710.1159/00049534930566959
    [Google Scholar]
  160. dos SantosG.G.L. OliveiraA.L.L. SantosD.S. Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord.Life Sci.202126511875510.1016/j.lfs.2020.11875533189826
    [Google Scholar]
  161. SunY. ZhangD. LiH. LongR. SunQ. Intrathecal administration of human bone marrow mesenchymal stem cells genetically modified with human proenkephalin gene decrease nociceptive pain in neuropathic rats.Mol. Pain20171310.1177/174480691770144528326940
    [Google Scholar]
  162. ChengZ. WangL. QuM. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.J. Neuroinflammation201815113510.1186/s12974‑018‑1153‑129724240
    [Google Scholar]
  163. HuangX. WangW. LiuX. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model.Cell Tissue Res.201837419911010.1007/s00441‑018‑2855‑529858667
    [Google Scholar]
  164. Al-MassriK.F. AhmedL.A. El-AbharH.S. Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway.Behav. Brain Res.201936030331110.1016/j.bbr.2018.12.01330543902
    [Google Scholar]
  165. ZhuL. ShiY. LiuL. WangH. ShenP. YangH. Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: Therapeutic potential for intervertebral disc degenerative diseases.Cell Cycle202019141727173910.1080/15384101.2020.176930132635856
    [Google Scholar]
  166. LiJ. DengG. WangH. Interleukin-1β pre-treated bone marrow stromal cells alleviate neuropathic pain through CCL7-mediated inhibition of microglial activation in the spinal cord.Sci. Rep.2017714226010.1038/srep4226028195183
    [Google Scholar]
  167. ZhuC. WangK. ChenZ. Antinociceptive effect of intrathecal injection of miR-9-5p modified mouse bone marrow mesenchymal stem cells on a mouse model of bone cancer pain.J. Neuroinflammation20201718510.1186/s12974‑020‑01765‑w32178691
    [Google Scholar]
  168. AllakhverdiZ. ComeauM.R. SmithD.E. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation.J. Allergy Clin. Immunol.20091232472478.e110.1016/j.jaci.2008.10.02219064280
    [Google Scholar]
  169. FuQL ChowYY SunSJ Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T‐cell phenotypes in allergic rhinitis.Allergy2012671012152210.1111/j.1398‑9995.2012.02875.x.22882409
    [Google Scholar]
  170. ItoT. WangY.H. DuramadO. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand.J. Exp. Med.200520291213122310.1084/jem.2005113516275760
    [Google Scholar]
  171. BattenP. SarathchandraP. AntoniwJ.W. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: Relevance to tissue engineering human heart valves.Tissue Eng.20061282263227310.1089/ten.2006.12.226316968166
    [Google Scholar]
  172. van BuulG.M. SiebeltM. LeijsM.J.C. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis.J. Orthop. Res.20143291167117410.1002/jor.2265024839120
    [Google Scholar]
  173. DurandC. PezetS. EutamèneH. Persistent visceral allodynia in rats exposed to colorectal irradiation is reversed by mesenchymal stromal cell treatment.Pain201515681465147610.1097/j.pain.000000000000019025887464
    [Google Scholar]
  174. WatanabeS. UchidaK. NakajimaH. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.Stem Cells20153361902191410.1002/stem.200625809552
    [Google Scholar]
  175. VickersR. KarstenE. LilischkisR. FloodJ. A preliminary report on stem cell therapy for neuropathic pain in humans.J. Pain Res.2014725526310.2147/JPR.S6336124855388
    [Google Scholar]
  176. PettineK.A. MurphyM.B. SuzukiR.K. SandT.T. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months.Stem Cells201533114615610.1002/stem.184525187512
    [Google Scholar]
  177. PezatoR. AlmeidaD.C. BezerraT.F. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.Mediators Inflamm.2014201411110.1155/2014/58340924707116
    [Google Scholar]
  178. FreitagJ. BatesD. WickhamJ. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial.Regen. Med.201914321323010.2217/rme‑2018‑016130762487
    [Google Scholar]
  179. QiY. MaJ. LiS. LiuW. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes.Stem Cell Res. Ther.201910127410.1186/s13287‑019‑1362‑231455405
    [Google Scholar]
  180. MotrichR.D. BreserM.L. MolinaR.I. TisseraA. OlmedoJ.J. RiveroV.E. Patients with chronic prostatitis/chronic pelvic pain syndrome show T helper type 1 (Th1) and Th17 self-reactive immune responses specific to prostate and seminal antigens and diminished semen quality.BJU Int.2020126337938710.1111/bju.1511732437049
    [Google Scholar]
  181. SongM. DengL. ShenH. Th1, Th2, and Th17 cells are dysregulated, but only Th17 cells relate to C‐reactive protein, D‐dimer, and mortality risk in stanford type a aortic dissection patients.J. Clin. Lab. Anal.2022366e2446910.1002/jcla.2446935522124
    [Google Scholar]
  182. PengY. YangJ. GuoD. Sufentanil postoperative analgesia reduce the increase of T helper 17 (Th17) cells and FoxP3+ regulatory T (Treg) cells in rat hepatocellular carcinoma surgical model: A randomised animal study.BMC Anesthesiol.202020121210.1186/s12871‑020‑01129‑032847505
    [Google Scholar]
  183. HombachA.A. GeumannU. GüntherC. HermannF.G. AbkenH. IL7-IL12 engineered mesenchymal stem cells (MSCs) improve a car t cell attack against colorectal cancer cells.Cells20209487310.3390/cells904087332260097
    [Google Scholar]
  184. FuY. KongY. LiJ. Mesenchymal stem cells combined with traditional Chinese medicine (qi‐fang‐bi‐min‐tang) alleviates rodent allergic rhinitis.J. Cell. Biochem.202012121541155110.1002/jcb.2938931535402
    [Google Scholar]
  185. PengX. GuoH. YuanJ. Extracellular vesicles released from hiPSC-derived MSCs attenuate chronic prostatitis/chronic pelvic pain syndrome in rats by immunoregulation.Stem Cell Res. Ther.202112119810.1186/s13287‑021‑02269‑x33743834
    [Google Scholar]
  186. JiR.R. XuZ.Z. GaoY.J. Emerging targets in neuroinflammation-driven chronic pain.Nat. Rev. Drug Discov.201413753354810.1038/nrd433424948120
    [Google Scholar]
  187. GangadharM. MishraR. SriramD. YogeeswariP. Future directions in the treatment of neuropathic pain: A review on various therapeutic targets.CNS Neurol. Disord. Drug Targets2014131638110.2174/1871527311312666019224152326
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1871527322666221226145828
Loading
/content/journals/cnsnddt/10.2174/1871527322666221226145828
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): analgesia; cytokines; Pathological pain; stem cells; Th1; Th2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test