Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Background

Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN.

Methodology

A review of all the relevant literature was carried out to compile this article.

Results

A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy.

Conclusion

Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666221227112621
2024-01-01
2025-01-07
Loading full text...

Full text loading...

References

  1. ZhangS. Ion channels in epilepsy: blasting fuse for neuronal hyperexcitability. In:Epilepsy-Advances in Diagnosis and Therapy.IntechOpen201911210.5772/intechopen.83698
    [Google Scholar]
  2. YangS. ZhangZ. ChenH. Temporal variability profiling of the default mode across epilepsy subtypes.Epilepsia2021621617310.1111/epi.1675933236791
    [Google Scholar]
  3. AvoliM. de CurtisM. GnatkovskyV. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy.J. Neurophysiol.201611563229323710.1152/jn.01128.201527075542
    [Google Scholar]
  4. ChowC.Y. AbsalomN. BiggsK. KingG.F. MaL. Venom-derived modulators of epilepsy-related ion channels.Biochem. Pharmacol.202018111404310.1016/j.bcp.2020.11404332445870
    [Google Scholar]
  5. StefaniA. Spadoni, Bernardi G. Voltage-activated calcium channels: targets of antiepileptic drug therapy?Epilepsia199738995996510.1111/j.1528‑1157.1997.tb01477.x9579933
    [Google Scholar]
  6. ZhangX. VelumianA.A. JonesO.T. CarlenP.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate.Epilepsia200041s1526010.1111/j.1528‑1157.2000.tb02173.x10768302
    [Google Scholar]
  7. NiespodzianyI. LeclèreN. VandenplasC. FoerchP. WolffC. Comparative study of lacosamide and classical sodium channel blocking antiepileptic drugs on sodium channel slow inactivation.J. Neurosci. Res.201391343644310.1002/jnr.2313623239147
    [Google Scholar]
  8. MantegazzaM. CuriaG. BiaginiG. RagsdaleD.S. AvoliM. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders.Lancet Neurol.20109441342410.1016/S1474‑4422(10)70059‑420298965
    [Google Scholar]
  9. BarkerB.S. Ion channels. In: Conn’s translational neuroscience.Elsevier2017114310.1016/B978‑0‑12‑802381‑5.00002‑6
    [Google Scholar]
  10. GravesT.D. Ion channels and epilepsy.QJM200699420121710.1093/qjmed/hcl02116495302
    [Google Scholar]
  11. StafstromC.E. Persistent sodium current and its role in epilepsy.Epilepsy Curr.200771152210.1111/j.1535‑7511.2007.00156.x17304346
    [Google Scholar]
  12. OyrerJ. MaljevicS. SchefferI.E. BerkovicS.F. PetrouS. ReidC.A. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies.Pharmacol. Rev.201870114217310.1124/pr.117.01445629263209
    [Google Scholar]
  13. D’AdamoM.C. CatacuzzenoL. Di GiovanniG. FrancioliniF. PessiaM. K+ channelepsy: progress in the neurobiology of potassium channels and epilepsy.Front. Cell. Neurosci.2013713410.3389/fncel.2013.0013424062639
    [Google Scholar]
  14. VillaC. CombiR. Potassium channels and human epileptic phenotypes: an updated overview.Front. Cell. Neurosci.2016108110.3389/fncel.2016.0008127064559
    [Google Scholar]
  15. GutmanG.A. ChandyK.G. GrissmerS. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels.Pharmacol. Rev.200557447350810.1124/pr.57.4.1016382104
    [Google Scholar]
  16. NidayZ. TzingounisA.V. Potassium channel gain of function in epilepsy: an unresolved paradox.Neuroscientist201824436838010.1177/107385841876375229542386
    [Google Scholar]
  17. HeeromaJ.H. HennebergerC. RajakulendranS. HannaM.G. SchorgeS. KullmannD.M. Episodic ataxia type 1 mutations differentially affect neuronal excitability and transmitter release.Dis. Model. Mech.2009211-1261261910.1242/dmm.00358219779067
    [Google Scholar]
  18. D’AdamoM.C. HasanS. GuglielmiL. New insights into the pathogenesis and therapeutics of episodic ataxia type 1.Front. Cell. Neurosci.2015931710.3389/fncel.2015.0031726347608
    [Google Scholar]
  19. GlasscockE. YooJ.W. ChenT.T. KlassenT.L. NoebelsJ.L. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy.J. Neurosci.201030155167517510.1523/JNEUROSCI.5591‑09.201020392939
    [Google Scholar]
  20. MiceliF. Distinct epilepsy phenotypes and response to drugs in KCNA1 gain-and loss-of function variants.Epilepsia202134778950
    [Google Scholar]
  21. RogersA. GolumbekP. CelliniE. De novo KCNA1 variants in the PVP motif cause infantile epileptic encephalopathy and cognitive impairment similar to recurrent KCNA2 variants.Am. J. Med. Genet. A.201817681748175210.1002/ajmg.a.3884030055040
    [Google Scholar]
  22. MiaoP. FengJ. GuoY. Genotype and phenotype analysis using an epilepsy-associated gene panel in Chinese pediatric epilepsy patients.Clin. Genet.201894651252010.1111/cge.1344130182498
    [Google Scholar]
  23. EunsonL.H. ReaR. ZuberiS.M. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability.Ann. Neurol.200048464765610.1002/1531‑8249(200010)48:4<647:AID‑ANA12>3.0.CO;2‑Q11026449
    [Google Scholar]
  24. DianiE. Di BonaventuraC. MecarelliO. Autosomal dominant lateral temporal epilepsy: Absence of mutations in ADAM22 and Kv1 channel genes encoding LGI1-associated proteins.Epilepsy Res.20088011810.1016/j.eplepsyres.2008.03.00118440780
    [Google Scholar]
  25. KearneyJ.A. KCNA2-related epileptic encephalopathy.Pediatr. Neurol. Briefs20152942710.15844/pedneurbriefs‑29‑4‑226933568
    [Google Scholar]
  26. HundallahK Severe early-onset epileptic encephalopathy due to mutations in the KCNA2 gene: expansion of the genotypic and phenotypic spectrum.european journal of paediatric neurology2016204657-60
    [Google Scholar]
  27. CorbettM.A. BellowsS.T. LiM. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.Neurology201687191975198410.1212/WNL.000000000000330927733563
    [Google Scholar]
  28. SyrbeS. HedrichU.B.S. RieschE. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy.Nat. Genet.201547439339910.1038/ng.323925751627
    [Google Scholar]
  29. HedrichU.B.S. LauxmannS. WolffM. 4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2 -encephalopathy.Sci. Transl. Med.202113609eaaz495710.1126/scitranslmed.aaz495734516822
    [Google Scholar]
  30. PenaS.D.J. CoimbraR.L.M. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy.Clin. Genet.2015872e1e310.1111/cge.1254225477152
    [Google Scholar]
  31. MasnadaS. HedrichU.B.S. GardellaE. Clinical spectrum and genotype–phenotype associations of KCNA2-related encephalopathies.Brain201714092337235410.1093/brain/awx18429050392
    [Google Scholar]
  32. KessiM. ChenB. PengJ. Intellectual disability and potassium channelopathies: a systematic review.Front. Genet.20201161410.3389/fgene.2020.0061432655623
    [Google Scholar]
  33. ChoiB.J. YoonJ.H. ChoiW.S. KimO. NamS.W. ParkW.S. Genetic association of KCNA5 and KCNJ3 polymorphisms in Korean children with epilepsy.Mol. Cell. Toxicol.201410222322810.1007/s13273‑014‑0024‑9
    [Google Scholar]
  34. AllenN.M. ConroyJ. ShahwanA. Unexplained early onset epileptic encephalopathy: Exome screening and phenotype expansion.Epilepsia2016571e12e1710.1111/epi.1325026648591
    [Google Scholar]
  35. ThiffaultI. SpecaD.J. AustinD.C. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization.J. Gen. Physiol.2015146539941010.1085/jgp.20151144426503721
    [Google Scholar]
  36. SaitsuH. AkitaT. TohyamaJ. De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing.Sci. Rep.2015511519910.1038/srep1519926477325
    [Google Scholar]
  37. CalhounJ.D. VanoyeC.G. KokF. GeorgeA.L.Jr KearneyJ.A. Characterization of a KCNB1 variant associated with autism, intellectual disability, and epilepsy.Neurol. Genet.201736e19810.1212/NXG.000000000000019829264390
    [Google Scholar]
  38. TorkamaniA. BersellK. JorgeB.S. De novo KCNB1 mutations in epileptic encephalopathy.Ann. Neurol.201476452954010.1002/ana.2426325164438
    [Google Scholar]
  39. SrivastavaS. CohenJ.S. VernonH. Clinical whole exome sequencing in child neurology practice.Ann. Neurol.201476447348310.1002/ana.2425125131622
    [Google Scholar]
  40. de KovelC.G.F. BrilstraE.H. van KempenM.J.A. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients.Mol. Genet. Genomic Med.20164556858010.1002/mgg3.23527652284
    [Google Scholar]
  41. HawkinsN.A. Epilepsy and neurobehavioral abnormalities in mice with a KCNB1 pathogenic variant that alters conducting and non-conducting functions of KV2. 1.bioRxiv7702062019
    [Google Scholar]
  42. MariniC. RomoliM. ParriniE. Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations.Neurol. Genet.201736e20610.1212/NXG.000000000000020629264397
    [Google Scholar]
  43. de KovelC.G.F. SyrbeS. BrilstraE.H. Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes.JAMA Neurol.201774101228123610.1001/jamaneurol.2017.171428806457
    [Google Scholar]
  44. BarC. BarciaG. JennessonM. Expanding the genetic and phenotypic relevance of KCNB1 variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature.Hum. Mutat.2020411698010.1002/humu.2391531513310
    [Google Scholar]
  45. MuonaM. BerkovicS.F. DibbensL.M. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy.Nat. Genet.2015471394610.1038/ng.314425401298
    [Google Scholar]
  46. BarotN. MargiottaM. NeiM. SkidmoreC. Progressive myoclonic epilepsy: myoclonic epilepsy and ataxia due to KCNC1 mutation (MEAK): a case report and review of the literature.Epileptic Disord.202022565465810.1684/epd.2020.119732972906
    [Google Scholar]
  47. CarpenterJ.C. MännikköR. HeffnerC. Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy.Epilepsia20216251256126710.1111/epi.1686733735526
    [Google Scholar]
  48. OliverK.L. FranceschettiS. MilliganC.J. Myoclonus epilepsy and ataxia due to KCNC 1 mutation: Analysis of 20 cases and K + channel properties.Ann. Neurol.201781567768910.1002/ana.2492928380698
    [Google Scholar]
  49. ParkJ. KokoM. HedrichU.B.S. KCNC1 -related disorders: new de novo variants expand the phenotypic spectrum.Ann. Clin. Transl. Neurol.2019671319132610.1002/acn3.5079931353862
    [Google Scholar]
  50. KimH. LeeS. ChoiM. Familial cases of progressive myoclonic epilepsy caused by maternal somatic mosaicism of a recurrent KCNC1 p.Arg320His mutation.Brain Dev.201840542943210.1016/j.braindev.2018.01.00629428275
    [Google Scholar]
  51. MahaleR.R. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK): a cause of progressive myoclonic epilepsy.Acta Neurol. Belg.20211333725338
    [Google Scholar]
  52. ZhangJ. Three cases of progressive myoclonic epilepsy caused by KCNC1 gene mutations and literature review.Zhonghua Shiyong Erke Linchuang Zazhi201918761881
    [Google Scholar]
  53. MunchA.S. SaljicA. BoddumK. GrunnetM. HougaardC. JespersenT. Pharmacological rescue of mutated Kv3.1 ion-channel linked to progressive myoclonus epilepsies.Eur. J. Pharmacol.201883325526210.1016/j.ejphar.2018.06.01529894724
    [Google Scholar]
  54. CarpenterJ.C. SchorgeS. The voltage-gated channelopathies as a paradigm for studying epilepsy-causing genes.Curr. Opin. Physiol.20182717610.1016/j.cophys.2018.01.004
    [Google Scholar]
  55. NascimentoF.A. AndradeD.M. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations.Epileptic Disord.201618S213513810.1684/epd.2016.085927629860
    [Google Scholar]
  56. CameronJ.M. MaljevicS. NairU. Encephalopathies with KCNC1 variants: genotype-phenotype-functional correlations.Ann. Clin. Transl. Neurol.2019671263127210.1002/acn3.5082231353855
    [Google Scholar]
  57. KimS.Y. JangS.S. KimH. Genetic diagnosis of infantile-onset epilepsy in the clinic: Application of whole-exome sequencing following epilepsy gene panel testing.Clin. Genet.202199341842410.1111/cge.1390333349918
    [Google Scholar]
  58. ZhangY. AliS.R. NabboutR. BarciaG. KaczmarekL.K.A. KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation.J. Neurophysiol.2021126253253910.1152/jn.00257.202134232791
    [Google Scholar]
  59. PoirierK. ViotG. LombardiL. JaunyC. BilluartP. BienvenuT. Loss of Function of KCNC1 is associated with intellectual disability without seizures.Eur. J. Hum. Genet.201725556056410.1038/ejhg.2017.328145425
    [Google Scholar]
  60. VetriL. CalìF. VinciM. A de novo heterozygous mutation in KCNC2 gene implicated in severe developmental and epileptic encephalopathy.Eur. J. Med. Genet.202063410384810.1016/j.ejmg.2020.10384831972370
    [Google Scholar]
  61. LauD. de MieraE.V-S. ContrerasD. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins.J. Neurosci.200020249071908510.1523/JNEUROSCI.20‑24‑09071.200011124984
    [Google Scholar]
  62. RudyB. ChowA. LauD. Contributions of Kv3 channels to neuronal excitability.Ann. N. Y. Acad. Sci.1999868130434310.1111/j.1749‑6632.1999.tb11295.x10414303
    [Google Scholar]
  63. RydzaniczM Zwoliński P, Gasperowicz P, et al. A recurrent de novo variant supportsKCNC2 involvement in the pathogenesis of developmental and epileptic encephalopathy.Am. J. Med. Genet. A.2021185113384338910.1002/ajmg.a.6245534448338
    [Google Scholar]
  64. CandeloE Identification of novel ADGRV1 and KCNC2 variants using whole-exome sequencing in two colombian patients with usher and encephalopathy syndromes.202110.21203/rs.3.rs‑923411/v1
    [Google Scholar]
  65. MehinovicE. Germline mosaicism of a missense variant in KCNC2 in a multiplex family with autism and epilepsy.medRxiv21264306202110.1101/2021.12.06.21264306
    [Google Scholar]
  66. MukherjeeS. CassiniT.A. HuN. Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants.HGG Adv.202234100131
    [Google Scholar]
  67. SchwarzN. SimoneS. ManuelaP. Heterozygous variants in KCNC2 cause a broad spectrum of epilepsy phenotypes associated with characteristic functional alterations.medRxiv21257099202110.1101/2021.05.21.21257099
    [Google Scholar]
  68. DornT. RiegelM. SchinzelA. SiegelA.M. KrämerG. Epilepsy and trisomy 19q—different seizure patterns in a brother and a sister.Epilepsy Res.2001471-211912610.1016/S0920‑1211(01)00303‑511673026
    [Google Scholar]
  69. SinghB. OgiwaraI. KanedaM. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy.Neurobiol. Dis.200624224525310.1016/j.nbd.2006.07.00116934482
    [Google Scholar]
  70. LeeH. LinM.A. KornblumH.I. PapazianD.M. NelsonS.F. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation.Hum. Mol. Genet.201423133481348910.1093/hmg/ddu05624501278
    [Google Scholar]
  71. ZhangY. TachtsidisG. SchobC. KCND2 variants associated with global developmental delay differentially impair Kv4.2 channel gating.Hum. Mol. Genet.202130232300231410.1093/hmg/ddab19234245260
    [Google Scholar]
  72. LeeY.C. DurrA. MajczenkoK. Mutations in KCND3 cause spinocerebellar ataxia type 22.Ann. Neurol.201272685986910.1002/ana.2370123280837
    [Google Scholar]
  73. SmetsK. DuarriA. DeconinckT. First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy.BMC Med. Genet.20151615110.1186/s12881‑015‑0200‑326189493
    [Google Scholar]
  74. Yus-nájeraE. MuñozA. SalvadorN. Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation.Neuroscience2003120235336410.1016/S0306‑4522(03)00321‑X12890507
    [Google Scholar]
  75. NowackiT.A. JirschJ.D. Evaluation of the first seizure patient: Key points in the history and physical examination.Seizure201749546310.1016/j.seizure.2016.12.00228190753
    [Google Scholar]
  76. YangT. ChungS.K. ZhangW. Biophysical properties of 9 KCNQ1 mutations associated with long-QT syndrome.Circ. Arrhythm. Electrophysiol.20092441742610.1161/CIRCEP.109.85014919808498
    [Google Scholar]
  77. PartemiS. VidalM.C. StrianoP. Genetic and forensic implications in epilepsy and cardiac arrhythmias: a case series.Int. J. Legal Med.2015129349550410.1007/s00414‑014‑1063‑425119684
    [Google Scholar]
  78. KimK.W. KimK. KimH.J. KimB.I. BaekM. SuhB.C. Posttranscriptional modulation of KCNQ2 gene expression by the miR-106b microRNA family.Proc. Natl. Acad. Sci.202111847e211020011810.1073/pnas.211020011834785595
    [Google Scholar]
  79. WeckhuysenS. MandelstamS. SulsA. KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy.Ann. Neurol.2012711152510.1002/ana.2264422275249
    [Google Scholar]
  80. SoldovieriM.V. Boutry-KryzaN. MilhM. Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A.Hum. Mutat.201435335636710.1002/humu.2250024375629
    [Google Scholar]
  81. ChiozaB. Osei-LahA. WilkieH. Suggestive evidence for association of two potassium channel genes with different idiopathic generalised epilepsy syndromes.Epilepsy Res.200252210711610.1016/S0920‑1211(02)00195‑X12458027
    [Google Scholar]
  82. ZaraF. SpecchioN. StrianoP. Genetic testing in benign familial epilepsies of the first year of life: Clinical and diagnostic significance.Epilepsia201354342543610.1111/epi.1208923360469
    [Google Scholar]
  83. MiceliF. StrianoP. SoldovieriM.V. A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability.Epilepsia2015562e15e2010.1111/epi.1288725524373
    [Google Scholar]
  84. GrintonB.E. HeronS.E. PelekanosJ.T. Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome.Epilepsia20155671071108010.1111/epi.1302025982755
    [Google Scholar]
  85. FuscoC. FrattiniD. BassiM.T. A novel KCNQ3 gene mutation in a child with infantile convulsions and partial epilepsy with centrotemporal spikes.Eur. J. Paediatr. Neurol.201519110210310.1016/j.ejpn.2014.08.00625278462
    [Google Scholar]
  86. LauritanoA. MouttonS. LongobardiE. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy.Epilepsia Open20194346447510.1002/epi4.1235331440727
    [Google Scholar]
  87. LehmanA. ThoutaS. ManciniG.M.S. Loss-of-function and gain-of-function mutations in KCNQ5 cause intellectual disability or epileptic encephalopathy.Am. J. Hum. Genet.20171011657410.1016/j.ajhg.2017.05.01628669405
    [Google Scholar]
  88. KruegerJ. SchubertJ. KegeleJ. Loss of function variants in the KCNQ5 gene are associated with genetic generalized epilepsies.Bio Medicine20228410424410.1101/2021.04.20.21255696
    [Google Scholar]
  89. QuJ. LuS.H. LuZ.L. XuP. XiangD.X. QuQ. Pharmacogenetic and case–control study on potassium channel related gene variants and genetic generalized epilepsy.Medicine (Baltimore)20179626e732110.1097/MD.000000000000732128658141
    [Google Scholar]
  90. JorgeB.S. CampbellC.M. MillerA.R. Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility.Proc. Natl. Acad. Sci. USA2011108135443544810.1073/pnas.101753910821402906
    [Google Scholar]
  91. RinconA. Paez-RojasP. Suárez-ObandoF. 8q22. 2q22. 3 Microdeletion Syndrome Associated with Hearing Loss and Intractable Epilepsy.Case Rep. Genet.201920197608348
    [Google Scholar]
  92. HaoK. NiuT. XuX. FangZ. XuX. Single-nucleotide polymorphisms of the KCNS3 gene are significantly associated with airway hyperresponsiveness.Hum. Genet.2005116537838310.1007/s00439‑005‑1256‑515714333
    [Google Scholar]
  93. WangY. PengJ. BaiS. A PIK3R2 mutation in familial temporal lobe epilepsy as a possible pathogenic variant.Front. Genet.20211259670910.3389/fgene.2021.59670934040629
    [Google Scholar]
  94. MastrangeloM. SchefferI.E. BramswigN.C. Epilepsy in KCNH1-related syndromes.Epileptic Disord.201618212313610.1684/epd.2016.083027267311
    [Google Scholar]
  95. FukaiR. SaitsuH. TsurusakiY. De novo KCNH1 mutations in four patients with syndromic developmental delay, hypotonia and seizures.J. Hum. Genet.201661538138710.1038/jhg.2016.126818738
    [Google Scholar]
  96. YangY. VasylyevD.V. Dib-HajjF. Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state.J. Neurosci.20133342165861659310.1523/JNEUROSCI.2307‑13.201324133262
    [Google Scholar]
  97. BagnallR.D. CromptonD.E. SemsarianC. Genetic basis of sudden unexpected death in epilepsy.Front. Neurol.2017834810.3389/fneur.2017.0034828775708
    [Google Scholar]
  98. PartemiS. CestèleS. PezzellaM. Loss-of-function KCNH2 mutation in a family with long QT syndrome, epilepsy, and sudden death.Epilepsia2013548e112e11610.1111/epi.1225923899126
    [Google Scholar]
  99. SohM.S. BagnallR.D. BennettM.F. Loss‐of‐function variants in K v 11.1 cardiac channels as a biomarker for SUDEP.Ann. Clin. Transl. Neurol.2021871422143210.1002/acn3.5138134002542
    [Google Scholar]
  100. ZhangX. BertasoF. YooJ.W. Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy.Nat. Neurosci.20101391056105810.1038/nn.261020676103
    [Google Scholar]
  101. NeuschC. WeishauptJ.H. BährM. Kir channels in the CNS: emerging new roles and implications for neurological diseases.Cell Tissue Res.2003311213113810.1007/s00441‑002‑0669‑x12596033
    [Google Scholar]
  102. HibinoH. InanobeA. FurutaniK. MurakamiS. FindlayI. KurachiY. Inwardly rectifying potassium channels: their structure, function, and physiological roles.Physiol. Rev.201090129136610.1152/physrev.00021.200920086079
    [Google Scholar]
  103. DuW. BautistaJ.F. YangH. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder.Nat. Genet.200537773373810.1038/ng158515937479
    [Google Scholar]
  104. PattnaikB.R. AsumaM.P. SpottR. PillersD.A.M. Genetic defects in the hotspot of inwardly rectifying K+ (Kir) channels and their metabolic consequences: A review.Mol. Genet. Metab.20121051647210.1016/j.ymgme.2011.10.00422079268
    [Google Scholar]
  105. DaiA.I. BayA. GorucuS. SivasliE. BosnakM. KCNJ10 potassium ion channel single nucleotide polymorphism in pediatric patients with idiopathic generalized epilepsy.Neurol. Psychiatry Brain Res.2011171323510.1016/j.npbr.2011.02.008
    [Google Scholar]
  106. DaiA.I. AkcaliA. KoskaS. OztuzcuS. CengizB. DemiryürekA.T. Contribution of KCNJ10 gene polymorphisms in childhood epilepsy.J. Child Neurol.201530329630010.1177/088307381453956025008907
    [Google Scholar]
  107. SiccaF. ImbriciP. D’AdamoM.C. Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1.Neurobiol. Dis.201143123924710.1016/j.nbd.2011.03.01621458570
    [Google Scholar]
  108. BuonoR.J. LohoffF.W. SanderT. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility.Epilepsy Res.2004582-317518310.1016/j.eplepsyres.2004.02.00315120748
    [Google Scholar]
  109. HeuserK. NagelhusE.A. TaubøllE. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy.Epilepsy Res.2010881556410.1016/j.eplepsyres.2009.09.02319864112
    [Google Scholar]
  110. ReicholdM. ZdebikA.A. LiebererE. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function.Proc. Natl. Acad. Sci.201010732144901449510.1073/pnas.100307210720651251
    [Google Scholar]
  111. ManisA.D. PalyginO. IsaevaE. Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat.JCI Insight202161e14325110.1172/jci.insight.14325133232300
    [Google Scholar]
  112. SchlingmannK.P. ReniguntaA. HoornE.J. Defects in KCNJ16 cause a novel tubulopathy with hypokalemia, salt wasting, disturbed acid-base homeostasis, and sensorineural deafness.J. Am. Soc. Nephrol.20213261498151210.1681/ASN.202011158733811157
    [Google Scholar]
  113. BurgraffN PavolvT LevchenkoV Altered pH homeostasis and acoustic induced seizures associated with kcnj16 loss of function mutation. The FASEB Journal201731S11072.7
    [Google Scholar]
  114. LopatinA.N. MakhinaE.N. NicholsC.G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification.Nature1994372650436636910.1038/372366a07969496
    [Google Scholar]
  115. AmbrosiniE. SiccaF. BrignoneM.S. Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism–epilepsy phenotype.Hum. Mol. Genet.201423184875488610.1093/hmg/ddu20124794859
    [Google Scholar]
  116. PatilN. CoxD.R. BhatD. FahamM. MyersR.M. PetersonA.S. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation.Nat. Genet.199511212612910.1038/ng1095‑1267550338
    [Google Scholar]
  117. SlesingerP.A. PatilN. LiaoY.J. JanY.N. JanL.Y. CoxD.R. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels.Neuron199616232133110.1016/S0896‑6273(00)80050‑18789947
    [Google Scholar]
  118. HallmannK. DurnerM. SanderT. SteinleinO.K. Mutation analysis of the inwardly rectifying K+ channels KCNJ6 (GIRK2) and KCNJ3 (GIRK1) in juvenile myoclonic epilepsy.Am. J. Med. Genet.200096181110.1002/(SICI)1096‑8628(20000207)96:1<8:AID‑AJMG3>3.0.CO;2‑S10686544
    [Google Scholar]
  119. LucariniN. VerrottiA. NapolioniV. BoscoG. CuratoloP. Genetic polymorphisms and idiopathic generalized epilepsies.Pediatr. Neurol.200737315716410.1016/j.pediatrneurol.2007.06.00117765802
    [Google Scholar]
  120. KöhlingR. WolfartJ. Potassium channels in epilepsy.Cold Spring Harb. Perspect. Med.201665a02287110.1101/cshperspect.a02287127141079
    [Google Scholar]
  121. WeiA.D. GutmanG.A. AldrichR. ChandyK.G. GrissmerS. WulffH. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels.Pharmacol. Rev.200557446347210.1124/pr.57.4.916382103
    [Google Scholar]
  122. MartireM. BarreseV. D’AmicoM. Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals.J. Neurochem.2010115241142210.1111/j.1471‑4159.2010.06938.x20681950
    [Google Scholar]
  123. JinW. SugayaA. TsudaT. OhguchiH. SugayaE. Relationship between large conductance calcium-activated potassium channel and bursting activity.Brain Res.20008601-2212810.1016/S0006‑8993(00)01943‑010727620
    [Google Scholar]
  124. ErmolinskyB. ArshadmansabM.F. Pacheco OtaloraL.F. ZareiM.M. Garrido-SanabriaE.R. Deficit of Kcnma1 mRNA expression in the dentate gyrus of epileptic rats.Neuroreport200819131291129410.1097/WNR.0b013e3283094bb618695509
    [Google Scholar]
  125. LeeUS CuiJ β subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia.J. Physiol.200958771481149810.1113/jphysiol.2009.16924319204046
    [Google Scholar]
  126. AlagozM. KheradN. BozkurtS. YukselA. New mutations in KCNT2 gene causing early infantile epileptic encephalopathy type 57: Case study and literature review.Acta Biochim. Pol.202067343143410.18388/abp.2020_536432931186
    [Google Scholar]
  127. GururajS. PalmerE.E. SheehanG.D. A de novo mutation in the sodium-activated potassium channel KCNT2 alters ion selectivity and causes epileptic encephalopathy.Cell Rep.201721492693310.1016/j.celrep.2017.09.08829069600
    [Google Scholar]
  128. InuzukaL.M. Macedo-SouzaL.I. Della-RipaB. Additional observation of a de novo pathogenic variant in KCNT2 leading to epileptic encephalopathy with clinical features of frontal lobe epilepsy.Brain Dev.202042969169510.1016/j.braindev.2020.05.00332773162
    [Google Scholar]
  129. AmbrosinoP. SoldovieriM.V. BastT. De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy.Ann. Neurol.20188361198120410.1002/ana.2524829740868
    [Google Scholar]
  130. MaoX. BruneauN. GaoQ. The epilepsy of infancy with migrating focal seizures: identification of de novo mutations of the KCNT2 gene that exert inhibitory effects on the corresponding heteromeric KNa1. 1/KNa1. 2 potassium channel.Front. Cell. Neurosci.202014110.3389/fncel.2020.0000132038177
    [Google Scholar]
  131. BarciaG. FlemingM.R. DeligniereA. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy.Nat. Genet.201244111255125910.1038/ng.244123086397
    [Google Scholar]
  132. GongP. JiaoX. YuD. YangZ. Case report: Causative De novo variants of KCNT2 for developmental and epileptic encephalopathy.Front. Genet.20211264955610.3389/fgene.2021.64955634276763
    [Google Scholar]
  133. TianY. Analysis of a family with inherited generalized epilepsy with febrile seizures plus caused by the KCNT2 mutation and literature review.Zhonghua Shiyong Erke Linchuang Zazhi2021136139
    [Google Scholar]
  134. KimG.E. KronengoldJ. BarciaG. Human slack potassium channel mutations increase positive cooperativity between individual channels.Cell Rep.2014951661167210.1016/j.celrep.2014.11.01525482562
    [Google Scholar]
  135. MøllerR.S. HeronS.E. LarsenL.H.G. Mutations in KCNT1 cause a spectrum of focal epilepsies.Epilepsia2015569e114e12010.1111/epi.1307126122718
    [Google Scholar]
  136. OhbaC. KatoM. TakahashiN. De novoKCNT 1 mutations in early-onset epileptic encephalopathy.Epilepsia2015569e121e12810.1111/epi.1307226140313
    [Google Scholar]
  137. RizzoF. AmbrosinoP. GuacciA. Characterization of two de novo KCNT1 mutations in children with malignant migrating partial seizures in infancy.Mol. Cell. Neurosci.201672546310.1016/j.mcn.2016.01.00426784557
    [Google Scholar]
  138. HeronS.E. SmithK.R. BahloM. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy.Nat. Genet.201244111188119010.1038/ng.244023086396
    [Google Scholar]
  139. ColeB.A. ClapcoteS.J. MuenchS.P. LippiatJ.D. Targeting KNa1.1 channels in KCNT1-associated epilepsy.Trends Pharmacol. Sci.202142870071310.1016/j.tips.2021.05.00334074526
    [Google Scholar]
  140. SørensenA.T. KokaiaM. Novel approaches to epilepsy treatment.Epilepsia201354111010.1111/epi.1200023106744
    [Google Scholar]
  141. GhoshS. SinhaJ.K. KhanT. Pharmacological and therapeutic approaches in the treatment of epilepsy.Biomedicines20219547010.3390/biomedicines905047033923061
    [Google Scholar]
  142. BergeyG.K. Initial treatment of epilepsy: Special issues in treating the elderly.Neurology20046310Suppl. 4S40S4810.1212/WNL.63.10_suppl_4.S4015557550
    [Google Scholar]
  143. WaszkielewiczA.M. GuniaA. SzkaradekN. Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders.Curr. Med. Chem.201320101241128510.2174/092986731132010000523409712
    [Google Scholar]
  144. SanchetiJ.S. SathayeS. Voltage gated ion channels as therapeutic target for drug discovery.J Pharm Biosci201317688
    [Google Scholar]
  145. WickendenA.D. YuW. ZouA. JeglaT. WagonerP.K. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels.Mol. Pharmacol.200058359160010.1124/mol.58.3.59110953053
    [Google Scholar]
  146. Cárdenas-RodríguezN. Carmona-AparicioL. Pérez-LozanoD.L. Ortega-CuellarD. Gómez-ManzoS. Ignacio-MejíaI. Genetic variations associated with pharmacoresistant epilepsy. (Review).Mol. Med. Rep.20202141685170132319641
    [Google Scholar]
  147. KoA. YounS.E. KimS.H. Targeted gene panel and genotype-phenotype correlation in children with developmental and epileptic encephalopathy.Epilepsy Res.2018141485510.1016/j.eplepsyres.2018.02.00329455050
    [Google Scholar]
  148. ParriniE. MariniC. MeiD. Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes.Hum. Mutat.201738221622510.1002/humu.2314927864847
    [Google Scholar]
  149. ZhangQ. LiJ. ZhaoY. BaoX. WeiL. WangJ. Gene mutation analysis of 175 Chinese patients with early-onset epileptic encephalopathy.Clin. Genet.201791571772410.1111/cge.1290127779742
    [Google Scholar]
  150. MiaoP. PengJ. ChenC. GaiN. YinF. A novel mutation in KCNB1 gene in a child with neuropsychiatric comorbidities with both intellectual disability and epilepsy and review of literatureZhonghua Er Ke Za Zhi201755211511928173649
    [Google Scholar]
  151. GuoY. YanK.P. QuQ. Common variants of KCNJ10 are associated with susceptibility and anti-epileptic drug resistance in Chinese genetic generalized epilepsies.PLoS One2015104e012489610.1371/journal.pone.012489625874548
    [Google Scholar]
  152. MartinH.C. KimG.E. PagnamentaA.T. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis.Hum. Mol. Genet.201423123200321110.1093/hmg/ddu03024463883
    [Google Scholar]
  153. SerinoD. SpecchioN. PontrelliG. VigevanoF. FuscoL. Video/EEG findings in a KCNQ2 epileptic encephalopathy: A case report and revision of literature data.Epileptic Disord.201315215816510.1684/epd.2013.057823774309
    [Google Scholar]
  154. ZhangL. WangY. Gene therapy in epilepsy.Biomed. Pharmacother.202114311207510.1016/j.biopha.2021.11207534488082
    [Google Scholar]
  155. WykesR.C. KullmannD.M. PavlovI. MagloireV. Optogenetic approaches to treat epilepsy.J. Neurosci. Methods201626021522010.1016/j.jneumeth.2015.06.00426072246
    [Google Scholar]
  156. Krook-MagnusonE. ArmstrongC. OijalaM. SolteszI. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy.Nat. Commun.201341137610.1038/ncomms237623340416
    [Google Scholar]
  157. WessJ. NakajimaK. JainS. Novel designer receptors to probe GPCR signaling and physiology.Trends Pharmacol. Sci.201334738539210.1016/j.tips.2013.04.00623769625
    [Google Scholar]
  158. DuarteF. DéglonN. Genome editing for CNS disorders.Front. Neurosci.20201457906210.3389/fnins.2020.57906233192264
    [Google Scholar]
  159. SnowballA. ChabrolE. WykesR.C. Epilepsy gene therapy using an engineered potassium channel.J. Neurosci.201939163159316910.1523/JNEUROSCI.1143‑18.201930755487
    [Google Scholar]
  160. HanZ. ChenC. ChristiansenA. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome.Sci. Transl. Med.202012558eaaz610010.1126/scitranslmed.aaz610032848094
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1871527322666221227112621
Loading
/content/journals/cnsnddt/10.2174/1871527322666221227112621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test