Skip to content
2000
image of Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a complex, multiple etiology that is marked by impaired social interaction, communication, and repetitive behaviour. There is presently no pharmaceutical treatment for the core symptoms of ASD, even though the prevalence of ASD is increasing worldwide. Treatment of autism spectrum disorder involves the interaction of numerous signalling pathways, such as the Wnt/beta-catenin pathway, probiotics and kynurenine pathway, PPAR pathway, PI3K-AKT-mTOR pathway, Hedgehog signaling pathway, . The scientific literature has revealed TWEAK/Fn14 to not be explored in the autism spectrum disorder. and , TWEAK can control a wide range of cellular responses. Recent research has revealed that TWEAK and Fn14 are expressed in the Central Nervous System (CNS) and upregulated in perivascular endothelial cells, astrocytes, neurons, and microglia in response to various stimuli, including cerebral ischemia. This upregulation is followed by cell death and an increase in Blood-brain Barrier (BBB) permeability. The study has revealed that Aurintricarboxylic Acid (ATA) acts as an agent that suppresses TWEAK/Fn14 signaling. Similarly, from the discussion, it has been emphasized that the proposed molecular TWEAK/Fn14 signalling pathway can be considered as a therapeutic approach in the management of autism spectrum disorder.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273330549241015073953
2024-10-28
2024-11-29
Loading full text...

Full text loading...

References

  1. Rudra A. Belmonte M.K. Soni P.K. Banerjee S. Mukerji S. Chakrabarti B. Prevalence of autism spectrum disorder and autistic symptoms in a school‐based cohort of children in Kolkata, India. Autism Res. 2017 10 10 1597 1605 10.1002/aur.1812 28544637
    [Google Scholar]
  2. Bambini-Junior V. Zanatta G. Della Flora Nunes G. Mueller de Melo G. Michels M. Fontes-Dutra M. Nogueira Freire V. Riesgo R. Gottfried C. Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci. Lett. 2014 583 176 181 10.1016/j.neulet.2014.09.039 25263788
    [Google Scholar]
  3. Kumar S. Behl T. Sachdeva M. Sehgal A. Kumari S. Kumar A. Kaur G. Yadav H.N. Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021 264 118661 10.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  4. Foley K.A. MacFabe D.F. Vaz A. Ossenkopp K.P. Kavaliers M. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: Implications for autism spectrum disorders. Int. J. Dev. Neurosci. 2014 39 1 68 78 10.1016/j.ijdevneu.2014.04.001 24747144
    [Google Scholar]
  5. Courchesne E. Campbell K. Solso S. Brain growth across the life span in autism: Age-specific changes in anatomical pathology. Brain Res. 2011 1380 138 145 10.1016/j.brainres.2010.09.101 20920490
    [Google Scholar]
  6. Pardo C.A. Vargas D.L. Zimmerman A.W. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 2005 17 6 485 495 10.1080/02646830500381930 16401547
    [Google Scholar]
  7. Azmitia E.C. Saccomano Z.T. Alzoobaee M.F. Boldrini M. Whitaker-Azmitia P.M. Persistent angiogenesis in the autism brain: an immunocytochemical study of postmortem cortex, brainstem and cerebellum. J. Autism Dev. Disord. 2016 46 4 1307 1318 10.1007/s10803‑015‑2672‑6 26667147
    [Google Scholar]
  8. Prabhakar N.K. Khan H. Grewal A.K. Singh T.G. Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches. Int. Immunopharmacol. 2022 108 108902 10.1016/j.intimp.2022.108902 35729835
    [Google Scholar]
  9. Wiley S.R. Cassiano L. Lofton T. Davis-Smith T. Winkles J.A. Lindner V. Liu H. Daniel T.O. Smith C.A. Fanslow W.C. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 2001 15 5 837 846 10.1016/S1074‑7613(01)00232‑1 11728344
    [Google Scholar]
  10. Meighan-Mantha R.L. Hsu D.K.W. Guo Y. Brown S.A.N. Feng S.L.Y. Peifley K.A. Alberts G.F. Copeland N.G. Gilbert D.J. Jenkins N.A. Richards C.M. Winkles J.A. The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J. Biol. Chem. 1999 274 46 33166 33176 10.1074/jbc.274.46.33166 10551889
    [Google Scholar]
  11. Burkly L.C. Michaelson J.S. Hahm K. Jakubowski A. Zheng T.S. TWEAKing tissue remodeling by a multifunctional cytokine: Role of TWEAK/Fn14 pathway in health and disease. Cytokine 2007 40 1 1 16 10.1016/j.cyto.2007.09.007 17981048
    [Google Scholar]
  12. Tran N.L. McDonough W.S. Savitch B.A. Fortin S.P. Winkles J.A. Symons M. Nakada M. Cunliffe H.E. Hostetter G. Hoelzinger D.B. Rennert J.L. Michaelson J.S. Burkly L.C. Lipinski C.A. Loftus J.C. Mariani L. Berens M.E. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res. 2006 66 19 9535 9542 10.1158/0008‑5472.CAN‑06‑0418 17018610
    [Google Scholar]
  13. Zheng T.S. Burkly L.C. No end in site: TWEAK/Fn14 activation and autoimmunity associated- end-organ pathologies. J. Leukoc. Biol. 2008 84 2 338 347 10.1189/jlb.0308165 18483204
    [Google Scholar]
  14. Chicheportiche Y. Bourdon P.R. Xu H. Hsu Y.M. Scott H. Hession C. Garcia I. Browning J.L. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J. Biol. Chem. 1997 272 51 32401 32410 10.1074/jbc.272.51.32401 9405449
    [Google Scholar]
  15. Wiley S.R. Winkles J.A. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 2003 14 3-4 241 249 10.1016/S1359‑6101(03)00019‑4 12787562
    [Google Scholar]
  16. Kawakita T. Shiraki K. Yamanaka Y. Yamaguchi Y. Saitou Y. Enokimura N. Yamamoto N. Okano H. Sugimoto K. Murata K. Nakano T. Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem. Biophys. Res. Commun. 2004 318 3 726 733 10.1016/j.bbrc.2004.04.084 15144899
    [Google Scholar]
  17. Kim S.H. Kang Y.J. Kim W.J. Woo D.K. Lee Y. Kim D.I. Park Y.B. Kwon B.S. Park J.E. Lee W.H. TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ. J. 2004 68 4 396 399 10.1253/circj.68.396 15056843
    [Google Scholar]
  18. Kawakita T. Shiraki K. Yamanaka Y. Yamaguchi Y. Saitou Y. Enokimura N. Yamamoto N. Okano H. Sugimoto K. Murata K. Nakano T. Functional expression of TWEAK in human colonic adenocarcinoma cells. Int. J. Oncol. 2005 26 1 87 93 10.3892/ijo.26.1.87 15586228
    [Google Scholar]
  19. Maecker H. Varfolomeev E. Kischkel F. Lawrence D. LeBlanc H. Lee W. Hurst S. Danilenko D. Li J. Filvaroff E. Yang B. Daniel D. Ashkenazi A. TWEAK attenuates the transition from innate to adaptive immunity. Cell 2005 123 5 931 944 10.1016/j.cell.2005.09.022 16325585
    [Google Scholar]
  20. Behl T. Bungau S. Kumar K. Zengin G. Khan F. Kumar A. Kaur R. Venkatachalam T. Tit D.M. Vesa C.M. Barsan G. Mosteanu D.E. Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother. 2020 130 110714 10.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  21. Chacón M. Richart C. Gómez J. Megía A. Vilarrasa N. Fernándezreal J. Garcíaespaña A. Miranda M. Masdevall C. Ricard W. Caubet E. Soler J. Vendrell J. Expression of TWEAK and its receptor Fn14 in human subcutaneous adipose tissue. Relationship with other inflammatory cytokines in obesity. Cytokine 2006 33 3 129 137 10.1016/j.cyto.2005.12.005 16503147
    [Google Scholar]
  22. Marsters S.A. Sheridan J.P. Pitti R.M. Brush J. Goddard A. Ashkenazi A. Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 1998 8 9 525 S2 10.1016/S0960‑9822(98)70204‑0 9560343
    [Google Scholar]
  23. Pradet-Balade B. Medema J.P. López-Fraga M. Lozano J.C. Kolfschoten G.M. Picard A. Martínez-A C. Garcia-Sanz J.A. Hahne M. An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J. 2002 21 21 5711 5720 10.1093/emboj/cdf565 12411489
    [Google Scholar]
  24. Brown S.A.N. Richards C.M. Hanscom H.N. Feng S.L.Y. Winkles J.A. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem. J. 2003 371 2 395 403 10.1042/bj20021730 12529173
    [Google Scholar]
  25. Jakubowski A. Ambrose C. Parr M. Lincecum J.M. Wang M.Z. Zheng T.S. Browning B. Michaelson J.S. Baestcher M. Wang B. Bissell D.M. Burkly L.C. TWEAK induces liver progenitor cell proliferation. J. Clin. Invest. 2005 115 9 2330 2340 10.1172/JCI23486 16110324
    [Google Scholar]
  26. Inoue J. Ishida T. Tsukamoto N. Kobayashi N. Naito A. Azuma S. Yamamoto T. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp. Cell Res. 2000 254 1 14 24 10.1006/excr.1999.4733 10623461
    [Google Scholar]
  27. Tran N.L. McDonough W.S. Savitch B.A. Sawyer T.F. Winkles J.A. Berens M.E. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J. Biol. Chem. 2005 280 5 3483 3492 10.1074/jbc.M409906200 15611130
    [Google Scholar]
  28. Xu H. Okamoto A. Ichikawa J. Ando T. Tasaka K. Masuyama K. Ogawa H. Yagita H. Okumura K. Nakao A. TWEAK/Fn14 interaction stimulates human bronchial epithelial cells to produce IL-8 and GM-CSF. Biochem. Biophys. Res. Commun. 2004 318 2 422 427 10.1016/j.bbrc.2004.04.036 15120617
    [Google Scholar]
  29. Jin L. Nakao A. Nakayama M. Yamaguchi N. Kojima Y. Nakano N. Tsuboi R. Okumura K. Yagita H. Ogawa H. Induction of RANTES by TWEAK/Fn14 interaction in human keratinocytes. J. Invest. Dermatol. 2004 122 5 1175 1179 10.1111/j.0022‑202X.2004.22419.x 15140220
    [Google Scholar]
  30. Polek T.C. Talpaz M. Darnay B.G. Spivak-Kroizman T. TWEAK mediates signal transduction and differentiation of RAW264.7 cells in the absence of Fn14/TweakR. Evidence for a second TWEAK receptor. J. Biol. Chem. 2003 278 34 32317 32323 10.1074/jbc.M302518200 12794080
    [Google Scholar]
  31. Saitoh T. Nakayama M. Nakano H. Yagita H. Yamamoto N. Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J. Biol. Chem. 2003 278 38 36005 36012 10.1074/jbc.M304266200 12840022
    [Google Scholar]
  32. Dogra C. Changotra H. Mohan S. Kumar A. Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J. Biol. Chem. 2006 281 15 10327 10336 10.1074/jbc.M511131200 16461349
    [Google Scholar]
  33. Polavarapu R. Gongora M.C. Winkles J.A. Yepes M. Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-κ B pathway activation. J. Neurosci. 2005 25 44 10094 10100 10.1523/JNEUROSCI.3382‑05.2005 16267216
    [Google Scholar]
  34. Zhang X. Winkles J.A. Gongora M.C. Polavarapu R. Michaelson J.S. Hahm K. Burkly L. Friedman M. Li X.J. Yepes M. TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J. Cereb. Blood Flow Metab. 2007 27 3 534 544 10.1038/sj.jcbfm.9600368 16835630
    [Google Scholar]
  35. Harada N. Nakayama M. Nakano H. Fukuchi Y. Yagita H. Okumura K. Pro-inflammatory effect of TWEAK/Fn14 interaction on human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 2002 299 3 488 493 10.1016/S0006‑291X(02)02670‑0 12445828
    [Google Scholar]
  36. Donohue P.J. Richards C.M. Brown S.A.N. Hanscom H.N. Buschman J. Thangada S. Hla T. Williams M.S. Winkles J.A. TWEAK is an endothelial cell growth and chemotactic factor that also potentiates FGF-2 and VEGF-A mitogenic activity. Arterioscler. Thromb. Vasc. Biol. 2003 23 4 594 600 10.1161/01.ATV.0000062883.93715.37 12615668
    [Google Scholar]
  37. Jakubowski A. Browning B. Lukashev M. Sizing I. Thompson J.S. Benjamin C.D. Hsu Y.M. Ambrose C. Zheng T.S. Burkly L.C. Dual role for TWEAK in angiogenic regulation. J. Cell Sci. 2002 115 2 267 274 10.1242/jcs.115.2.267 11839778
    [Google Scholar]
  38. Ho D.H. Vu H. Brown S.A.N. Donohue P.J. Hanscom H.N. Winkles J.A. Soluble tumor necrosis factor-like weak inducer of apoptosis overexpression in HEK293 cells promotes tumor growth and angiogenesis in athymic nude mice. Cancer Res. 2004 64 24 8968 8972 10.1158/0008‑5472.CAN‑04‑1879 15604260
    [Google Scholar]
  39. Perper S.J. Browning B. Burkly L.C. Weng S. Gao C. Giza K. Su L. Tarilonte L. Crowell T. Rajman L. Runkel L. Scott M. Atkins G.J. Findlay D.M. Zheng T.S. Hess H. TWEAK is a novel arthritogenic mediator. J. Immunol. 2006 177 4 2610 2620 10.4049/jimmunol.177.4.2610 16888023
    [Google Scholar]
  40. Kamata K. Kamijo S. Nakajima A. Koyanagi A. Kurosawa H. Yagita H. Okumura K. Involvement of TNF-like weak inducer of apoptosis in the pathogenesis of collagen-induced arthritis. J. Immunol. 2006 177 9 6433 6439 10.4049/jimmunol.177.9.6433 17056575
    [Google Scholar]
  41. Xu W.D. Pan H.F. Xu Y. Ye D.Q. Interferon regulatory factor 5 and autoimmune lupus. Expert Rev. Mol. Med. 2013 15 e6 10.1017/erm.2013.7 23883595
    [Google Scholar]
  42. Wang C. Chen L.L. Pan H.F. Leng R.X. Qin W.Z. Ye D.Q. Expression of human tumor necrosis factor-like weak inducer of apoptosis in patients with systemic lupus erythematosus. Clin. Rheumatol. 2012 31 2 335 339 10.1007/s10067‑011‑1865‑4 21968693
    [Google Scholar]
  43. Liu Z.C. Zhou Q.L. Li X.Z. Yang J.H. Ao X. veeraragoo P. Zuo X.X. Elevation of human tumor necrosis factor-like weak inducer of apoptosis in peripheral blood mononuclear cells is correlated with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Cytokine 2011 53 3 295 300 10.1016/j.cyto.2010.11.012 21163672
    [Google Scholar]
  44. Zhi-Chun L. Qiao-Ling Z. Zhi-Qin L. Xiao-Zhao L. Xiao-xia Z. Rong T. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mediates p38 mitogen-activated protein kinase activation and signal transduction in peripheral blood mononuclear cells from patients with lupus nephritis. Inflammation 2012 35 3 935 943 10.1007/s10753‑011‑9396‑3 22009442
    [Google Scholar]
  45. Justo P. Sanz A.B. Sanchez-Niño M.D. Winkles J.A. Lorz C. Egido J. Ortiz A. Cytokine cooperation in renal tubular cell injury: The role of TWEAK. Kidney Int. 2006 70 10 1750 1758 10.1038/sj.ki.5001866 17003819
    [Google Scholar]
  46. Khan H. Gupta A. Singh T.G. Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol. Rep. 2021 73 5 1240 1254 10.1007/s43440‑021‑00258‑8 33818747
    [Google Scholar]
  47. Potrovita I. Zhang W. Burkly L. Hahm K. Lincecum J. Wang M.Z. Maurer M.H. Rossner M. Schneider A. Schwaninger M. Tumor necrosis factor-like weak inducer of apoptosis-induced neurodegeneration. J. Neurosci. 2004 24 38 8237 8244 10.1523/JNEUROSCI.1089‑04.2004 15385607
    [Google Scholar]
  48. Desplat-Jégo S. Varriale S. Creidy R. Terra R. Bernard D. Khrestchatisky M. Izui S. Chicheportiche Y. Boucraut J. TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J. Neuroimmunol. 2002 133 1-2 116 123 10.1016/S0165‑5728(02)00368‑5 12446014
    [Google Scholar]
  49. Mueller A.M. Pedré X. Kleiter I. Hornberg M. Steinbrecher A. Giegerich G. Targeting fibroblast growth factor-inducible-14 signaling protects from chronic relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2005 159 1-2 55 65 10.1016/j.jneuroim.2004.10.001 15652403
    [Google Scholar]
  50. Desplat-Jégo S. Creidy R. Varriale S. Allaire N. Luo Y. Bernard D. Hahm K. Burkly L. Boucraut J. Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin. Immunol. 2005 117 1 15 23 10.1016/j.clim.2005.06.005 16027043
    [Google Scholar]
  51. Yepes M. Brown S.A.N. Moore E.G. Smith E.P. Lawrence D.A. Winkles J.A. A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia. Am. J. Pathol. 2005 166 2 511 520 10.1016/S0002‑9440(10)62273‑0 15681834
    [Google Scholar]
  52. Burke S.L. Cobb J. Agarwal R. Maddux M. Cooke M.S. How Robust is the Evidence for a Role of Oxidative Stress in Autism Spectrum Disorders and Intellectual Disabilities? J. Autism Dev. Disord. 2021 51 5 1428 1445 10.1007/s10803‑020‑04611‑3 32929662
    [Google Scholar]
  53. Morimoto M. Hashimoto T. Tsuda Y. Nakatsu T. Kitaoka T. Kyotani S. Assessment of oxidative stress in autism spectrum disorder using reactive oxygen metabolites and biological antioxidant potential. PLoS One 2020 15 5 e0233550 10.1371/journal.pone.0233550 32442231
    [Google Scholar]
  54. Abruzzo P.M. Matté A. Bolotta A. Federti E. Ghezzo A. Guarnieri T. Marini M. Posar A. Siciliano A. De Franceschi L. Visconti P. Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder. J. Transl. Med. 2019 17 1 332 10.1186/s12967‑019‑2076‑z 31578139
    [Google Scholar]
  55. Khan H. Singh A. Thapa K. Garg N. Grewal A.K. Singh T.G. Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res. 2021 a 1761 147399 10.1016/j.brainres.2021.147399 33662337
    [Google Scholar]
  56. Kleijer K.T.E. Schmeisser M.J. Krueger D.D. Boeckers T.M. Scheiffele P. Bourgeron T. Brose N. Burbach J.P.H. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl.) 2014 231 6 1037 1062 10.1007/s00213‑013‑3403‑3 24419271
    [Google Scholar]
  57. Rahi S. Gupta R. Sharma A. Mehan S. Smo-Shh signaling activator purmorphamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Hum. Exp. Toxicol. 2021 40 11 1880 1898 10.1177/09603271211013456 33906504
    [Google Scholar]
  58. Baranova J. Dragunas G. Botellho M.C.S. Ayub A.L.P. Bueno-Alves R. Alencar R.R. Papaiz D.D. Sogayar M.C. Ulrich H. Correa R.G. Autism spectrum disorder: signaling pathways and prospective therapeutic targets. Cell. Mol. Neurobiol. 2021 41 4 619 649 10.1007/s10571‑020‑00882‑7 32468442
    [Google Scholar]
  59. Boksha I.S. Prokhorova T.A. Tereshkina E.B. Savushkina O.K. Burbaeva G.S. Protein Phosphorylation Signaling Cascades in Autism: The Role of mTOR Pathway. Biochemistry (Mosc.) 2021 86 5 577 596 10.1134/S0006297921050072 33993859
    [Google Scholar]
  60. Wen J. Xia Y. Stock A. Michaelson J.S. Burkly L.C. Gulinello M. Putterman C. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J. Autoimmun. 2013 43 44 54 10.1016/j.jaut.2013.03.002 23578591
    [Google Scholar]
  61. Roos A. Dhruv H.D. Mathews I.T. Inge L.J. Tuncali S. Hartman L.K. Chow D. Millard N. Yin H.H. Kloss J. Loftus J.C. Winkles J.A. Berens M.E. Tran N.L. Identification of aurintricarboxylic acid as a selective inhibitor of the TWEAK-Fn14 signaling pathway in glioblastoma cells. Oncotarget 2017 8 7 12234 12246 10.18632/oncotarget.14685 28103571
    [Google Scholar]
  62. Soderling T.R. The Ca2+–calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 1999 24 6 232 236 10.1016/S0968‑0004(99)01383‑3 10366852
    [Google Scholar]
  63. Yang X. Deng S. Wei X. Yang J. Zhao Q. Yin C. Du T. Guo Z. Xia J. Yang Z. Xie W. Wang S. Wu Q. Yang F. Zhou X. Nauen R. Bass C. Zhang Y. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc. Natl. Acad. Sci. USA 2020 117 19 10246 10253 10.1073/pnas.1913603117 32327610
    [Google Scholar]
  64. Walton M.R. Dragunow M. Is CREB a key to neuronal survival? Trends Neurosci. 2000 23 2 48 53 10.1016/S0166‑2236(99)01500‑3 10652539
    [Google Scholar]
  65. Sharma V.K. Singh T.G. CREB: a multifaceted target for Alzheimer’s disease. Curr. Alzheimer Res. 2021 17 14 1280 1293 10.2174/1567205018666210218152253 33602089
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273330549241015073953
Loading
/content/journals/cnsnddt/10.2174/0118715273330549241015073953
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Fn14 ; aurintricarboxylic acid ; TWEAK ; autism ; mitochondrial malfunction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test