Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Nicotine dependence has deleterious neurological impacts. Previous studies found an association between cigarette smoking and accelerating age-related thinning of the brain's cortex and subsequent cognitive decline. Smoking is considered the third most common risk factor for dementia, which prompted the inclusion of smoking cessation in dementia prevention strategies. Traditional pharmacologic options for smoking cessation include nicotine transdermal patches, bupropion and varenicline. However, based on smokers’ genetic makeup, pharmacogenetics can be used to develop novel therapies to replace these traditional approaches. Genetic variability of cytochrome P450 2A6 has a major impact on smokers’ behavior and their response to quitting therapies. Gene polymorphism in nicotinic acetylcholine receptor subunits also has a great influence on the ability to quit smoking. In addition, polymorphism of certain nicotinic acetylcholine receptors was found to affect the risk of dementia and the impact of tobacco smoking on the development of Alzheimer's disease. Nicotine dependence involves the activation of pleasure response through the stimulation of dopamine release. Central dopamine receptors, catechol-o-methyltransferase and the dopamine transporter protein, regulate synaptic dopamine levels. The genes of these molecules are potential targets for novel smoking cessation drugs. Pharmacogenetic studies of smoking cessation also investigated other molecules, such as ANKK1 and dopamine-beta-hydroxylase (DBH). In this perspective article, we aim to highlight the promising role of pharmacogenetics in the development of effective drugs for smoking cessation, which can increase the success rate of smoking quitting plans and ultimately reduce the incidence of neurodegeneration and dementia.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527322666230220121655
2024-01-01
2025-01-07
Loading full text...

Full text loading...

/deliver/fulltext/cnsnddt/23/1/CNSNDDT-23-1-02.html?itemId=/content/journals/cnsnddt/10.2174/1871527322666230220121655&mimeType=html&fmt=ahah

References

  1. García-GómezL. Hernández-PérezA. Noé-DíazV. Riesco-MirandaJ.A. Jiménez-RuizC. Smoking cessation treatments: Current psychological and pharmacological options.Rev. Invest. Clin.201971171610.24875/RIC.1800262930810545
    [Google Scholar]
  2. DurazzoT.C. MattssonN. WeinerM.W. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms.Alzheimers Dement.2014103SS122S14510.1016/j.jalz.2014.04.00924924665
    [Google Scholar]
  3. JordanC.J. XiZ-X. Discovery and development of varenicline for smoking cessation.Expert Opin. Drug Discov.2018137671683
    [Google Scholar]
  4. HendricksonL.M. GuildfordM.J. TapperA.R. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence.Front. Psychiatry201342910.3389/fpsyt.2013.0002923641218
    [Google Scholar]
  5. Le NovèreN. ChangeuxJ.P. Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells.J. Mol. Evol.199540215517210.1007/BF001671107699721
    [Google Scholar]
  6. HoT.N.T. AbrahamN. LewisR.J. Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins.Front. Neurosci.20201460900510.3389/fnins.2020.60900533324158
    [Google Scholar]
  7. AlbuquerqueE.X. PereiraE.F.R. AlkondonM. RogersS.W. Mammalian nicotinic acetylcholine receptors: From structure to function.Physiol. Rev.20098917312010.1152/physrev.00015.200819126755
    [Google Scholar]
  8. AdinoffB. Neurobiologic processes in drug reward and addiction.Harv. Rev. Psychiatry200412630532010.1080/1067322049091084415764467
    [Google Scholar]
  9. XiaoC. ZhouC. JiangJ. YinC. Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence.Acta Pharmacol. Sin.20204111910.1038/s41401‑019‑0299‑431554960
    [Google Scholar]
  10. SalloumN.C. BuchalterE.L.F. ChananiS. From genes to treatments: A systematic review of the pharmacogenetics in smoking cessation.Pharmacogenomics2018191086187110.2217/pgs‑2018‑002329914292
    [Google Scholar]
  11. BergenA.W. JavitzH.S. KrasnowR. Nicotinic acetylcholine receptor variation and response to smoking cessation therapies.Pharmacogenet. Genomics20132329410310.1097/FPC.0b013e32835cdabd23249876
    [Google Scholar]
  12. ChenL.S. BakerT.B. JorenbyD. Genetic variation (CHRNA5), medication (combination nicotine replacement therapy vs. varenicline), and smoking cessation.Drug Alcohol Depend.201515427828210.1016/j.drugalcdep.2015.06.02226142345
    [Google Scholar]
  13. ChenX. ChenJ. WilliamsonV.S. Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2009150B792693310.1002/ajmg.b.3091919132693
    [Google Scholar]
  14. ChenL.S. BloomA.J. BakerT.B. Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6).Addiction2014109112813710.1111/add.1235324033696
    [Google Scholar]
  15. Tobacco and Genetics ConsortiumGenome-wide meta-analyses identify multiple loci associated with smoking behavior.Nat. Genet.201042544144710.1038/ng.57120418890
    [Google Scholar]
  16. Rocha SantosJ. TomazP.R.X. IssaJ.S. CHRNA4 rs1044396 is associated with smoking cessation in varenicline therapy.Front. Genet.201564610.3389/fgene.2015.0004625774163
    [Google Scholar]
  17. BarrJ. SharmaC.S. SarkarS. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells.Mol. Cell. Biochem.20072971-2939910.1007/s11010‑006‑9333‑117021677
    [Google Scholar]
  18. AnbarasiK. VaniG. DeviC.S.S. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats.J. Environ. Pathol. Toxicol. Oncol.200524322523410.1615/JEnvPathToxOncol.v24.i3.8016050806
    [Google Scholar]
  19. Rueff-BarrosoC.R. TrajanoE.T. AlvesJ.N. Organ-related cigarette smoke-induced oxidative stress is strain-dependent.Med. Sci. Monit.2010167BR218BR22620581770
    [Google Scholar]
  20. NordbergA. Hellström-LindahlE. LeeM. Chronic nicotine treatment reduces β-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw).J. Neurochem.200281365565810.1046/j.1471‑4159.2002.00874.x12065674
    [Google Scholar]
  21. EcheverriaV. ZeitlinR. BurgessS. Cotinine reduces amyloid-β aggregation and improves memory in Alzheimer’s disease mice.J. Alzheimers Dis.201124481783510.3233/JAD‑2011‑10213621321389
    [Google Scholar]
  22. KlunkW.E. EnglerH. NordbergA. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B.Ann. Neurol.200455330631910.1002/ana.2000914991808
    [Google Scholar]
  23. WengP.H. ChenJ.H. ChenT.F. CHRNA7 polymorphisms and dementia risk: Interactions with apolipoprotein ε4 and cigarette smoking.Sci. Rep.2016612723110.1038/srep2723127249957
    [Google Scholar]
  24. RussoP. KisialiouA. MoroniR. PrinziG. FiniM. Effect of Genetic Polymorphisms (SNPs) in CHRNA7 Gene on Response to Acetylcholinesterase Inhibitors (AChEI) in Patients with Alzheimer’s Disease.Curr. Drug Targets201718101179119026424395
    [Google Scholar]
  25. WengP.H. ChenJ.H. ChenT.F. CHRNA7 polymorphisms and response to cholinesterase inhibitors in Alzheimer’s disease.PLoS One2013812e8405910.1371/journal.pone.008405924391883
    [Google Scholar]
  26. LiM.D. ChengR. MaJ.Z. SwanG.E. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins.Addiction2003981233110.1046/j.1360‑0443.2003.00295.x12492752
    [Google Scholar]
  27. DaniJ.A. BertrandD. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.Annu. Rev. Pharmacol. Toxicol.200747169972910.1146/annurev.pharmtox.47.120505.10521417009926
    [Google Scholar]
  28. ZhuH. ClemensS. SawchukM. HochmanS. Unaltered D1, D2, D4, and D5 dopamine receptor mRNA expression and distribution in the spinal cord of the D3 receptor knockout mouse.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.20081941195796210.1007/s00359‑008‑0368‑518797877
    [Google Scholar]
  29. HermanA.I. DeVitoE.E. JensenK.P. SofuogluM. Pharmacogenetics of nicotine addiction: Role of dopamine.Pharmacogenomics201415222123410.2217/pgs.13.24624444411
    [Google Scholar]
  30. MurphyM. JohnstoneE. GriffithsS-E. Does the DRD2-Taq1 A polymorphism influence treatment response to bupropion hydrochloride for reduction of the nicotine withdrawal syndrome?Nicotine Tob. Res.20035693594210.1080/1462220031000161529514668077
    [Google Scholar]
  31. DavidS.P. StrongD.R. MunafòM.R. Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials.Nicotine Tob. Res.20079121251125710.1080/1462220070170502718058343
    [Google Scholar]
  32. SwanG.E. ValdesA.M. RingH.Z. Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion SR.Pharmacogenomics J.200551212910.1038/sj.tpj.650028115492764
    [Google Scholar]
  33. WangE. DingY.C. FlodmanP. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus.Am. J. Hum. Genet.200474593194410.1086/42085415077199
    [Google Scholar]
  34. DavidS.P. MunafòM.R. MurphyM F G. ProctorM. WaltonR.T. JohnstoneE.C. Genetic variation in the dopamine D4 receptor (DRD4) gene and smoking cessation: Follow-up of a randomised clinical trial of transdermal nicotine patch.Pharmacogenomics J.20088212212810.1038/sj.tpj.650044717387332
    [Google Scholar]
  35. TomlinsonG. TsohJ. De MoorC. The effects of the DRD2 polymorphism on smoking cessation and negative affect: Evidence for a pharmacogenetic effect on mood.Nicotine Tob. Res.20046222923910.1080/1462220041000167639615203796
    [Google Scholar]
  36. MillJ. AshersonP. BrowesC. D’SouzaU. CraigI. Expression of the dopamine transporter gene is regulated by the 3? UTR VNTR: Evidence from brain and lymphocytes using quantitative RT-PCR.Am. J. Med. Genet.2002114897597910.1002/ajmg.b.1094812457396
    [Google Scholar]
  37. BerrettiniW.H. WileytoE.P. EpsteinL. Catechol-O-methyltransferase (COMT) gene variants predict response to bupropion therapy for tobacco dependence.Biol. Psychiatry200761111111810.1016/j.biopsych.2006.04.03016876132
    [Google Scholar]
  38. JohnstoneE.C. YudkinP.L. HeyK. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch.Pharmacogenetics2004142839010.1097/00008571‑200402000‑0000215077009
    [Google Scholar]
  39. OttT. NiederA. Dopamine and cognitive control in prefrontal cortex.Trends Cogn. Sci.201923321323410.1016/j.tics.2018.12.00630711326
    [Google Scholar]
  40. WestbrookA. BraverT.S. Dopamine does double duty in motivating cognitive effort.Neuron201689469571010.1016/j.neuron.2015.12.02926889810
    [Google Scholar]
  41. JayT.M. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms.Prog. Neurobiol.200369637539010.1016/S0301‑0082(03)00085‑612880632
    [Google Scholar]
  42. AxmacherN. CohenM.X. FellJ. Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens.Neuron201065454154910.1016/j.neuron.2010.02.00620188658
    [Google Scholar]
  43. LismanJ.E. GraceA.A. The hippocampal-VTA loop: Controlling the entry of information into long-term memory.Neuron200546570371310.1016/j.neuron.2005.05.00215924857
    [Google Scholar]
  44. TakahashiH. KatoM. TakanoH. Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions.J. Neurosci.20082846120321203810.1523/JNEUROSCI.3446‑08.200819005068
    [Google Scholar]
  45. Castillo DíazF. CaffinoL. FumagalliF. Bidirectional role of dopamine in learning and memory-active forgetting.Neurosci. Biobehav. Rev.202113195396310.1016/j.neubiorev.2021.10.01134655655
    [Google Scholar]
  46. PanX. KamingaA.C. WenS.W. WuX. AcheampongK. LiuA. Dopamine and dopamine receptors in alzheimer’s disease: A systematic review and network meta-analysis.Front. Aging Neurosci.20191117510.3389/fnagi.2019.0017531354471
    [Google Scholar]
  47. NobiliA. LatagliataE.C. ViscomiM.T. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease.Nat. Commun.2017811472710.1038/ncomms1472728367951
    [Google Scholar]
  48. BrennerD.E. KukullW.A. van BelleG. Relationship between cigarette smoking and Alzheimer’s disease in a population-based case-control study.Neurology199343229330010.1212/WNL.43.2.2938437692
    [Google Scholar]
  49. SalibE. HillierV. A case-control study of smoking and Alzheimer’s disease.Int. J. Geriatr. Psychiatry199712329530010.1002/(SICI)1099‑1166(199703)12:3<295:AID‑GPS476>3.0.CO;2‑39152711
    [Google Scholar]
  50. CataldoJ.K. ProchaskaJ.J. GlantzS.A. Cigarette smoking is a risk factor for Alzheimer’s Disease: An analysis controlling for tobacco industry affiliation.J. Alzheimers Dis.201019246548010.3233/JAD‑2010‑124020110594
    [Google Scholar]
  51. AlmeidaO.P. HulseG.K. LawrenceD. FlickerL. Smoking as a risk factor for Alzheimer’s disease: Contrasting evidence from a systematic review of case-control and cohort studies.Addiction2002971152810.1046/j.1360‑0443.2002.00016.x11895267
    [Google Scholar]
  52. deBryS. TiffanyS. Tobacco-Induced Neurotoxicity Of Adolescent Cognitive Development (TINACD): A proposed model for the development of impulsivity in nicotine dependence.Nicotine Tob. Res.2008101112510.1080/1462220070176781118188741
    [Google Scholar]
  53. AkkermansS.E.A. van RooijD. RommelseN. Effect of tobacco smoking on frontal cortical thickness development: A longitudinal study in a mixed cohort of ADHD-affected and -unaffected youth.Eur. Neuropsychopharmacol.201727101022103110.1016/j.euroneuro.2017.07.00728764867
    [Google Scholar]
  54. DurazzoT.C. MeyerhoffD.J. YoderK.K. Cigarette smoking is associated with cortical thinning in anterior frontal regions, insula and regions showing atrophy in early Alzheimer’s Disease.Drug Alcohol Depend.201819227728410.1016/j.drugalcdep.2018.08.00930300802
    [Google Scholar]
  55. KaramaS. DucharmeS. CorleyJ. Cigarette smoking and thinning of the brain’s cortex.Mol. Psychiatry201520677878510.1038/mp.2014.18725666755
    [Google Scholar]
  56. WangC. ZhouC. GuoT. HuangP. XuX. ZhangM. Association between cigarette smoking and Parkinson’s disease: A neuroimaging study.Ther. Adv. Neurol. Disord.2022151756286422109256610.1177/1756286422109256635464739
    [Google Scholar]
  57. AlhowailA. Molecular insights into the benefits of nicotine on memory and cognition.Mol. Med. Rep.202123639810.3892/mmr.2021.1203733786606
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1871527322666230220121655
Loading
/content/journals/cnsnddt/10.2174/1871527322666230220121655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test