Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Parkinson's disease is a neurodegenerative condition characterized by slow movement (bradykinesia), tremors, and muscle stiffness. These symptoms occur due to the degeneration of dopamine-producing neurons in the substantia nigra region of the brain, leading to reduced dopamine levels. The development of Parkinson's Disease (PD) involves a combination of genetic and environmental factors. PD is associated with abnormal regulation of the monoamine oxidase (MAO) enzyme. Monoamine oxidase inhibitors (MAOIs) are an important class of drugs used to treat PD and other neurological disorders. In the early stages of PD, monotherapy with MAO-B inhibitors has been shown to be both safe and effective. These inhibitors are also commonly used as adjuncts in long-term disease management, as they can improve both motor and non-motor symptoms, reduce “OFF” periods, and potentially slow disease progression. However, current MAO-B inhibitors come with side effects like dizziness, nausea, vomiting, light-headedness, and fainting. Therefore, accelerating the development of new MAO-B inhibitors with fewer side effects is crucial. This review explores natural compounds that may inhibit monoamine oxidase B (MAO-B), focusing on key findings from the past seven years. It highlights the most effective heterocyclic compounds against MAO-B, including thiazolyl hydrazone, pyridoxine-resveratrol, pyridazine, isoxazole, oxadiazole, benzothiazole, benzoxazole, coumarin, caffeine, pyrazoline, piperazine, piperidine, pyrrolidine, and morpholine derivatives. The review covers , , and data, along with the structure-activity relationship of these compounds. These findings offer valuable insights for the development of more effective MAO-B inhibitors and advancements in Parkinson's disease research.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273340983241018095529
2024-11-04
2025-04-05
Loading full text...

Full text loading...

References

  1. PringsheimT. JetteN. FrolkisA. SteevesT.D.L. The prevalence of Parkinson’s disease: A systematic review and meta‐analysis.Mov. Disord.201429131583159010.1002/mds.25945 24976103
    [Google Scholar]
  2. SveinbjornsdottirS. The clinical symptoms of Parkinson’s disease.J. Neurochem.2016139131832410.1111/jnc.13691
    [Google Scholar]
  3. de LauL.M.L. BretelerM.M.B. Epidemiology of Parkinson’s disease.Lancet Neurol.20065652553510.1016/S1474‑4422(06)70471‑9 16713924
    [Google Scholar]
  4. DavieC.A. A review of Parkinson’s disease.Br. Med. Bull.200886110912710.1093/bmb/ldn013 18398010
    [Google Scholar]
  5. SchapiraA.H.V. BezardE. BrotchieJ. Novel pharmacological targets for the treatment of Parkinson’s disease.Nat. Rev. Drug Discov.200651084585410.1038/nrd2087 17016425
    [Google Scholar]
  6. BarkerR.A. StacyM. BrundinP. A new approach to disease-modifying drug trials in Parkinson’s disease.J. Clin. Invest.201312362364236510.1172/JCI69690 23728166
    [Google Scholar]
  7. PaganoG. RengoG. PasqualettiG. Cholinesterase inhibitors for Parkinson’s disease: A systematic review and meta-analysis.J. Neurol. Neurosurg. Psychiatry201586776777310.1136/jnnp‑2014‑308764 25224676
    [Google Scholar]
  8. WidnellK.L. ComellaC. Role of COMT inhibitors and dopamine agonists in the treatment of motor fluctuations.Mov. Disord.200520S11S30S3710.1002/mds.20461 15822107
    [Google Scholar]
  9. RobottomB. Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson’s disease.Patient Prefer. Adherence20115576410.2147/PPA.S11182 21423589
    [Google Scholar]
  10. LöhleM. ReichmannH. Controversies in neurology: Why monoamine oxidase B inhibitors could be a good choice for the initial treatment of Parkinson’s disease.BMC Neurol.201111111210.1186/1471‑2377‑11‑112 21939547
    [Google Scholar]
  11. AlborghettiM. NicolettiF. Different generations of type-B Monoamine oxidase inhibitors in Parkinson’s disease: From bench to bedside.Curr. Neuropharmacol.201917986187310.2174/1570159X16666180830100754 30160213
    [Google Scholar]
  12. ElkamhawyA. PaikS. KimH.J. Discovery of N -(1-(3-fluorobenzoyl)-1 H -indol-5-yl)pyrazine-2-carboxamide: A novel, selective, and competitive indole-based lead inhibitor for human monoamine oxidase B.J. Enzyme Inhib. Med. Chem.20203511568158010.1080/14756366.2020.1800666 32752896
    [Google Scholar]
  13. ParkJ.H. JuY.H. ChoiJ.W. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease.Sci. Adv.201953eaav031610.1126/sciadv.aav0316 30906861
    [Google Scholar]
  14. ShulmanK.I. HerrmannN. WalkerS.E. Current place of monoamine oxidase inhibitors in the treatment of depression.CNS Drugs2013271078979710.1007/s40263‑013‑0097‑3 23934742
    [Google Scholar]
  15. RameshM. DokuruguY.M. ThompsonM.D. SolimanM.E. Therapeutic, molecular and computational aspects of Novel Monoamine Oxidase (MAO) inhibitors.Comb. Chem. High Throughput Screen.201720649250910.2174/1386207320666170310121337 28294055
    [Google Scholar]
  16. GuglielmiP. CarradoriS. AmmazzalorsoA. SecciD. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: Is there room for improvement?Expert Opin. Drug Discov.20191410995103510.1080/17460441.2019.1637415 31268358
    [Google Scholar]
  17. HuleattP.B. KhooM.L. ChuaY.Y. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson’s disease.J. Med. Chem.20155831400141910.1021/jm501722s 25627172
    [Google Scholar]
  18. PeretzC. SegevH. RozaniV. Comparison of selegiline and rasagiline therapies in Parkinson disease: A real-life study.Clin. Neuropharmacol.201639522723110.1097/WNF.0000000000000167 27438181
    [Google Scholar]
  19. JiangD.Q. LiM.X. JiangL.L. ChenX.B. ZhouX.W. Comparison of selegiline and levodopa combination therapy versus levodopa monotherapy in the treatment of Parkinson’s disease: A meta-analysis.Aging Clin. Exp. Res.202032576977910.1007/s40520‑019‑01232‑4 31175606
    [Google Scholar]
  20. ShihJ.C. Monoamine oxidase isoenzymes: Genes, functions and targets for behavior and cancer therapy.J. Neural Transm. (Vienna)2018125111553156610.1007/s00702‑018‑1927‑8 30259128
    [Google Scholar]
  21. BorgohainR. SzaszJ. StanzioneP. Randomized trial of safinamide add‐on to levodopa in Parkinson’s disease with motor fluctuations.Mov. Disord.201429222923710.1002/mds.25751 24323641
    [Google Scholar]
  22. BianchiniE. SforzaM. RinaldiD. Switch from rasagiline to safinamide in fluctuating Parkinson’s disease patients: A retrospective, pilot study.Neurol. Res.2021431195095410.1080/01616412.2021.1942408 34142645
    [Google Scholar]
  23. KrösserS. MarquetA. GallemannD. Effects of ketoconazole treatment on the pharmacokinetics of safinamide and its plasma metabolites in healthy adult subjects.Biopharm. Drug Dispos.201233955055910.1002/bdd.1822 23097240
    [Google Scholar]
  24. NaveS. DoodyR.S. BoadaM. Sembragiline in moderate Alzheimer’s disease: Results of a randomized, double-blind, placebo-controlled phase II trial (MAyflOwer RoAD).J. Alzheimers Dis.20175841217122810.3233/JAD‑161309 28550255
    [Google Scholar]
  25. YoudimM.B.H. BakhleY.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness.Br. J. Pharmacol.2006147S1Suppl. 1S287S29610.1038/sj.bjp.0706464 16402116
    [Google Scholar]
  26. LeeM.K. HwangB.Y. LeeS.A. 1-methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase.Chem. Pharm. Bull. (Tokyo)200351440941110.1248/cpb.51.409 12672993
    [Google Scholar]
  27. HanX.H. HongS.S. LeeD. Quinolone alkaloids from Evodiae fructus and their inhibitory effects on monoamine oxidase.Arch. Pharm. Res.200730439740110.1007/BF02980210 17489352
    [Google Scholar]
  28. NaidooD. RoyA. SlavětínskáL.P. ChukwujekwuJ.C. GuptaS. Van StadenJ. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling.J. Ethnopharmacol.2020248112305510.1016/j.jep.2019.112305 31639490
    [Google Scholar]
  29. ChaurasiyaN.D. ZhaoJ. PandeyP. DoerksenR.J. MuhammadI. TekwaniB.L. Selective inhibition of human monoamine oxidase b by acacetin 7-methyl ether isolated from Turnera diffusa (Damiana).Molecules201924481010.3390/molecules24040810 30813423
    [Google Scholar]
  30. BelloO.M. OgbesejanaA.B. Flavonoids isolated from Vitex Grandifolia, an underutilized vegetable, exert monoamine A & B inhibitory and anti-inflammatory effects and their structure-activity relationship.Turk. J. Pharm. Sci.201916443744310.4274/tjps.galenos.2018.46036 32454747
    [Google Scholar]
  31. OhJ.M. LeeC. NamS.J. KimH. Chromenone derivatives as monoamine oxidase inhibitors from Marine-Derived MAR4 Clade Streptomyces sp. CNQ-031.J. Microbiol. Biotechnol.20213171022102710.4014/jmb.2105.05003 34099598
    [Google Scholar]
  32. MohamedE.I. ZakiM.A. ChaurasiyaN.D. Monoamine oxidases inhibitors from Colvillea racemosa: Isolation, biological evaluation, and computational study.Fitoterapia201812421722310.1016/j.fitote.2017.11.009 29154867
    [Google Scholar]
  33. WangY.S. LiB.T. LiuS.X. Anisucoumaramide, a bioactive Coumarin from Clausena anisum-olens.J. Nat. Prod.201780479880410.1021/acs.jnatprod.6b00391 28368606
    [Google Scholar]
  34. RacitiG. MazzoneP. RaudinoA. MazzoneG. CambriaA. Inhibition of rat liver mitochondrial monoamine oxidase by hydrazine-thiazole derivatives: Structure-activity relationships.Bioorg. Med. Chem.19953111485149110.1016/0968‑0896(95)00137‑6 8634828
    [Google Scholar]
  35. DistintoS. YáñezM. AlcaroS. Synthesis and biological assessment of novel 2-thiazolylhydrazones and computational analysis of their recognition by monoamine oxidase B.Eur. J. Med. Chem.20124828429510.1016/j.ejmech.2011.12.027 22222137
    [Google Scholar]
  36. ChimentiP. PetzerA. CarradoriS. Exploring 4-substituted-2 thiazolylhydrazones from 2-, 3-, and 4-acetylpyridine as selective and reversible hMAO-B inhibitors.Eur. J. Med. Chem.20136622122710.1016/j.ejmech.2013.05.032 23807114
    [Google Scholar]
  37. WangH. JiangT. LiW. GaoN. ZhangT. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease.Toxicol. Lett.201828210010810.1016/j.toxlet.2017.10.021 29097221
    [Google Scholar]
  38. InglésM. GambiniJ. MiguelM.G. PTEN mediates the antioxidant effect of resveratrol at nutritionally relevant concentrations.BioMed Res. Int.201420141610.1155/2014/580852 24812624
    [Google Scholar]
  39. DrygalskiK. FereniecE. KorycińskiK. Resveratrol and Alzheimer’s disease. From molecular pathophysiology to clinical trials.Exp. Gerontol.2018113364710.1016/j.exger.2018.09.019 30266470
    [Google Scholar]
  40. ClarkD. TuorU.I. ThompsonR. Protection against recurrent stroke with resveratrol: Endothelial protection.PLoS One2012710e4779210.1371/journal.pone.0047792 23082218
    [Google Scholar]
  41. TangY.W. ShiC.J. YangH.L. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease.Eur. J. Med. Chem.201916330731910.1016/j.ejmech.2018.11.040 30529634
    [Google Scholar]
  42. TangL. LiM.H. CaoP. Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives.J. Biol. Chem.200528035312203122910.1074/jbc.M500805200 15985434
    [Google Scholar]
  43. YokochiN. MoritaT. YagiT. Inhibition of diphenolase activity of tyrosinase by vitamin b(6) compounds.J. Agric. Food Chem.20035192733273610.1021/jf0258252 12696965
    [Google Scholar]
  44. HashimA. WangL. JunejaK. YeY. ZhaoY. MingL.J. Vitamin B6s inhibit oxidative stress caused by Alzheimer’s disease-related CuII-β-amyloid complexes-cooperative action of phospho-moiety.Bioorg. Med. Chem. Lett.201121216430643210.1016/j.bmcl.2011.08.123 21944860
    [Google Scholar]
  45. YangX. QiangX. LiY. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease.Bioorg. Chem.20177130531410.1016/j.bioorg.2017.02.016 28267984
    [Google Scholar]
  46. AlagözM.A. OhJ.M. ZenniY.N. Development of a novel class of pyridazinone derivatives as selective MAO-B inhibitors.Molecules20222712380110.3390/molecules27123801 35744926
    [Google Scholar]
  47. BesadaP. ViñaD. CostasT. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors.Bioorg. Chem.2021115105203310.1016/j.bioorg.2021.105203 34371375
    [Google Scholar]
  48. AgrawalN. MishraP. Novel isoxazole derivatives as potential antiparkinson agents: Synthesis, evaluation of monoamine oxidase inhibitory activity and docking studies.Med. Chem. Res.20192891488150110.1007/s00044‑019‑02388‑4
    [Google Scholar]
  49. TokF. UğraşZ. SağlıkB.N. ÖzkayY. KaplancıklıZ.A. Koçyiğit-KaymakçıoğluB. Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as MAO-B inhibitors: Synthesis, biological evaluation and molecular modeling studies.Bioorg. Chem.202111210491710.1016/j.bioorg.2021.104917 33932769
    [Google Scholar]
  50. TzvetkovN.T. HinzS. KüppersP. GastreichM. MüllerC.E. Indazole- and indole-5-carboxamides: Selective and reversible monoamine oxidase B inhibitors with subnanomolar potency.J. Med. Chem.201457156679670310.1021/jm500729a 24955776
    [Google Scholar]
  51. LiuL. ChenY. ZengR.F. Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson’s disease.Bioorg. Chem.2021109104685510.1016/j.bioorg.2021.104685 33640631
    [Google Scholar]
  52. Costas-LagoM.C. BesadaP. Rodríguez-EnríquezF. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors.Eur. J. Med. Chem.201713911110.1016/j.ejmech.2017.07.045 28797881
    [Google Scholar]
  53. Joao MatosM. ViñaD. Vazquez-RodriguezS. UriarteE. SantanaL. Focusing on new monoamine oxidase inhibitors: Differently substituted coumarins as an interesting scaffold.Curr. Top. Med. Chem.201212202210223910.2174/156802612805220002 23231397
    [Google Scholar]
  54. LakeB.G. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment.Food Chem. Toxicol.199937442345310.1016/S0278‑6915(99)00010‑1 10418958
    [Google Scholar]
  55. TimonenJ.M. NieminenR.M. SareilaO. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives.Eur. J. Med. Chem.20114693845385010.1016/j.ejmech.2011.05.052 21680063
    [Google Scholar]
  56. RomanG. Mannich bases in medicinal chemistry and drug design.Eur. J. Med. Chem.20158974381610.1016/j.ejmech.2014.10.076 25462280
    [Google Scholar]
  57. BiersackB. AhmedK. PadhyeS. SchobertR. Recent developments concerning the application of the Mannich reaction for drug design.Expert Opin. Drug Discov.2018131394910.1080/17460441.2018.1403420 29137490
    [Google Scholar]
  58. TaoD. WangY. BaoX.Q. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease.Eur. J. Med. Chem.201917320321210.1016/j.ejmech.2019.04.016 31005056
    [Google Scholar]
  59. MatosM.J. TeránC. Pérez-CastilloY. UriarteE. SantanaL. ViñaD. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors.J. Med. Chem.201154207127713710.1021/jm200716y 21923181
    [Google Scholar]
  60. FerinoG. VilarS. MatosM.J. UriarteE. CadoniE. Monoamine oxidase inhibitors: Ten years of docking studies.Curr. Top. Med. Chem.201212202145216210.2174/156802612805220048 23231393
    [Google Scholar]
  61. NovaroliL. DainaA. FavreE. Impact of species-dependent differences on screening, design, and development of MAO B inhibitors.J. Med. Chem.200649216264627210.1021/jm060441e 17034132
    [Google Scholar]
  62. MladenovićM. PatsilinakosA. PirolliA. SabatinoM. RagnoR. Understanding the molecular determinant of reversible human monoamine oxidase b inhibitors containing 2H-Chromen-2-One Core: Structure-based and ligand-based derived three-dimensional quantitative structure-activity relationships predictive models.J. Chem. Inf. Model.201757478781410.1021/acs.jcim.6b00608 28291352
    [Google Scholar]
  63. PetzerA. PienaarA. PetzerJ.P. The interactions of caffeine with monoamine oxidase.Life Sci.201393728328710.1016/j.lfs.2013.06.020 23850513
    [Google Scholar]
  64. StrydomB. MalanS.F. CastagnoliN.Jr BerghJ.J. PetzerJ.P. Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues.Bioorg. Med. Chem.20101831018102810.1016/j.bmc.2009.12.064 20093036
    [Google Scholar]
  65. StrydomB. BerghJ.J. PetzerJ.P. 8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase.Eur. J. Med. Chem.20114683474348510.1016/j.ejmech.2011.05.014 21621312
    [Google Scholar]
  66. MishraN. SasmalD. Development of selective and reversible pyrazoline based MAO-B inhibitors: Virtual screening, synthesis and biological evaluation.Bioorg. Med. Chem. Lett.20112171969197310.1016/j.bmcl.2011.02.030 21377879
    [Google Scholar]
  67. FioravantiR. DesideriN. BiavaM. Proietti MonacoL. GrammaticaL. YáñezM. Design, synthesis, and in vitro hMAO-B inhibitory evaluation of some 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles.Bioorg. Med. Chem. Lett.201323185128513010.1016/j.bmcl.2013.07.035 23927971
    [Google Scholar]
  68. FioravantiR. BolascoA. MannaF. Synthesis and molecular modelling studies of prenylated pyrazolines as MAO-B inhibitors.Bioorg. Med. Chem. Lett.201020226479648210.1016/j.bmcl.2010.09.061 20934874
    [Google Scholar]
  69. El-HalabyL.O. El-HusseinyW.M. El-MesseryS.M. GodaF.E. Biphenylpiperazine based MAO inhibitors: Synthesis, biological evaluation, reversibility and molecular modeling studies.Bioorg. Chem.202111510521610.1016/j.bioorg.2021.105216 34352710
    [Google Scholar]
  70. ŁażewskaD. Olejarz-MaciejA. ReinerD. Dual target ligands with 4-tert-butylphenoxy scaffold as histamine H3 receptor antagonists and monoamine oxidase b inhibitors.Int. J. Mol. Sci.20202110341110.3390/ijms21103411 32408504
    [Google Scholar]
  71. YiC. LiuX. ChenK. LiangH. JinC. Design, synthesis and evaluation of novel monoamine oxidase B (MAO-B) inhibitors with improved pharmacokinetic properties for Parkinson’s disease.Eur. J. Med. Chem.202325211530810.1016/j.ejmech.2023.115308 37001389
    [Google Scholar]
  72. WeissbachH. SmithT.E. DalyJ.W. WitkopB. UdenfriendS. A rapid spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of kynuramine.J. Biol. Chem.196023541160116310.1016/S0021‑9258(18)69497‑9 13843767
    [Google Scholar]
  73. LiW. YangX. SongQ. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease.Bioorg. Chem.20209710370710.1016/j.bioorg.2020.103707 32146176
    [Google Scholar]
  74. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  75. MathewB. BaekS.C. Thomas ParambiD.G. Potent and highly selective dual‐targeting monoamine oxidase‐B inhibitors: Fluorinated chalcones of morpholine versus imidazole.Arch. Pharm. (Weinheim)20193524180030910.1002/ardp.201800309 30663112
    [Google Scholar]
  76. SasidharanR. EomB.H. HeoJ.H. Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: Synthesis and biochemical investigations.J. Enzyme Inhib. Med. Chem.202136118819710.1080/14756366.2020.1842390 33430657
    [Google Scholar]
  77. StocchiF. VaccaL. GrassiniP. Overnight switch from rasagiline to safinamide in Parkinson’s disease patients with motor fluctuations: a tolerability and safety study.Eur. J. Neurol.202128134935410.1111/ene.14552 32961619
    [Google Scholar]
  78. KarthivashanG. GanesanP. ParkS.Y. LeeH.W. ChoiD.K. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson’s disease: From preclinical to translational studies.Biomaterials202023211970410.1016/j.biomaterials.2019.119704 31901690
    [Google Scholar]
  79. BawejaG.S. GuptaS. KumarB. PatelP. AsatiV. Recent updates on structural insights of MAO-B inhibitors: A review on target-based approach.Mol. Divers.20242831823184510.1007/s11030‑023‑10634‑6 36977955
    [Google Scholar]
  80. ChuanfeiJ. KangzhiC. YingjunZ. Pyrrolidineamide derivatives and uses thereof.US Patent 112254602022
  81. MazhariR. MezaacheD. PatersonB.M. VornovJ. GarnerR.M. NelsonT. Compounds, compositions and methodsUS Patent 114795422022
  82. CrowleyB.M. CampbellB.T. ChobanianH.R. Spiropiperidine allosteric modulators of nicotinic acetylcholine receptorsUS Patent 113324632021
  83. Heterocyclic compounds and use thereof.Canadian Patent CA3047146C2021
  84. XiaoD.I.N.G. JinY. LiuQ. RenF. YingxiaS.A.N.G. Heterocyclic compounds, particularly pyrimidinylindazole compounds for treating parkinson's disease EuropeanPatent EP3325449B12021
  85. CrowleyB.M. BellI.M. HarveyA.J. Substituted bicyclic heteroaryl allosteric modulators of nicotinic acetylcholine receptors.US Patent 108706302020
  86. TeránM.D. BesadaP.P. CostasC.T. CostasL.D. VilaM.N. ViñaC.D. Pyridazin-3(2H)-one derivatives as monoamine oxidase selective isoform B inhibitors.US Patent 102530002019
  87. TzvetkovN. Substituted benzamide derivatives as in vitro MAO-B inhibitors.US Patent 97386402017
  88. TzvetkovN. Substituted indazole derivatives as in vitro MAO-B inhibitors.US Patent 96439302017
  89. ParkK.D. LeeC.J. KimD.J. 2017.Alpha-aminoamide derivative compound and pharmaceutical composition containing the same.E. Patent 32027592017
  90. TzvetkovN. Substituted indazole or indole derivatives as in vitro Mao-B inhibitors .E. Patent 29642192017
  91. TzvetkovN. Substituted benzamide derivatives as in vitro MAO-B inhibitors.E. Patent 29919862017
/content/journals/cnsnddt/10.2174/0118715273340983241018095529
Loading
/content/journals/cnsnddt/10.2174/0118715273340983241018095529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test