Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

The gut microbiome interacts with the brain bidirectionally through the microbiome-gut-brain axis, which plays a key role in regulating various nervous system pathophysiological processes. Trimethylamine N-oxide (TMAO) is produced by choline metabolism through intestinal microorganisms, which can cross the blood-brain barrier to act on the central nervous system. Previous studies have shown that elevated plasma TMAO concentrations increase the risk of major adverse cardiovascular events, but there are few studies on TMAO in cerebrovascular disease and vascular cognitive impairment. This review summarized a decade of research on the impact of TMAO on stroke and related cognitive impairment, with particular attention to the effects on vascular cognitive disorders. We demonstrated that TMAO has a marked impact on the occurrence, development, and prognosis of stroke by regulating cholesterol metabolism, foam cell formation, platelet hyperresponsiveness and thrombosis, and promoting inflammation and oxidative stress. TMAO can also influence the cognitive impairment caused by Alzheimer's disease and Parkinson's disease inducing abnormal aggregation of key proteins, affecting inflammation and thrombosis. However, although clinical studies have confirmed the association between the microbiome-gut-brain axis and vascular cognitive impairment (cerebral small vessel disease and post-stroke cognitive impairment), the molecular mechanism of TMAO has not been clarified, and TMAO precursors seem to play the opposite role in the process of post-stroke cognitive impairment. In addition, several studies have also reported the possible neuroprotective effects of TMAO. Existing therapies for these diseases targeted to regulate intestinal flora and its metabolites have shown good efficacy. TMAO is probably a new target for early prediction and treatment of stroke and vascular cognitive impairment.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666230203140805
2024-01-01
2025-01-07
Loading full text...

Full text loading...

References

  1. BenakisC. Martin-GallausiauxC. TrezziJ.P. MeltonP. LieszA. WilmesP. The microbiome-gut-brain axis in acute and chronic brain diseases.Curr. Opin. Neurobiol.2020611910.1016/j.conb.2019.11.00931812830
    [Google Scholar]
  2. CryanJ.F. O’RiordanK.J. SandhuK. PetersonV. DinanT.G. The gut microbiome in neurological disorders.Lancet Neurol.202019217919410.1016/S1474‑4422(19)30356‑431753762
    [Google Scholar]
  3. SmithL.K. WisselE.F. Microbes and the mind: How bacteria shape affect, neurological processes, cognition, social relationships, development, and pathology.Perspect. Psychol. Sci.201914339741810.1177/174569161880937930920916
    [Google Scholar]
  4. GenerosoJ.S. GiridharanV.V. LeeJ. MacedoD. BarichelloT. The role of the microbiota-gut-brain axis in neuropsychiatric disorders.Br. J. Psychiatry202143329330510.1590/1516‑4446‑2020‑098732667590
    [Google Scholar]
  5. SimeonovaD. StoyanovD. LeunisJ.C. Increased serum immunoglobulin responses to gut commensal gram-negative bacteria in unipolar major depression and bipolar disorder type 1, especially when melancholia is present.Neurotox. Res.202037233834810.1007/s12640‑019‑00126‑731802379
    [Google Scholar]
  6. MaesM. SimeonovaD. StoyanovD. LeunisJ.C. Upregulation of the nitrosylome in bipolar disorder type 1 (BP1) and major depression, but not BP2: Increased IgM antibodies to nitrosylated conjugates are associated with indicants of leaky gut.Nitric Oxide201991677610.1016/j.niox.2019.07.00331323278
    [Google Scholar]
  7. StrandwitzP. Neurotransmitter modulation by the gut microbiota. Brain Research20181693Pt B1283310.1016/j.brainres.2018.03.015
    [Google Scholar]
  8. ZhuS. JiangY. XuK. The progress of gut microbiome research related to brain disorders.J. Neuroinflammation20201712510.1186/s12974‑020‑1705‑z31952509
    [Google Scholar]
  9. MörklS. ButlerM.I. HollA. CryanJ.F. DinanT.G. Probiotics and the microbiota-gut-brain axis: focus on psychiatry.Curr. Nutr. Rep.20209317118210.1007/s13668‑020‑00313‑532406013
    [Google Scholar]
  10. GongL. WangH. DongQ. Intracranial atherosclerotic stenosis is related to post-stroke cognitive impairment: a cross-sectional study of minor stroke.Curr. Alzheimer Res.202017217718410.2174/156720501766620030314192032124696
    [Google Scholar]
  11. JokinenH. MelkasS. YlikoskiR. Post-stroke cognitive impairment is common even after successful clinical recovery.Eur. J. Neurol.20152291288129410.1111/ene.1274326040251
    [Google Scholar]
  12. JaneiroM. RamírezM. MilagroF. MartínezJ. SolasM. Implication of Trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target.Nutrients20181010139810.3390/nu1010139830275434
    [Google Scholar]
  13. ChenY. ZhouJ. WangL. Role and mechanism of gut microbiota in human disease.Front. Cell. Infect. Microbiol.20211162591310.3389/fcimb.2021.62591333816335
    [Google Scholar]
  14. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑932887946
    [Google Scholar]
  15. KoszewiczM. JarochJ. BrzeckaA. Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment.Pharmacol. Res.202116410527710.1016/j.phrs.2020.10527733166735
    [Google Scholar]
  16. ZhuW. RomanoK.A. LiL. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway.Cell Host Microbe202129711991208.e510.1016/j.chom.2021.05.00234139173
    [Google Scholar]
  17. NamH.S. Gut microbiota and ischemic stroke: the role of trimethylamine N-Oxide.J. Stroke201921215115910.5853/jos.2019.0047231161760
    [Google Scholar]
  18. PlutaR. JanuszewskiS. CzuczwarS.J. The role of gut microbiota in an ischemic stroke.Int. J. Mol. Sci.202122291510.3390/ijms2202091533477609
    [Google Scholar]
  19. VelasquezM. RamezaniA. ManalA. RajD. Trimethylamine n-oxide: the good, the bad and the unknown.Toxins201681132610.3390/toxins811032627834801
    [Google Scholar]
  20. RomanoK.A. VivasE.I. Amador-NoguezD. ReyF.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.MBio201562e02481e1410.1128/mBio.02481‑1425784704
    [Google Scholar]
  21. WangZ. LevisonB.S. HazenJ.E. DonahueL. LiX.M. HazenS.L. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry.Anal. Biochem.2014455354010.1016/j.ab.2014.03.01624704102
    [Google Scholar]
  22. BoutagyN.E. NeilsonA.P. OsterbergK.L. Short-term high-fat diet increases postprandial trimethylamine- N -oxide in humans.Nutr. Res.2015351085886410.1016/j.nutres.2015.07.00226265295
    [Google Scholar]
  23. MafraD. BorgesN.A. CardozoL.F.M.F. Red meat intake in chronic kidney disease patients: Two sides of the coin.Nutrition201846263210.1016/j.nut.2017.08.01529290351
    [Google Scholar]
  24. WangZ. KlipfellE. BennettB.J. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature20114727341576310.1038/nature0992221475195
    [Google Scholar]
  25. KeY. LiD. ZhaoM. Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress.Free Radic. Biol. Med.20181168810010.1016/j.freeradbiomed.2018.01.00729325896
    [Google Scholar]
  26. NaghipourS. CoxA.J. PeartJ.N. Du ToitE.F. HeadrickJ.P. Trimethylamine N -oxide: heart of the microbiota–CVD nexus?Nutr. Res. Rev.202134112514610.1017/S095442242000017732718365
    [Google Scholar]
  27. FuQ. ZhaoM. WangD. Coronary plaque characterization assessed by optical coherence tomography and plasma trimethylamine-n-oxide levels in patients with coronary artery disease.Am. J. Cardiol.201611891311131510.1016/j.amjcard.2016.07.07127600460
    [Google Scholar]
  28. SvingenG.F.T. ZuoH. UelandP.M. Increased plasma trimethylamine- N -oxide is associated with incident atrial fibrillation.Int. J. Cardiol.201826710010610.1016/j.ijcard.2018.04.12829957250
    [Google Scholar]
  29. SuzukiT. HeaneyL.M. BhandariS.S. JonesD.J.L. NgL.L. Trimethylamine N -oxide and prognosis in acute heart failure.Heart20161021184184810.1136/heartjnl‑2015‑30882626869641
    [Google Scholar]
  30. LeeY. NemetI. WangZ. Longitudinal plasma measures of trimethylamine n-oxide and risk of atherosclerotic cardiovascular disease events in community-based older adults.J. Am. Heart Assoc.20211017e02064610.1161/JAHA.120.02064634398665
    [Google Scholar]
  31. MatsuzawaY. GuddetiR.R. KwonT.G. LermanL.O. LermanA. Treating coronary disease and the impact of endothelial dysfunction.Prog. Cardiovasc. Dis.201557543144210.1016/j.pcad.2014.10.00425459974
    [Google Scholar]
  32. TangW.H.W. WangZ. LiX.S. Increased trimethylamine n-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus.Clin. Chem.201763129730610.1373/clinchem.2016.26364027864387
    [Google Scholar]
  33. MissailidisC. HällqvistJ. QureshiA.R. Serum trimethylamine-n-oxide is strongly related to renal function and predicts outcome in chronic kidney disease.PLoS One2016111e014173810.1371/journal.pone.014173826751065
    [Google Scholar]
  34. XuK.Y. XiaG.H. LuJ.Q. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients.Sci. Rep.201771144510.1038/s41598‑017‑01387‑y28469156
    [Google Scholar]
  35. SenthongV. WangZ. FanY. WuY. HazenS.L. TangW.H.W. Trimethylamine n -oxide and mortality risk in patients with peripheral artery disease.J. Am. Heart Assoc.2016510e00423710.1161/JAHA.116.00423727792653
    [Google Scholar]
  36. KomaroffA.L. The microbiome and risk for atherosclerosis.JAMA2018319232381238210.1001/jama.2018.524029800043
    [Google Scholar]
  37. ZeiselS.H. WarrierM. Trimethylamine n -oxide, the microbiome, and heart and kidney disease.Annu. Rev. Nutr.201737115718110.1146/annurev‑nutr‑071816‑06473228715991
    [Google Scholar]
  38. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159610.1038/nm.340724309662
    [Google Scholar]
  39. BruntV.E. LaRoccaT.J. BazzoniA.E. The gut microbiome–derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging.Geroscience202143137739410.1007/s11357‑020‑00257‑232862276
    [Google Scholar]
  40. EnkoD. ZelzerS. NiedristT. Assessment of trimethylamine-N-oxide at the blood-cerebrospinal fluid barrier: Results from 290 lumbar punctures.EXCLI J.2020191275128110.17179/excli2020‑276333122976
    [Google Scholar]
  41. VillalobosA.R.A. RenfroJ.L. Trimethylamine oxide suppresses stress-induced alteration of organic anion transport in choroid plexus.J. Exp. Biol.2007210354155210.1242/jeb.0268117234624
    [Google Scholar]
  42. HernandezL. WardL.J. ArefinS. Blood–brain barrier and gut barrier dysfunction in chronic kidney disease with a focus on circulating biomarkers and tight junction proteins.Sci. Rep.2022121441410.1038/s41598‑022‑08387‑735292710
    [Google Scholar]
  43. HoylesL. PontifexM.G. Rodriguez-RamiroI. Regulation of blood–brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide.Microbiome20219123510.1186/s40168‑021‑01181‑z34836554
    [Google Scholar]
  44. MudimelaS. VishwanathN.K. PillaiA. Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders.Drug Discov. Today2022271110333410.1016/j.drudis.2022.08.00235998800
    [Google Scholar]
  45. FeiginV.L. StarkB.A. JohnsonC.O. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  46. WuS. WuB. LiuM. Stroke in China: advances and challenges in epidemiology, prevention, and management.Lancet Neurol.201918439440510.1016/S1474‑4422(18)30500‑330878104
    [Google Scholar]
  47. HuW. KongX. WangH. LiY. LuoY. Ischemic stroke and intestinal flora: an insight into brain–gut axis.Eur. J. Med. Res.20222717310.1186/s40001‑022‑00691‑235614480
    [Google Scholar]
  48. SinghV. RothS. LloveraG. Microbiota dysbiosis controls the neuroinflammatory response after stroke.J. Neurosci.201636287428744010.1523/JNEUROSCI.1114‑16.201627413153
    [Google Scholar]
  49. PehA. O’DonnellJ.A. BroughtonB.R.S. MarquesF.Z. Gut microbiota and their metabolites in stroke: a double-edged sword.Stroke20225351788180110.1161/STROKEAHA.121.03680035135325
    [Google Scholar]
  50. SchneiderC. OkunJ.G. SchwarzK.V. Trimethylamine-N-oxide is elevated in the acute phase after ischaemic stroke and decreases within the first days.Eur. J. Neurol.20202781596160310.1111/ene.1425332282978
    [Google Scholar]
  51. TanC. WangH. GaoX. Dynamic changes and prognostic value of gut microbiota-dependent trimethylamine-n-oxide in acute ischemic stroke.Front. Neurol.2020112910.3389/fneur.2020.0002932082246
    [Google Scholar]
  52. YinJ. LiaoS.X. HeY. Dysbiosis of gut microbiota with reduced trimethylamine-n-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack.J. Am. Heart Assoc.2015411e00269910.1161/JAHA.115.00269926597155
    [Google Scholar]
  53. ManolisA.A. ManolisT.A. MelitaH. ManolisA.S. Gut microbiota and cardiovascular disease: symbiosis versus dysbiosis.Curr. Med. Chem.202229234050407710.2174/092986732866621121311294934961453
    [Google Scholar]
  54. ChenY.Y. YeZ.S. XiaN.G. XuY. TMAO as a novel predictor of major adverse vascular events and recurrence in patients with large artery atherosclerotic ischemic stroke.Clin. Appl. Thromb. Hemost.20222810.1177/1076029622109050335345908
    [Google Scholar]
  55. FarhangiM.A. VajdiM. Asghari-JafarabadiM. Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: a systematic review and dose–response meta-analysis.Nutr. J.20201917610.1186/s12937‑020‑00592‑232731904
    [Google Scholar]
  56. WuC. XueF. LianY. Relationship between elevated plasma trimethylamine N-oxide levels and increased stroke injury.Neurology2020947e667e67710.1212/WNL.000000000000886231907287
    [Google Scholar]
  57. ZhangJ. WangL. CaiJ. Gut microbial metabolite TMAO portends prognosis in acute ischemic stroke.J. Neuroimmunol.202135457752610.1016/j.jneuroim.2021.57752633647820
    [Google Scholar]
  58. RexidamuM. LiH. JinH. HuangJ. Serum levels of Trimethylamine-N-oxide in patients with ischemic stroke.Biosci. Rep.2019396BSR2019051510.1042/BSR2019051531142624
    [Google Scholar]
  59. LiangZ. DongZ. GuoM. Trimethylamine N-oxide as a risk marker for ischemic stroke in patients with atrial fibrillation.J. Biochem. Mol. Toxicol.2019332e2224610.1002/jbt.2224630370581
    [Google Scholar]
  60. LiuD. GuS. ZhouZ. MaZ. ZuoH. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study.J. Intern. Med.2023293111012010.1111/joim.1357236200542
    [Google Scholar]
  61. SunT. ZhangY. YinJ. Association of gut microbiota-dependent metabolite trimethylamine n-oxide with first ischemic stroke.J. Atheroscler. Thromb.202128432032810.5551/jat.5596232641646
    [Google Scholar]
  62. NieJ. XieL. ZhaoB. Serum trimethylamine n-oxide concentration is positively associated with first stroke in hypertensive patients.Stroke20184992021202810.1161/STROKEAHA.118.02199730354996
    [Google Scholar]
  63. XuJ. ChengA. SongB. Trimethylamine n-oxide and stroke recurrence depends on ischemic stroke subtypes.Stroke20225341207121510.1161/STROKEAHA.120.03144334794334
    [Google Scholar]
  64. XuK. GaoX. XiaG. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn.Gut20217081486149410.1136/gutjnl‑2020‑32326333558272
    [Google Scholar]
  65. WuC. LiC. ZhaoW. Elevated trimethylamine N -oxide related to ischemic brain lesions after carotid artery stenting.Neurology20189015e1283e129010.1212/WNL.000000000000529829540587
    [Google Scholar]
  66. RandrianarisoaE. Lehn-StefanA. WangX. Relationship of Serum Trimethylamine N-Oxide (TMAO) Levels with early Atherosclerosis in Humans.Sci. Rep.2016612674510.1038/srep2674527228955
    [Google Scholar]
  67. WangB. QiuJ. LianJ. YangX. ZhouJ. Gut metabolite trimethylamine-n-oxide in atherosclerosis: from mechanism to therapy.Front. Cardiovasc. Med.2021872388610.3389/fcvm.2021.72388634888358
    [Google Scholar]
  68. Krüger-GengeA. JungF. HufertF. JungE.M. KüpperJ.H. StorsbergJ. Effects of gut microbial metabolite trimethylamine N-oxide (TMAO) on platelets and endothelial cells.Clin. Hemorheol. Microcirc.202076230931610.3233/CH‑20920632925010
    [Google Scholar]
  69. CanyellesM. TondoM. CedóL. FarràsM. Escolà-GilJ. Blanco-VacaF. Trimethylamine N-Oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and hdl function.Int. J. Mol. Sci.20181910322810.3390/ijms1910322830347638
    [Google Scholar]
  70. KoethR.A. WangZ. LevisonB.S. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.Nat. Med.201319557658510.1038/nm.314523563705
    [Google Scholar]
  71. DingL. ChangM. GuoY. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism.Lipids Health Dis.201817128610.1186/s12944‑018‑0939‑630567573
    [Google Scholar]
  72. JomardA. LiberaleL. DoytchevaP. Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study.Sci. Rep.2022121866410.1038/s41598‑022‑12720‑535606406
    [Google Scholar]
  73. WarrierM. ShihD.M. BurrowsA.C. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance.Cell Rep.201510332633810.1016/j.celrep.2014.12.03625600868
    [Google Scholar]
  74. LiangX. ZhangZ. LvY. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis.Nutrition202079-8011094110.1016/j.nut.2020.11094132858376
    [Google Scholar]
  75. GengJ. YangC. WangB. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway.Biomed. Pharmacother.20189794194710.1016/j.biopha.2017.11.01629136772
    [Google Scholar]
  76. MohammadiA. NajarA.G. YaghoobiM.M. JahaniY. VahabzadehZ. Trimethylamine-N-oxide treatment induces changes in the atp-binding cassette transporter a1 and scavenger receptor a1 in murine macrophage J774A.1 cells.Inflammation201639139340410.1007/s10753‑015‑0261‑726412259
    [Google Scholar]
  77. WuP. ChenJ. ChenJ. Trimethylamine N-oxide promotes apoE −/− mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway.J. Cell. Physiol.2020235106582659110.1002/jcp.2951832012263
    [Google Scholar]
  78. ShihD.M. WangZ. LeeR. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis.J. Lipid Res.2015561223710.1194/jlr.M05168025378658
    [Google Scholar]
  79. CollinsH.L. Drazul-SchraderD. SulpizioA.C. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP.Atherosclerosis2016244293710.1016/j.atherosclerosis.2015.10.10826584136
    [Google Scholar]
  80. TrøseidM. HovJ.R. NestvoldT.K. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery.Metab. Syndr. Relat. Disord.201614419720110.1089/met.2015.012027081744
    [Google Scholar]
  81. ZhuW. GregoryJ.C. OrgE. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.Cell2016165111112410.1016/j.cell.2016.02.01126972052
    [Google Scholar]
  82. GongD. ZhangL. ZhangY. WangF. ZhaoZ. ZhouX. Gut microbial metabolite trimethylamine n-oxide is related to thrombus formation in atrial fibrillation patients.Am. J. Med. Sci.2019358642242810.1016/j.amjms.2019.09.00231666184
    [Google Scholar]
  83. TangW.H.W. WangZ. LevisonB.S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa110940023614584
    [Google Scholar]
  84. ZhuW. WangZ. TangW.H.W. HazenS.L. Gut microbe-generated trimethylamine n -oxide from dietary choline is prothrombotic in subjects.Circulation2017135171671167310.1161/CIRCULATIONAHA.116.02533828438808
    [Google Scholar]
  85. ZhuW. BuffaJ.A. WangZ. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk.J. Thromb. Haemost.20181691857187210.1111/jth.1423429981269
    [Google Scholar]
  86. BourguignonL.Y.W. JinH. Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2+ release.J. Biol. Chem.1995270137257726010.1074/jbc.270.13.72577706265
    [Google Scholar]
  87. WitkowskiM. WitkowskiM. FriebelJ. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis.Cardiovasc. Res.2022118102367238410.1093/cvr/cvab26334352109
    [Google Scholar]
  88. DumitrescuL. Popescu-OlaruI. CozmaL. Oxidative Stress and the Microbiota-Gut-Brain Axis.Oxid. Med. Cell. Longev.2018201811210.1155/2018/240659430622664
    [Google Scholar]
  89. LiC. ZhuL. DaiY. Diet-induced high serum levels of trimethylamine-N-oxide enhance the cellular inflammatory response without exacerbating acute intracerebral hemorrhage injury in mice.Oxid. Med. Cell. Longev.2022202211610.1155/2022/159974735242275
    [Google Scholar]
  90. SpychalaM.S. VennaV.R. JandzinskiM. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome.Ann. Neurol.2018841233610.1002/ana.2525029733457
    [Google Scholar]
  91. ChenH. LiJ. LiN. LiuH. TangJ. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia.Hypertens. Pregnancy20193829610410.1080/10641955.2019.158463030821524
    [Google Scholar]
  92. SeldinM.M. MengY. QiH. Trimethylamine n-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear Factor-κB.J. Am. Heart Assoc.201652e00276710.1161/JAHA.115.00276726903003
    [Google Scholar]
  93. LiuX. ShaoY. TuJ. Trimethylamine-N-oxide-stimulated hepatocyte-derived exosomes promote inflammation and endothelial dysfunction through nuclear factor-kappa B signaling.Ann. Transl. Med.2021922167010.21037/atm‑21‑504334988179
    [Google Scholar]
  94. PaterasI GiaginisC TsigrisC PatsourisE TheocharisS. NF -κB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links.Expert Opin. Ther. Targets20141891089110110.1517/14728222.2014.93805125005042
    [Google Scholar]
  95. SunX. JiaoX. MaY. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome.Biochem. Biophys. Res. Commun.20164811-2637010.1016/j.bbrc.2016.11.01727833015
    [Google Scholar]
  96. BoiniK.M. HussainT. LiP.L. KokaS.S. Trimethylamine-n-oxide instigates nlrp3 inflammasome activation and endothelial dysfunction.Cell. Physiol. Biochem.201744115216210.1159/00048462329130962
    [Google Scholar]
  97. BruntV.E. Gioscia-RyanR.A. CassoA.G. Trimethylamine-n-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans.Hypertension202076110111210.1161/HYPERTENSIONAHA.120.1475932520619
    [Google Scholar]
  98. LiT. ChenY. GuaC. LiX. Elevated circulating trimethylamine n-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress.Front. Physiol.2017835010.3389/fphys.2017.0035028611682
    [Google Scholar]
  99. SinghG.B. ZhangY. BoiniK.M. KokaS. High mobility group box 1 mediates tmao-induced endothelial dysfunction.Int. J. Mol. Sci.20192014357010.3390/ijms2014357031336567
    [Google Scholar]
  100. WoltjerR.L. McMahanW. MilatovicD. Effects of chemical chaperones on oxidative stress and detergent-insoluble species formation following conditional expression of amyloid precursor protein carboxy-terminal fragment.Neurobiol. Dis.200725242743710.1016/j.nbd.2006.10.00317141508
    [Google Scholar]
  101. LupachykS. WatchoP. StavniichukR. ShevalyeH. ObrosovaI.G. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy.Diabetes201362394495210.2337/db12‑071623364451
    [Google Scholar]
  102. FukamiK. YamagishiS. SakaiK. Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients.J. Cardiovasc. Pharmacol.201565328929510.1097/FJC.000000000000019725636076
    [Google Scholar]
  103. DicksteinD.L. KabasoD. RocherA.B. LuebkeJ.I. WearneS.L. HofP.R. Changes in the structural complexity of the aged brain.Aging Cell20076327528410.1111/j.1474‑9726.2007.00289.x17465981
    [Google Scholar]
  104. HaradaC.N. Natelson LoveM.C. TriebelK.L. Normal cognitive aging.Clin. Geriatr. Med.201329473775210.1016/j.cger.2013.07.00224094294
    [Google Scholar]
  105. ChenY. XuJ. ChenY. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders.Nutrients2021136209910.3390/nu1306209934205336
    [Google Scholar]
  106. LiS. ShaoY. LiK. Vascular cognitive impairment and the gut microbiota.J. Alzheimers Dis.20186341209122210.3233/JAD‑17110329689727
    [Google Scholar]
  107. TicinesiA. TanaC. NouvenneA. PratiB. LauretaniF. MeschiT. Gut microbiota, cognitive frailty and dementia in older individuals: A systematic review.Clin. Interv. Aging2018131497151110.2147/CIA.S13916330214170
    [Google Scholar]
  108. LuoY. ZhaoP. DouM. Exogenous microbiota-derived metabolite trimethylamine N-oxide treatment alters social behaviors: Involvement of hippocampal metabolic adaptation.Neuropharmacology202119110856310.1016/j.neuropharm.2021.10856333887311
    [Google Scholar]
  109. MaoJ. ZhaoP. WangQ. Repeated 3,3-Dimethyl-1-butanol exposure alters social dominance in adult mice.Neurosci. Lett.202175813600610.1016/j.neulet.2021.13600634098029
    [Google Scholar]
  110. LanzM. JaneiroM.H. MilagroF.I. Trimethylamine N-oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model.Mech. Ageing Dev.202220411166810.1016/j.mad.2022.11166835341897
    [Google Scholar]
  111. SanguinettiE. ColladoM.C. MarrachelliV.G. Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet.Sci. Rep.201881490710.1038/s41598‑018‑23261‑129559675
    [Google Scholar]
  112. LiD. KeY. ZhanR. Trimethylamine- N -oxide promotes brain aging and cognitive impairment in mice.Aging Cell2018174e1276810.1111/acel.1276829749694
    [Google Scholar]
  113. MueedZ. MehtaD. RaiP.K. KamalM.A. PoddarN.K. Cross-Interplay between Osmolytes and mTOR in Alzheimer’s disease pathogenesis.Curr. Pharm. Des.202026374699471110.2174/138161282666620051811235532418522
    [Google Scholar]
  114. MengF. LiN. LiD. SongB. LiL. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats.Behav. Brain Res.201936811190210.1016/j.bbr.2019.11190230980850
    [Google Scholar]
  115. ZhaoL. ZhangC. CaoG. DongX. LiD. JiangL. Higher circulating trimethylamine N-oxide sensitizes sevoflurane-induced cognitive dysfunction in aged rats probably by downregulating hippocampal methionine sulfoxide reductase A.Neurochem. Res.201944112506251610.1007/s11064‑019‑02868‑431486012
    [Google Scholar]
  116. DuD. TangW. ZhouC. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury.Oxid. Med. Cell. Longev.2021202112110.1155/2021/581683733628361
    [Google Scholar]
  117. RabinoviciG.D. Late-onset Alzheimer Disease.Continuum (Minneap. Minn.)2019251143310.1212/CON.000000000000070030707185
    [Google Scholar]
  118. Calderon-GarcidueñasA.L. DuyckaertsC. Alzheimer disease.Handb. Clin. Neurol.201814532533710.1016/B978‑0‑12‑802395‑2.00023‑728987180
    [Google Scholar]
  119. HaranJ.P. BhattaraiS.K. FoleyS.E. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway.MBio2019103e00632e1910.1128/mBio.00632‑1931064831
    [Google Scholar]
  120. VerhaarB.J.H. HendriksenH.M.A. de LeeuwF.A. Gut microbiota composition is related to ad pathology.Front. Immunol.20221279451910.3389/fimmu.2021.79451935173707
    [Google Scholar]
  121. BuawangpongN. PinyopornpanishK. Siri-AngkulN. ChattipakornN. ChattipakornS.C. The role of trimethylamine-N-Oxide in the development of Alzheimer’s disease.J. Cell. Physiol.202223731661168510.1002/jcp.3064634812510
    [Google Scholar]
  122. VogtN.M. RomanoK.A. DarstB.F. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease.Alzheimers Res. Ther.201810112410.1186/s13195‑018‑0451‑230579367
    [Google Scholar]
  123. YilmazA. UgurZ. BisginH. Targeted metabolic profiling of urine highlights a potential biomarker panel for the diagnosis of alzheimer’s disease and mild cognitive impairment: A pilot study.Metabolites202010935710.3390/metabo1009035732878308
    [Google Scholar]
  124. ZhuangZ. GaoM. YangR. LiuZ. CaoW. HuangT. Causal relationships between gut metabolites and Alzheimer’s disease: a bidirectional Mendelian randomization study.Neurobiol. Aging202110011911511910.1016/j.neurobiolaging.2020.10.022
    [Google Scholar]
  125. YangD.S. YipC.M. HuangT.H.J. ChakrabarttyA. FraserP.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones.J. Biol. Chem.199927446329703297410.1074/jbc.274.46.3297010551864
    [Google Scholar]
  126. KumariA. RajputR. ShrivastavaN. SomvanshiP. GroverA. Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer’s disease.Int. J. Biochem. Cell Biol.201899192710.1016/j.biocel.2018.03.01429571707
    [Google Scholar]
  127. ChoS.S. ReddyG. StraubJ.E. ThirumalaiD. Entropic stabilization of proteins by TMAO.J. Phys. Chem. B201111545134011340710.1021/jp207289b21985427
    [Google Scholar]
  128. LiaoY.T. MansonA.C. DeLyserM.R. NoidW.G. CremerP.S. Trimethylamine N -oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine.Proc. Natl. Acad. Sci.2017114102479248410.1073/pnas.161460911428228526
    [Google Scholar]
  129. LevineZ.A. LariniL. LaPointeN.E. FeinsteinS.C. SheaJ.E. Regulation and aggregation of intrinsically disordered peptides.Proc. Natl. Acad. Sci. USA201511292758276310.1073/pnas.141815511225691742
    [Google Scholar]
  130. ScaramozzinoF. PetersonD.W. FarmerP. GerigJ.T. GravesD.J. LewJ. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau.Biochemistry200645113684369110.1021/bi052167g16533051
    [Google Scholar]
  131. EslerW.P. WolfeM.S. A portrait of Alzheimer secretases--new features and familiar faces.Science200129355341449145410.1126/science.106463811520976
    [Google Scholar]
  132. GaoQ. WangY. WangX. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease.Aging201911198642866310.18632/aging.10235231612864
    [Google Scholar]
  133. GovindarajuluM. PinkyP.D. SteinkeI. Gut metabolite TMAO induces synaptic plasticity deficits by promoting endoplasmic reticulum stress.Front. Mol. Neurosci.20201313810.3389/fnmol.2020.0013832903435
    [Google Scholar]
  134. WangQ-J. ShenY-E. WangX. Concomitant memantine and treatment attenuates cognitive impairments in APP/PS1 mice.Aging202012162864910.18632/aging.10264531907339
    [Google Scholar]
  135. VeitingerM. OehlerR. UmlaufE. A platelet protein biochip rapidly detects an Alzheimer’s disease-specific phenotype.Acta Neuropathol.2014128566567710.1007/s00401‑014‑1341‑825248508
    [Google Scholar]
  136. ColciaghiF. MarcelloE. BorroniB. Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease.Neurology200462349850110.1212/01.WNL.0000106953.49802.9C14872043
    [Google Scholar]
  137. CanobbioI. VisconteC. MomiS. Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice.Blood2017130452753610.1182/blood‑2017‑01‑76491028611024
    [Google Scholar]
  138. JarreA. GowertN.S. DonnerL. Pre-activated blood platelets and a pro-thrombotic phenotype in APP23 mice modeling Alzheimer’s disease.Cell. Signal.20142692040205010.1016/j.cellsig.2014.05.01924928203
    [Google Scholar]
  139. ArmstrongM.J. OkunM.S. Diagnosis and treatment of parkinson disease.JAMA2020323654856010.1001/jama.2019.2236032044947
    [Google Scholar]
  140. Alpha-synuclein in Lewy bodies.Nature1997388664583984010.1038/42166
    [Google Scholar]
  141. BencsV. BenczeJ. MódisV.L. SimonV. KálmánJ. HortobágyiT. Pathological and clinical comparison of Parkinson’s disease dementia and dementia with Lewy bodiesOrv. Hetil.20201611872773710.1556/650.2020.3171532338488
    [Google Scholar]
  142. BendorJ.T. LoganT.P. EdwardsR.H. The Function of α-.Synuclein. Neuron20137961044106610.1016/j.neuron.2013.09.00424050397
    [Google Scholar]
  143. CaputiV. GironM. Microbiome-gut-brain axis and toll-like receptors in parkinson’s disease.Int. J. Mol. Sci.2018196168910.3390/ijms1906168929882798
    [Google Scholar]
  144. SampsonT.R. DebeliusJ.W. ThronT. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease.Cell2016167614691480.e1210.1016/j.cell.2016.11.01827912057
    [Google Scholar]
  145. SankowskiB. Księżarczyk K, Raćkowska E, Szlufik S, Koziorowski D, Giebułtowicz J. Higher cerebrospinal fluid to plasma ratio of p-cresol sulfate and indoxyl sulfate in patients with Parkinson’s disease.Clin. Chim. Acta202050116517310.1016/j.cca.2019.10.03831726035
    [Google Scholar]
  146. KumariS. GoyalV. KumaranS.S. DwivediS.N. SrivastavaA. JagannathanN.R. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls.Neurol. Sci.20204151201121010.1007/s10072‑019‑04143‑431897951
    [Google Scholar]
  147. ChenS.J. KuoC.H. KuoH.C. The gut metabolite trimethylamine n-oxide is associated with parkinson’s disease severity and progression.Mov. Disord.202035112115211610.1002/mds.2824632875634
    [Google Scholar]
  148. ChungS.J. RimJ.H. JiD. Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease.Nutrition20218311109010.1016/j.nut.2020.11109033418492
    [Google Scholar]
  149. TanA.H. ChongC.W. LimS.Y. Gut microbial ecosystem in parkinson disease: new clinicobiological insights from multi-omics.Ann. Neurol.202189354655910.1002/ana.2598233274480
    [Google Scholar]
  150. JahanI. NayeemS.M. Effect of osmolytes on conformational behavior of intrinsically disordered protein α-synuclein.Biophys. J.2019117101922193410.1016/j.bpj.2019.09.04631699336
    [Google Scholar]
  151. van der FlierW.M. SkoogI. SchneiderJ.A. Vascular cognitive impairment.Nat. Rev. Dis. Primers2018411800310.1038/nrdp.2018.329446769
    [Google Scholar]
  152. GorelickP.B. ScuteriA. BlackS.E. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association.Stroke20114292672271310.1161/STR.0b013e318229949621778438
    [Google Scholar]
  153. SkrobotO.A. BlackS.E. ChenC. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the vascular impairment of cognition classification consensus study.Alzheimers Dement.201814328029210.1016/j.jalz.2017.09.00729055812
    [Google Scholar]
  154. IadecolaC. DueringM. HachinskiV. Vascular cognitive impairment and dementia.J. Am. Coll. Cardiol.201973253326334410.1016/j.jacc.2019.04.03431248555
    [Google Scholar]
  155. Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia – a comprehensive review.BMC Med20171511110.1186/s12916‑017‑0779‑728095900
    [Google Scholar]
  156. Chinese stroke society, expert committee on management of post-stroke cognitive impairment: Expert consensus on management of post-stroke cognitive impairment.Chinese Stroke Journal201712651953110.3969/j.issn.1673‑5765.2017.06.011
    [Google Scholar]
  157. LooiJ.C.L. SachdevP.S. Differentiation of vascular dementia from AD on neuropsychological tests.Neurology199953467067810.1212/WNL.53.4.67010489025
    [Google Scholar]
  158. HonigL.S. KukullW. MayeuxR. Atherosclerosis and AD: Analysis of data from the US National Alzheimer’s Coordinating Center.Neurology200564349450010.1212/01.WNL.0000150886.50187.3015699381
    [Google Scholar]
  159. JahrlingJ.B. LinA.L. DeRosaN. mTOR drives cerebral blood flow and memory deficits in LDLR −/− mice modeling atherosclerosis and vascular cognitive impairment.J. Cereb. Blood Flow Metab.2018381587410.1177/0271678X1770597328511572
    [Google Scholar]
  160. GaoX. LiuX. XuJ. XueC. XueY. WangY. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.J. Biosci. Bioeng.2014118447648110.1016/j.jbiosc.2014.03.00124721123
    [Google Scholar]
  161. MiralbellJ. López-CancioE. López-OlorizJ. Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors.Cerebrovasc. Dis.20133629810510.1159/00035205924029412
    [Google Scholar]
  162. MirzaeiR. BouzariB. Hosseini-FardS.R. Role of microbiota-derived short-chain fatty acids in nervous system disorders.Biomed. Pharmacother.202113911166110.1016/j.biopha.2021.11166134243604
    [Google Scholar]
  163. WardlawJ.M. SmithC. DichgansM. Small vessel disease: mechanisms and clinical implications.Lancet Neurol.201918768469610.1016/S1474‑4422(19)30079‑131097385
    [Google Scholar]
  164. WardlawJ.M. SmithE.E. BiesselsG.J. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.Lancet Neurol.201312882283810.1016/S1474‑4422(13)70124‑823867200
    [Google Scholar]
  165. SmithE.E. SaposnikG. BiesselsG.J. Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association.Stroke2017482e44e7110.1161/STR.000000000000011627980126
    [Google Scholar]
  166. LiT. HuangY. CaiW. Age-related cerebral small vessel disease and inflammaging.Cell Death Dis.2020111093210.1038/s41419‑020‑03137‑x33127878
    [Google Scholar]
  167. TonomuraS. GyanwaliB. Cerebral microbleeds in vascular dementia from clinical aspects to host-microbial interaction.Neurochem. Int.202114810507310.1016/j.neuint.2021.10507334048844
    [Google Scholar]
  168. MatsuuraJ. InoueR. TakagiT. Analysis of gut microbiota in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).J. Clin. Biochem. Nutr.201965324024410.3164/jcbn.19‑2231777426
    [Google Scholar]
  169. SajiN. MurotaniK. HisadaT. The Association between Cerebral Small Vessel Disease and the Gut Microbiome: A Cross-Sectional Analysis.J. Stroke Cerebrovasc. Dis.202130310556810.1016/j.jstrokecerebrovasdis.2020.10556833423868
    [Google Scholar]
  170. SajiN. SaitoY. YamashitaT. Relationship Between Plasma Lipopolysaccharides, Gut Microbiota, and Dementia: A Cross-Sectional Study.J. Alzheimers Dis.20228641947195710.3233/JAD‑21565335213381
    [Google Scholar]
  171. CaiW. ChenX. MenX. Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt.Sci. Adv.202174eabe482710.1126/sciadv.abe482733523954
    [Google Scholar]
  172. ChenY. XuJ. PanY. Association of Trimethylamine N-Oxide and Its Precursor With Cerebral Small Vessel Imaging Markers.Front. Neurol.20211264870210.3389/fneur.2021.64870233868152
    [Google Scholar]
  173. JiX. TianL. NiuS. YaoS. QuC. Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes.Front. Aging Neurosci.20221496387610.3389/fnagi.2022.96387636072486
    [Google Scholar]
  174. NelsonJ.W. PhillipsS.C. GaneshB.P. PetrosinoJ.F. DurganD.J. BryanR.M. The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats.FASEB J.2021352e2120110.1096/fj.202001117R33496989
    [Google Scholar]
  175. PendleburyS.T. RothwellP.M. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study.Lancet Neurol.201918324825810.1016/S1474‑4422(18)30442‑330784556
    [Google Scholar]
  176. QuY. ZhuoL. LiN. Prevalence of post-stroke cognitive impairment in china: a community-based, cross-sectional study.PLoS One2015104e012286410.1371/journal.pone.012286425874998
    [Google Scholar]
  177. MakinS.D.J. TurpinS. DennisM.S. WardlawJ.M. Cognitive impairment after lacunar stroke: systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes.J. Neurol. Neurosurg. Psychiatry201384889390010.1136/jnnp‑2012‑30364523457225
    [Google Scholar]
  178. GongL. WangH. ZhuX. Nomogram to predict cognitive dysfunction after a minor ischemic stroke in hospitalized-population.Front. Aging Neurosci.20211363736310.3389/fnagi.2021.63736333967738
    [Google Scholar]
  179. LoJ.W. CrawfordJ.D. DesmondD.W. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups.Neurology20199324e2257e227110.1212/WNL.000000000000861231712368
    [Google Scholar]
  180. Vascular Cognitive Impairment Branch of Chinese Stroke SocietyWang Kai, Dong Qiang, Yu Jintai, Hu Panpan: Expert Consensus on Management of Post-Stroke Cognitive Impairment 2021.Chinese Journal of Stroke202116414
    [Google Scholar]
  181. RohdeD. GaynorE. LargeM. The Impact of Cognitive Impairment on poststroke outcomes: a 5-year follow-up.J. Geriatr. Psychiatry Neurol.201932527528110.1177/089198871985304431167593
    [Google Scholar]
  182. CrichtonS.L. BrayB.D. McKevittC. RuddA.G. WolfeC.D.A. Patient outcomes up to 15 years after stroke: survival, disability, quality of life, cognition and mental health.J. Neurol. Neurosurg. Psychiatry201687101091109810.1136/jnnp‑2016‑31336127451353
    [Google Scholar]
  183. SunJ.H. TanL. YuJ.T. Post-stroke cognitive impairment: epidemiology, mechanisms and management.Ann. Transl. Med.2014288010.3978/j.issn.2305‑5839.2014.08.0525333055
    [Google Scholar]
  184. MokV.C.T. LamB.Y.K. WongA. KoH. MarkusH.S. WongL.K.S. Early-onset and delayed-onset poststroke dementia — revisiting the mechanisms.Nat. Rev. Neurol.201713314815910.1038/nrneurol.2017.1628211452
    [Google Scholar]
  185. CasollaB. CaparrosF. CordonnierC. Biological and imaging predictors of cognitive impairment after stroke: A systematic review.J. Neurol.2019266112593260410.1007/s00415‑018‑9089‑z30350168
    [Google Scholar]
  186. ZhangX. BiX. Post-stroke cognitive impairment: A review focusing on molecular biomarkers.J. Mol. Neurosci.20207081244125410.1007/s12031‑020‑01533‑832219663
    [Google Scholar]
  187. BlumS. LuchsingerJ.A. ManlyJ.J. Memory after silent stroke: Hippocampus and infarcts both matter.Neurology2012781384610.1212/WNL.0b013e31823ed0cc22201111
    [Google Scholar]
  188. LiW. HuangR. ShettyR.A. Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model.Neurobiol. Dis.201359182510.1016/j.nbd.2013.06.01423845275
    [Google Scholar]
  189. CuarteroM.I. de la ParraJ. Pérez-RuizA. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice.J. Clin. Invest.201912941536155010.1172/JCI12041230676325
    [Google Scholar]
  190. AlawiehA.M. LangleyE.F. FengW. SpiottaA.M. TomlinsonS. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy.J. Neurosci.202040204042405810.1523/JNEUROSCI.2462‑19.202032291326
    [Google Scholar]
  191. SunH. HeX. TaoX. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke.J. Neuroinflammation202017117110.1186/s12974‑020‑01845‑x32473633
    [Google Scholar]
  192. PantoniL. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.Lancet Neurol.20109768970110.1016/S1474‑4422(10)70104‑620610345
    [Google Scholar]
  193. KooistraM. GeerlingsM.I. van der GraafY. Vascular brain lesions, brain atrophy, and cognitive decline. The Second Manifestations of ARTerial disease—Magnetic Resonance (SMART-MR) study.Neurobiol. Aging2014351354110.1016/j.neurobiolaging.2013.07.00423932882
    [Google Scholar]
  194. PoelsM.M.F. IkramM.A. van der LugtA. Cerebral microbleeds are associated with worse cognitive function: The Rotterdam Scan Study.Neurology201278532633310.1212/WNL.0b013e318245292822262748
    [Google Scholar]
  195. GeninE. HannequinD. WallonD. APOE and Alzheimer disease: a major gene with semi-dominant inheritance.Mol. Psychiatry201116990390710.1038/mp.2011.5221556001
    [Google Scholar]
  196. BellR.D. WinklerE.A. SinghI. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A.Nature2012485739951251610.1038/nature1108722622580
    [Google Scholar]
  197. MontagneA. NationD.A. SagareA.P. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline.Nature20205817806717610.1038/s41586‑020‑2247‑332376954
    [Google Scholar]
  198. PendleburyS.T. PooleD. BurgessA. DuerdenJ. RothwellP.M. Oxford VascularS. APOE-ε4 genotype and dementia before and after transient ischemic attack and stroke.Stroke202051375175810.1161/STROKEAHA.119.02692732070224
    [Google Scholar]
  199. LiuY. KongC. GongL. The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites.J. Alzheimers Dis.20207341455146610.3233/JAD‑19106631929168
    [Google Scholar]
  200. HuangY. ShenZ. HeW. Identification of gut microbiome signatures in patients with post-stroke cognitive impairment and affective disorder.Front. Aging Neurosci.20211370676510.3389/fnagi.2021.70676534489677
    [Google Scholar]
  201. LingY. GongT. ZhangJ. Gut microbiome signatures are biomarkers for cognitive impairment in patients with ischemic stroke.Front. Aging Neurosci.20201251156210.3389/fnagi.2020.51156233192448
    [Google Scholar]
  202. LingY. GuQ. ZhangJ. Structural change of gut microbiota in patients with post-stroke comorbid cognitive impairment and depression and its correlation with clinical features.J. Alzheimers Dis.20207741595160810.3233/JAD‑20031532925035
    [Google Scholar]
  203. ToM. SugimotoM. SarutaJ. Cognitive dysfunction in a mouse model of cerebral ischemia influences salivary metabolomics.J. Clin. Med.2021108169810.3390/jcm1008169833920851
    [Google Scholar]
  204. ZhuC. LiG. LvZ. Association of plasma trimethylamine-N-oxide levels with post-stroke cognitive impairment: a 1-year longitudinal study.Neurol. Sci.2020411576310.1007/s10072‑019‑04040‑w31420758
    [Google Scholar]
  205. ZhongC. LuZ. CheB. Choline pathway nutrients and metabolites and cognitive impairment after acute ischemic stroke.Stroke202152388789510.1161/STROKEAHA.120.03190333467878
    [Google Scholar]
  206. ErnyD Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS.Nat. Neurosci.201518796597710.1038/nn.403026030851
    [Google Scholar]
  207. ZhongC. MiaoM. CheB. Plasma choline and betaine and risks of cardiovascular events and recurrent stroke after ischemic stroke.Am. J. Clin. Nutr.202111441351135910.1093/ajcn/nqab19934159355
    [Google Scholar]
  208. YlilauriM.P.T. VoutilainenS. LönnroosE. Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the Kuopio Ischaemic Heart Disease Risk Factor Study.Am. J. Clin. Nutr.201911061416142310.1093/ajcn/nqz14831360988
    [Google Scholar]
  209. PolyC. MassaroJ.M. SeshadriS. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort.Am. J. Clin. Nutr.20119461584159110.3945/ajcn.110.00893822071706
    [Google Scholar]
  210. WallaceT.C. A comprehensive review of eggs, choline, and lutein on cognition across the life-span.J. Am. Coll. Nutr.201837426928510.1080/07315724.2017.142324829451849
    [Google Scholar]
  211. BlusztajnJ. SlackB. MellottT. Neuroprotective actions of dietary choline.Nutrients20179881510.3390/nu908081528788094
    [Google Scholar]
  212. ZeiselS.H. Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones.Mutat. Res.20127331-2343810.1016/j.mrfmmm.2011.10.00822041500
    [Google Scholar]
  213. VelazquezR. FerreiraE. KnowlesS. Lifelong choline supplementation ameliorates Alzheimer’s disease pathology and associated cognitive deficits by attenuating microglia activation.Aging Cell2019186e1303710.1111/acel.1303731560162
    [Google Scholar]
  214. EicherT.P. MohajeriM.H. Overlapping mechanisms of action of brain-active bacteria and bacterial metabolites in the pathogenesis of common brain diseases.Nutrients20221413266110.3390/nu1413266135807841
    [Google Scholar]
  215. CassoA.G. VanDongenN.S. Gioscia-RyanR.A. Initiation of 3,3-dimethyl-1-butanol at midlife prevents endothelial dysfunction and attenuates in vivo aortic stiffening with ageing in mice.J. Physiol.2022600214633465110.1113/JP28358136111692
    [Google Scholar]
  216. ChaiG.S. JiangX. NiZ.F. Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine.J. Neurochem.2013124338839610.1111/jnc.1209423157378
    [Google Scholar]
  217. QiW. ZhangA. GoodT.A. FernandezE.J. Two disaccharides and trimethylamine N-oxide affect Abeta aggregation differently, but all attenuate oligomer-induced membrane permeability.Biochemistry200948378908891910.1021/bi900639719637920
    [Google Scholar]
  218. GetterT. ZaksI. BarhumY. A chemical chaperone-based drug candidate is effective in a mouse model of amyotrophic lateral sclerosis (ALS).ChemMedChem201510585086110.1002/cmdc.20150004525772747
    [Google Scholar]
  219. YoshidaH. YoshizawaT. ShibasakiF. ShojiS. KanazawaI. Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch.Neurobiol. Dis.2002102889910.1006/nbdi.2002.050212127147
    [Google Scholar]
  220. AlievG. AshrafG.M. KaminskyY.G. Implication of the nutritional and nonnutritional factors in the context of preservation of cognitive performance in patients with dementia/depression and Alzheimer disease.Am. J. Alzheimers Dis. Other Demen.201328766067010.1177/153331751350461424085255
    [Google Scholar]
  221. BraginV. ChemodanovaM. DzhafarovaN. BraginI. CzerniawskiJ.L. AlievG. Integrated treatment approach improves cognitive function in demented and clinically depressed patients.Am. J. Alzheimers Dis. Other Demen.2005201212610.1177/15333175050200010315751450
    [Google Scholar]
  222. Farokhi-SisakhtF. FarhoudiM. Sadigh-EteghadS. MahmoudiJ. MohaddesG. Cognitive rehabilitation improves ischemic stroke-induced cognitive impairment: role of growth factors.J. Stroke Cerebrovasc. Dis.2019281010429910.1016/j.jstrokecerebrovasdis.2019.07.01531371141
    [Google Scholar]
  223. WangC. ZhangQ. YuK. ShenX. WuY. WuJ. Enriched environment promoted cognitive function via bilateral synaptic remodeling after cerebral ischemia.Front. Neurol.201910118910.3389/fneur.2019.0118931781025
    [Google Scholar]
  224. Cavalcanti NetoM.P. AquinoJ.S. Romão da SilvaL.F. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?Pharmacol. Res.201813015216310.1016/j.phrs.2018.01.02029410236
    [Google Scholar]
  225. TuohyK.M. FavaF. ViolaR. ‘The way to a man’s heart is through his gut microbiota’ – dietary pro- and prebiotics for the management of cardiovascular risk.Proc. Nutr. Soc.201473217218510.1017/S002966511300391124495527
    [Google Scholar]
  226. Bentham Science Publisher BSPLovegrove JA, Gitau R, Jackson KG, Tuohy KM. The gut microbiota and lipid metabolism: implications for human health and coronary heart disease.Curr. Med. Chem.200613253005302110.2174/09298670677852181417073643
    [Google Scholar]
  227. RománG.C. JacksonR.E. GadhiaR. RománA.N. ReisJ. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease.Rev. Neurol.20191751072474110.1016/j.neurol.2019.08.00531521398
    [Google Scholar]
  228. VasquezE.C. AiresR. TonA.M.M. AmorimF.G. New insights on the beneficial effects of the probiotic kefir on vascular dysfunction in cardiovascular and neurodegenerative diseases.Curr. Pharm. Des.202026303700371010.2174/138161282666620030414522432129163
    [Google Scholar]
  229. YangX. YuD. XueL. LiH. DuJ. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice.Acta Pharm. Sin. B202010347548710.1016/j.apsb.2019.07.00132140393
    [Google Scholar]
  230. ChenM. YiL. ZhangY. Resveratrol attenuates trimethylamine- N -Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota.MBio201672e02210e0221510.1128/mBio.02210‑1527048804
    [Google Scholar]
  231. BravoJ.A. ForsytheP. ChewM.V. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.Proc. Natl. Acad. Sci.201110838160501605510.1073/pnas.110299910821876150
    [Google Scholar]
  232. Ait-BelgnaouiA. ColomA. BranisteV. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice.Neurogastroenterol. Motil.201426451052010.1111/nmo.1229524372793
    [Google Scholar]
  233. HaakB.W. WestendorpW.F. van EngelenT.S.R. Disruptions of anaerobic gut bacteria are associated with stroke and post-stroke infection: a prospective case-control study.Transl. Stroke Res.202112458159210.1007/s12975‑020‑00863‑433052545
    [Google Scholar]
  234. MattS.M. AllenJ.M. LawsonM.A. MailingL.J. WoodsJ.A. JohnsonR.W. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice.Front. Immunol.20189183210.3389/fimmu.2018.0183230154787
    [Google Scholar]
  235. ZhouZ. XuN. MateiN. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats.J. Cereb. Blood Flow Metab.202141226728110.1177/0271678X2091053332151222
    [Google Scholar]
  236. FanaeiH. KarimianS.M. SadeghipourH.R. Testosterone enhances functional recovery after stroke through promotion of antioxidant defenses, BDNF levels and neurogenesis in male rats.Brain Res.20141558748310.1016/j.brainres.2014.02.02824565925
    [Google Scholar]
  237. HaradaS. Fujita-HamabeW. TokuyamaS. Ameliorating effect of hypothalamic brain-derived neurotrophic factor against impaired glucose metabolism after cerebral ischemic stress in mice.J. Pharmacol. Sci.2012118110911610.1254/jphs.11164FP
    [Google Scholar]
  238. YangY. ZhangX. CuiH. ZhangC. ZhuC. LiL. Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways.Neurosci. Lett.2014568444910.1016/j.neulet.2014.03.03724686182
    [Google Scholar]
  239. LiuJ. SunJ. WangF. Neuroprotective Effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate.BioMed Res. Int.2015201511210.1155/2015/41294626523278
    [Google Scholar]
  240. ZhangH. MengJ. YuH. Trimethylamine n-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet.Front. Physiol.2017894410.3389/fphys.2017.0094429218015
    [Google Scholar]
  241. WangZ. RobertsA.B. BuffaJ.A. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis.Cell201516371585159510.1016/j.cell.2015.11.05526687352
    [Google Scholar]
  242. ChenJ. GuoY. GuiY. XuD. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases.Lipids Health Dis.20181711710.1186/s12944‑017‑0653‑929357881
    [Google Scholar]
  243. Qiu-JunW. Yue-ES. XinW. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice.Aging2021121628649
    [Google Scholar]
  244. LiuJ. ZhangT. WangY. Baicalin ameliorates neuropathology in repeated cerebral ischemia-reperfusion injury model mice by remodeling the gut microbiota.Aging (Albany NY)20201243791380610.18632/aging.10284632084011
    [Google Scholar]
  245. LiL. ChenB. ZhuR. Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice.Aging (Albany NY)201911219348936810.18632/aging.10237631715585
    [Google Scholar]
  246. GuoQ. NiC. LiL. Integrated traditional chinese medicine improves functional outcome in acute ischemic stroke: From clinic to mechanism exploration with gut microbiota.Front. Cell. Infect. Microbiol.20221282712910.3389/fcimb.2022.82712935223549
    [Google Scholar]
  247. GuoQ. JiangX. NiC. Gut microbiota-related effects of tanhuo decoction in acute ischemic stroke.Oxid. Med. Cell. Longev.2021202111810.1155/2021/559692434136066
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1871527322666230203140805
Loading
/content/journals/cnsnddt/10.2174/1871527322666230203140805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test