Skip to content
2000
image of Parkinson's Disease: Unravelling the Medicinal Perspectives and Recent Developments of Heterocyclic Monoamine Oxidase-B Inhibitors

Abstract

Parkinson's disease is a neurodegenerative condition characterized by slow movement (bradykinesia), tremors, and muscle stiffness. These symptoms occur due to the degeneration of dopamine-producing neurons in the substantia nigra region of the brain, leading to reduced dopamine levels. The development of Parkinson's Disease (PD) involves a combination of genetic and environmental factors. PD is associated with abnormal regulation of the monoamine oxidase (MAO) enzyme. Monoamine oxidase inhibitors (MAOIs) are an important class of drugs used to treat PD and other neurological disorders. In the early stages of PD, monotherapy with MAO-B inhibitors has been shown to be both safe and effective. These inhibitors are also commonly used as adjuncts in long-term disease management, as they can improve both motor and non-motor symptoms, reduce “OFF” periods, and potentially slow disease progression. However, current MAO-B inhibitors come with side effects like dizziness, nausea, vomiting, light-headedness, and fainting. Therefore, accelerating the development of new MAO-B inhibitors with fewer side effects is crucial. This review explores natural compounds that may inhibit monoamine oxidase B (MAO-B), focusing on key findings from the past seven years. It highlights the most effective heterocyclic compounds against MAO-B, including thiazolyl hydrazone, pyridoxine-resveratrol, pyridazine, isoxazole, oxadiazole, benzothiazole, benzoxazole, coumarin, caffeine, pyrazoline, piperazine, piperidine, pyrrolidine, and morpholine derivatives. The review covers , , and data, along with the structure-activity relationship of these compounds. These findings offer valuable insights for the development of more effective MAO-B inhibitors and advancements in Parkinson's disease research.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273340983241018095529
2024-11-04
2025-01-18
Loading full text...

Full text loading...

References

  1. Pringsheim T. Jette N. Frolkis A. Steeves T.D.L. The prevalence of Parkinson’s disease: A systematic review and meta‐analysis. Mov. Disord. 2014 29 13 1583 1590 10.1002/mds.25945 24976103
    [Google Scholar]
  2. Sveinbjornsdottir S. The clinical symptoms of parkinson’s disease. J. Neurochem. 2016 139 1 318 324 10.1111/jnc.13691
    [Google Scholar]
  3. de Lau L.M.L. Breteler M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006 5 6 525 535 10.1016/S1474‑4422(06)70471‑9 16713924
    [Google Scholar]
  4. Davie C.A. A review of Parkinson’s disease. Br. Med. Bull. 2008 86 1 109 127 10.1093/bmb/ldn013 18398010
    [Google Scholar]
  5. Schapira A.H.V. Bezard E. Brotchie J. Calon F. Collingridge G.L. Ferger B. Hengerer B. Hirsch E. Jenner P. Novère N.L. Obeso J.A. Schwarzschild M.A. Spampinato U. Davidai G. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat. Rev. Drug Discov. 2006 5 10 845 854 10.1038/nrd2087 17016425
    [Google Scholar]
  6. Barker R.A. Stacy M. Brundin P. A new approach to disease-modifying drug trials in Parkinson’s disease. J. Clin. Invest. 2013 123 6 2364 2365 10.1172/JCI69690 23728166
    [Google Scholar]
  7. Pagano G. Rengo G. Pasqualetti G. Femminella G.D. Monzani F. Ferrara N. Tagliati M. Cholinesterase inhibitors for Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2015 86 7 767 773 10.1136/jnnp‑2014‑308764 25224676
    [Google Scholar]
  8. Widnell K.L. Comella C. Role of COMT inhibitors and dopamine agonists in the treatment of motor fluctuations. Mov. Disord. 2005 20 S11 Suppl. 11 S30 S37 10.1002/mds.20461 15822107
    [Google Scholar]
  9. Robottom B. Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson’s disease. Patient Prefer. Adherence 2011 5 57 64 10.2147/PPA.S11182 21423589
    [Google Scholar]
  10. Löhle M. Reichmann H. Controversies in neurology: Why monoamine oxidase B inhibitors could be a good choice for the initial treatment of Parkinson’s disease. BMC Neurol. 2011 11 1 112 10.1186/1471‑2377‑11‑112 21939547
    [Google Scholar]
  11. Alborghetti M. Nicoletti F. Different generations of type-B Monoamine oxidase inhibitors in parkinson’s disease: From bench to bedside. Curr. Neuropharmacol. 2019 17 9 861 873 10.2174/1570159X16666180830100754 30160213
    [Google Scholar]
  12. Elkamhawy A. Paik S. Kim H.J. Park J.H. Londhe A.M. Lee K. Pae A.N. Park K.D. Roh E.J. Discovery of N -(1-(3-fluorobenzoyl)-1 H -indol-5-yl)pyrazine-2-carboxamide: A novel, selective, and competitive indole-based lead inhibitor for human monoamine oxidase B. J. Enzyme Inhib. Med. Chem. 2020 35 1 1568 1580 10.1080/14756366.2020.1800666 32752896
    [Google Scholar]
  13. Park J.H. Ju Y.H. Choi J.W. Song H.J. Jang B.K. Woo J. Chun H. Kim H.J. Shin S.J. Yarishkin O. Jo S. Park M. Yeon S.K. Kim S. Kim J. Nam M.H. Londhe A.M. Kim J. Cho S.J. Cho S. Lee C. Hwang S.Y. Kim S.W. Oh S.J. Cho J. Pae A.N. Lee C.J. Park K.D. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci. Adv. 2019 5 3 eaav0316 10.1126/sciadv.aav0316 30906861
    [Google Scholar]
  14. Shulman K.I. Herrmann N. Walker S.E. Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs 2013 27 10 789 797 10.1007/s40263‑013‑0097‑3 23934742
    [Google Scholar]
  15. Ramesh M. Dokurugu Y.M. Thompson M.D. Soliman M.E. Therapeutic, molecular and computational aspects of Novel Monoamine Oxidase (MAO) inhibitors. Comb. Chem. High Throughput Screen. 2017 20 6 492 509 10.2174/1386207320666170310121337 28294055
    [Google Scholar]
  16. Guglielmi P. Carradori S. Ammazzalorso A. Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: Is there room for improvement? Expert Opin. Drug Discov. 2019 14 10 995 1035 10.1080/17460441.2019.1637415 31268358
    [Google Scholar]
  17. Huleatt P.B. Khoo M.L. Chua Y.Y. Tan T.W. Liew R.S. Balogh B. Deme R. Gölöncsér F. Magyar K. Sheela D.P. Ho H.K. Sperlágh B. Mátyus P. Chai C.L.L. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson’s disease. J. Med. Chem. 2015 58 3 1400 1419 10.1021/jm501722s 25627172
    [Google Scholar]
  18. Peretz C. Segev H. Rozani V. Gurevich T. El-Ad B. Tsamir J. Giladi N. Comparison of selegiline and rasagiline therapies in Parkinson Disease: A real-life study. Clin. Neuropharmacol. 2016 39 5 227 231 10.1097/WNF.0000000000000167 27438181
    [Google Scholar]
  19. Jiang D.Q. Li M.X. Jiang L.L. Chen X.B. Zhou X.W. Comparison of selegiline and levodopa combination therapy versus levodopa monotherapy in the treatment of Parkinson’s disease: A meta-analysis. Aging Clin. Exp. Res. 2020 32 5 769 779 10.1007/s40520‑019‑01232‑4 31175606
    [Google Scholar]
  20. Shih J.C. Monoamine oxidase isoenzymes: Genes, functions and targets for behavior and cancer therapy. J. Neural Transm. (Vienna) 2018 125 11 1553 1566 10.1007/s00702‑018‑1927‑8 30259128
    [Google Scholar]
  21. Borgohain R. Szasz J. Stanzione P. Meshram C. Bhatt M. Chirilineau D. Stocchi F. Lucini V. Giuliani R. Forrest E. Rice P. Anand R. Study 016 Investigators Randomized trial of safinamide add‐on to levodopa in Parkinson’s disease with motor fluctuations. Mov. Disord. 2014 29 2 229 237 10.1002/mds.25751 24323641
    [Google Scholar]
  22. Bianchini E. Sforza M. Rinaldi D. Alborghetti M. De Carolis L. Della Gatta F. Pontieri F.E. Switch from rasagiline to safinamide in fluctuating Parkinson’s disease patients: A retrospective, pilot study. Neurol. Res. 2021 43 11 950 954 10.1080/01616412.2021.1942408 34142645
    [Google Scholar]
  23. Krösser S. Marquet A. Gallemann D. Wolna P. Fauchoux N. Hermann R. Johne A. Effects of ketoconazole treatment on the pharmacokinetics of safinamide and its plasma metabolites in healthy adult subjects. Biopharm. Drug Dispos. 2012 33 9 550 559 10.1002/bdd.1822 23097240
    [Google Scholar]
  24. Nave S. Doody R.S. Boada M. Grimmer T. Savola J.M. Delmar P. Pauly-Evers M. Nikolcheva T. Czech C. Borroni E. Ricci B. Dukart J. Mannino M. Carey T. Moran E. Gilaberte I. Muelhardt N.M. Gerlach I. Santarelli L. Ostrowitzki S. Fontoura P. Sembragiline in moderate Alzheimer’s disease: Results of a randomized, double-blind, placebo-controlled phase II trial (MAyflOwer RoAD). J. Alzheimers Dis. 2017 58 4 1217 1228 10.3233/JAD‑161309 28550255
    [Google Scholar]
  25. Youdim M.B.H. Bakhle Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol. 2006 147 S1 Suppl. 1 S287 S296 10.1038/sj.bjp.0706464 16402116
    [Google Scholar]
  26. Lee M.K. Hwang B.Y. Lee S.A. Oh G.J. Choi W.H. Hong S.S. Lee K.S. Ro J.S. 1-methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase. Chem. Pharm. Bull. (Tokyo) 2003 51 4 409 411 10.1248/cpb.51.409 12672993
    [Google Scholar]
  27. Han X.H. Hong S.S. Lee D. Lee J.J. Lee M.S. Moon D.C. Han K. Oh K.W. Lee M.K. Ro J.S. Hwang B.Y. Quinolone alkaloids from evodiae fructus and their inhibitory effects on monoamine oxidase. Arch. Pharm. Res. 2007 30 4 397 401 10.1007/BF02980210 17489352
    [Google Scholar]
  28. Naidoo D. Roy A. Slavětínská L.P. Chukwujekwu J.C. Gupta S. Van Staden J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. J. Ethnopharmacol. 2020 248 112305 112305 10.1016/j.jep.2019.112305 31639490
    [Google Scholar]
  29. Chaurasiya N.D. Zhao J. Pandey P. Doerksen R.J. Muhammad I. Tekwani B.L. Selective inhibition of human monoamine oxidase b by acacetin 7-methyl ether isolated from Turnera diffusa (Damiana). Molecules 2019 24 4 810 10.3390/molecules24040810 30813423
    [Google Scholar]
  30. Bello O.M. Ogbesejana A.B. Flavonoids isolated from Vitex Grandifolia, an underutilized vegetable, exert monoamine a & B inhibitory and anti-inflammatory effects and their structure-activity relationship. Turk. J. Pharm. Sci. 2019 16 4 437 443 10.4274/tjps.galenos.2018.46036 32454747
    [Google Scholar]
  31. Oh J.M. Lee C. Nam S.J. Kim H. Chromenone derivatives as monoamine oxidase inhibitors from Marine-Derived MAR4 Clade Streptomyces sp. CNQ-031. J. Microbiol. Biotechnol. 2021 31 7 1022 1027 10.4014/jmb.2105.05003 34099598
    [Google Scholar]
  32. Mohamed E.I. Zaki M.A. Chaurasiya N.D. Owis A.I. AbouZid S. Wang Y.H. Avula B. Seida A.A. Tekwani B.L. Ross S.A. Monoamine oxidases inhibitors from Colvillea racemosa : Isolation, biological evaluation, and computational study. Fitoterapia 2018 124 217 223 10.1016/j.fitote.2017.11.009 29154867
    [Google Scholar]
  33. Wang Y.S. Li B.T. Liu S.X. Wen Z.Q. Yang J.H. Zhang H.B. Hao X.J. Anisucoumaramide, a bioactive Coumarin from Clausena anisum-olens. J. Nat. Prod. 2017 80 4 798 804 10.1021/acs.jnatprod.6b00391 28368606
    [Google Scholar]
  34. Raciti G. Mazzone P. Raudino A. Mazzone G. Cambria A. Inhibition of rat liver mitochondrial monoamine oxidase by hydrazine-thiazole derivatives: Structure-activity relationships. Bioorg. Med. Chem. 1995 3 11 1485 1491 10.1016/0968‑0896(95)00137‑6 8634828
    [Google Scholar]
  35. Distinto S. Yáñez M. Alcaro S. Cardia M.C. Gaspari M. Sanna M.L. Meleddu R. Ortuso F. Kirchmair J. Markt P. Bolasco A. Wolber G. Secci D. Maccioni E. Synthesis and biological assessment of novel 2-thiazolylhydrazones and computational analysis of their recognition by monoamine oxidase B. Eur. J. Med. Chem. 2012 48 284 295 10.1016/j.ejmech.2011.12.027 22222137
    [Google Scholar]
  36. D’Ascenzio M. Carradori S. Secci D. Mannina L. Sobolev A.P. De Monte C. Cirilli R. Yáñez M. Alcaro S. Ortuso F. Identification of the stereochemical requirements in the 4-aryl-2-cycloalkylidenhydrazinylthiazole scaffold for the design of selective human monoamine oxidase B inhibitors. Bioorg. Med. Chem. 2014 22 10 2887 2895 10.1016/j.bmc.2014.03.042 24746464
    [Google Scholar]
  37. Wang H. Jiang T. Li W. Gao N. Zhang T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol. Lett. 2018 282 100 108 10.1016/j.toxlet.2017.10.021 29097221
    [Google Scholar]
  38. Inglés M. Gambini J. Miguel M.G. Bonet-Costa V. Abdelaziz K.M. El Alami M. Viña J. Borrás C. PTEN mediates the antioxidant effect of resveratrol at nutritionally relevant concentrations. BioMed Res. Int. 2014 2014 1 6 10.1155/2014/580852 24812624
    [Google Scholar]
  39. Drygalski K. Fereniec E. Koryciński K. Chomentowski A. Kiełczewska A. Odrzygóźdź C. Modzelewska B. From Molecular Pathophysiology to Clinical Trials Resveratrol and Alzheimer’s disease. From molecular pathophysiology to clinical trials. Exp. Gerontol. 2018 113 36 47 10.1016/j.exger.2018.09.019 30266470
    [Google Scholar]
  40. Clark D. Tuor U.I. Thompson R. Institoris A. Kulynych A. Zhang X. Kinniburgh D.W. Bari F. Busija D.W. Barber P.A. Protection against recurrent stroke with resveratrol: Endothelial protection. PLoS One 2012 7 10 e47792 10.1371/journal.pone.0047792 23082218
    [Google Scholar]
  41. Tang Y.W. Shi C.J. Yang H.L. Cai P. Liu Q.H. Yang X.L. Kong L.Y. Wang X.B. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease. Eur. J. Med. Chem. 2019 163 307 319 10.1016/j.ejmech.2018.11.040 30529634
    [Google Scholar]
  42. Tang L. Li M.H. Cao P. Wang F. Chang W.R. Bach S. Reinhardt J. Ferandin Y. Galons H. Wan Y. Gray N. Meijer L. Jiang T. Liang D.C. Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J. Biol. Chem. 2005 280 35 31220 31229 10.1074/jbc.M500805200 15985434
    [Google Scholar]
  43. Yokochi N. Morita T. Yagi T. Inhibition of diphenolase activity of tyrosinase by vitamin b(6) compounds. J. Agric. Food Chem. 2003 51 9 2733 2736 10.1021/jf0258252 12696965
    [Google Scholar]
  44. Hashim A. Wang L. Juneja K. Ye Y. Zhao Y. Ming L.J. Vitamin B6s inhibit oxidative stress caused by Alzheimer’s disease-related CuII-β-amyloid complexes—cooperative action of phospho-moiety. Bioorg. Med. Chem. Lett. 2011 21 21 6430 6432 10.1016/j.bmcl.2011.08.123 21944860
    [Google Scholar]
  45. Yang X. Qiang X. Li Y. Luo L. Xu R. Zheng Y. Cao Z. Tan Z. Deng Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem. 2017 71 305 314 10.1016/j.bioorg.2017.02.016 28267984
    [Google Scholar]
  46. Alagöz M.A. Oh J.M. Zenni Y.N. Özdemir Z. Abdelgawad M.A. Naguib I.A. Ghoneim M.M. Gambacorta N. Nicolotti O. Kim H. Mathew B. Development of a novel class of Pyridazinone derivatives as selective MAO-B inhibitors. Molecules 2022 27 12 3801 10.3390/molecules27123801 35744926
    [Google Scholar]
  47. Besada P. Viña D. Costas T. Costas-Lago M.C. Vila N. Torres-Terán I. Sturlese M. Moro S. Terán C. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors. Bioorg. Chem. 2021 115 105203 105203 10.1016/j.bioorg.2021.105203 34371375
    [Google Scholar]
  48. Agrawal N. Mishra P. Novel isoxazole derivatives as potential antiparkinson agents: synthesis, evaluation of monoamine oxidase inhibitory activity and docking studies. Med. Chem. Res. 2019 28 9 1488 1501 10.1007/s00044‑019‑02388‑4
    [Google Scholar]
  49. Tok F. Uğraş Z. Sağlık B.N. Özkay Y. Kaplancıklı Z.A. Koçyiğit-Kaymakçıoğlu B. Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as MAO-B inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorg. Chem. 2021 112 104917 10.1016/j.bioorg.2021.104917 33932769
    [Google Scholar]
  50. Tzvetkov N.T. Hinz S. Küppers P. Gastreich M. Müller C.E. Indazole- and indole-5-carboxamides: Selective and reversible monoamine oxidase B inhibitors with subnanomolar potency. J. Med. Chem. 2014 57 15 6679 6703 10.1021/jm500729a 24955776
    [Google Scholar]
  51. Liu L. Chen Y. Zeng R.F. Liu Y. Xie S.S. Lan J.S. Ding Y. Yang Y.T. Yang J. Zhang T. Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson’s disease. Bioorg. Chem. 2021 109 104685 104685 10.1016/j.bioorg.2021.104685 33640631
    [Google Scholar]
  52. Costas-Lago M.C. Besada P. Rodríguez-Enríquez F. Viña D. Vilar S. Uriarte E. Borges F. Terán C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem. 2017 139 1 11 10.1016/j.ejmech.2017.07.045 28797881
    [Google Scholar]
  53. Joao Matos M. Viña D. Vazquez-Rodriguez S. Uriarte E. Santana L. Focusing on new monoamine oxidase inhibitors: Differently substituted coumarins as an interesting scaffold. Curr. Top. Med. Chem. 2012 12 20 2210 2239 10.2174/156802612805220002 23231397
    [Google Scholar]
  54. Lake B.G. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food Chem. Toxicol. 1999 37 4 423 453 10.1016/S0278‑6915(99)00010‑1 10418958
    [Google Scholar]
  55. Timonen J.M. Nieminen R.M. Sareila O. Goulas A. Moilanen L.J. Haukka M. Vainiotalo P. Moilanen E. Aulaskari P.H. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives. Eur. J. Med. Chem. 2011 46 9 3845 3850 10.1016/j.ejmech.2011.05.052 21680063
    [Google Scholar]
  56. Roman G. Mannich bases in medicinal chemistry and drug design. Eur. J. Med. Chem. 2015 89 743 816 10.1016/j.ejmech.2014.10.076 25462280
    [Google Scholar]
  57. Biersack B. Ahmed K. Padhye S. Schobert R. Recent developments concerning the application of the Mannich reaction for drug design. Expert Opin. Drug Discov. 2018 13 1 39 49 10.1080/17460441.2018.1403420 29137490
    [Google Scholar]
  58. Tao D. Wang Y. Bao X.Q. Yang B.B. Gao F. Wang L. Zhang D. Li L. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease. Eur. J. Med. Chem. 2019 173 203 212 10.1016/j.ejmech.2019.04.016 31005056
    [Google Scholar]
  59. Matos M.J. Terán C. Pérez-Castillo Y. Uriarte E. Santana L. Viña D. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J. Med. Chem. 2011 54 20 7127 7137 10.1021/jm200716y 21923181
    [Google Scholar]
  60. Ferino G. Vilar S. Matos M.J. Uriarte E. Cadoni E. Monoamine oxidase inhibitors: Ten years of docking studies. Curr. Top. Med. Chem. 2012 12 20 2145 2162 10.2174/156802612805220048 23231393
    [Google Scholar]
  61. Novaroli L. Daina A. Favre E. Bravo J. Carotti A. Leonetti F. Catto M. Carrupt P.A. Reist M. Impact of species-dependent differences on screening, design, and development of MAO B inhibitors. J. Med. Chem. 2006 49 21 6264 6272 10.1021/jm060441e 17034132
    [Google Scholar]
  62. Mladenović M. Patsilinakos A. Pirolli A. Sabatino M. Ragno R. Understanding the molecular determinant of reversible human monoamine oxidase b inhibitors containing 2 H -Chromen-2-One Core: Structure-based and ligand-based derived three-dimensional quantitative structure–activity relationships predictive models. J. Chem. Inf. Model. 2017 57 4 787 814 10.1021/acs.jcim.6b00608 28291352
    [Google Scholar]
  63. Petzer A. Pienaar A. Petzer J.P. The interactions of caffeine with monoamine oxidase. Life Sci. 2013 93 7 283 287 10.1016/j.lfs.2013.06.020 23850513
    [Google Scholar]
  64. Strydom B. Malan S.F. Castagnoli N. Jr Bergh J.J. Petzer J.P. Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues. Bioorg. Med. Chem. 2010 18 3 1018 1028 10.1016/j.bmc.2009.12.064 20093036
    [Google Scholar]
  65. Strydom B. Bergh J.J. Petzer J.P. 8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase. Eur. J. Med. Chem. 2011 46 8 3474 3485 10.1016/j.ejmech.2011.05.014 21621312
    [Google Scholar]
  66. Mishra N. Sasmal D. Development of selective and reversible pyrazoline based MAO-B inhibitors: Virtual screening, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2011 21 7 1969 1973 10.1016/j.bmcl.2011.02.030 21377879
    [Google Scholar]
  67. Fioravanti R. Desideri N. Biava M. Proietti Monaco L. Grammatica L. Yáñez M. Design, synthesis, and in vitro hMAO-B inhibitory evaluation of some 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles. Bioorg. Med. Chem. Lett. 2013 23 18 5128 5130 10.1016/j.bmcl.2013.07.035 23927971
    [Google Scholar]
  68. Fioravanti R. Bolasco A. Manna F. Rossi F. Orallo F. Yáñez M. Vitali A. Ortuso F. Alcaro S. Synthesis and molecular modelling studies of prenylated pyrazolines as MAO-B inhibitors. Bioorg. Med. Chem. Lett. 2010 20 22 6479 6482 10.1016/j.bmcl.2010.09.061 20934874
    [Google Scholar]
  69. El-Halaby L.O. El-Husseiny W.M. El-Messery S.M. Goda F.E. Biphenylpiperazine based MAO inhibitors: Synthesis, biological evaluation, reversibility and molecular modeling studies. Bioorg. Chem. 2021 115 105216 10.1016/j.bioorg.2021.105216 34352710
    [Google Scholar]
  70. Łażewska D. Olejarz-Maciej A. Reiner D. Kaleta M. Latacz G. Zygmunt M. Doroz-Płonka A. Karcz T. Frank A. Stark H. Kieć-Kononowicz K. Dual target ligands with 4-tert-Butylphenoxy Scaffold as histamine H3 receptor antagonists and monoamine oxidase b inhibitors. Int. J. Mol. Sci. 2020 21 10 3411 10.3390/ijms21103411 32408504
    [Google Scholar]
  71. Yi C. Liu X. Chen K. Liang H. Jin C. Design, synthesis and evaluation of novel monoamine oxidase B (MAO-B) inhibitors with improved pharmacokinetic properties for Parkinson’s disease. Eur. J. Med. Chem. 2023 252 115308 10.1016/j.ejmech.2023.115308 37001389
    [Google Scholar]
  72. Weissbach H. Smith T.E. Daly J.W. Witkop B. Udenfriend S. A rapid spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of kynuramine. J. Biol. Chem. 1960 235 4 1160 1163 10.1016/S0021‑9258(18)69497‑9 13843767
    [Google Scholar]
  73. Li W. Yang X. Song Q. Cao Z. Shi Y. Deng Y. Zhang L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg. Chem. 2020 97 103707 10.1016/j.bioorg.2020.103707 32146176
    [Google Scholar]
  74. Zhuang C. Zhang W. Sheng C. Zhang W. Xing C. Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017 117 12 7762 7810 10.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  75. Mathew B. Baek S.C. Thomas Parambi D.G. Lee J.P. Mathew G.E. Jayanthi S. Vinod D. Rapheal C. Devikrishna V. Kondarath S.S. Uddin M.S. Kim H. Potent and highly selective dual‐targeting monoamine oxidase‐B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch. Pharm. (Weinheim) 2019 352 4 1800309 10.1002/ardp.201800309 30663112
    [Google Scholar]
  76. Sasidharan R. Eom B.H. Heo J.H. Park J.E. Abdelgawad M.A. Musa A. Gambacorta N. Nicolotti O. Manju S.L. Mathew B. Kim H. Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: synthesis and biochemical investigations. J. Enzyme Inhib. Med. Chem. 2021 36 1 188 197 10.1080/14756366.2020.1842390 33430657
    [Google Scholar]
  77. Stocchi F. Vacca L. Grassini P. Tomino C. Caminiti G. Casali M. D’Antoni V. Volterrani M. Torti M. Overnight switch from rasagiline to safinamide in Parkinson’s disease patients with motor fluctuations: a tolerability and safety study. Eur. J. Neurol. 2021 28 1 349 354 10.1111/ene.14552 32961619
    [Google Scholar]
  78. Karthivashan G. Ganesan P. Park S.Y. Lee H.W. Choi D.K. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson’s disease: From preclinical to translational studies. Biomaterials 2020 232 119704 10.1016/j.biomaterials.2019.119704 31901690
    [Google Scholar]
  79. Baweja G.S. Gupta S. Kumar B. Patel P. Asati V. Recent updates on structural insights of MAO-B inhibitors: A review on target-based approach. Mol. Divers. 2024 28 3 1823 1845 10.1007/s11030‑023‑10634‑6 36977955
    [Google Scholar]
  80. Chuanfei J. Kangzhi C. Yingjun Z. Pyrrolidineamide derivatives and uses thereof. US Patent 11225460, 2022
  81. Mazhari R. Mezaache D. Paterson B.M. Vornov J. Garner R.M. Nelson T. Compounds, compositions and methods US Patent 11479542, 2022
  82. Crowley B.M. Campbell B.T. Chobanian H.R. Fells J.I. Guiadeen D.G. Greshock T.J. Leavitt K.J. Rada V.L. Bell I.M. Spiropiperidine allosteric modulators of nicotinic acetylcholine receptors US Patent 11332463, 2021
  83. Kak-Shan Shia Heterocyclic compounds and use thereof. Canadian Patent CA3047146C, 2021
  84. Xiao D.I.N.G. Jin Y. Liu Q. Ren F. Yingxia S.A.N.G. Heterocyclic compounds, particularly pyrimidinylindazole compounds for treating parkinson's disease European Patent EP3325449B1, 2021
  85. Crowley B.M. Bell I.M. Harvey A.J. Shipe W.D. Leavitt K.J. Sanders J.M. Guiadeen D.G. Suen L.M. Greshock T.J. Rada V.L. Substituted bicyclic heteroaryl allosteric modulators of nicotinic acetylcholine receptors. US Patent 10870630, 2020
  86. Terán M.D. Besada P.P. Costas C.T. Costas L.D. Vila M.N. Viña C.D. Pyridazin-3(2H)-one derivatives as monoamine oxidase selective isoform B inhibitors. US Patent 10253000, 2019
  87. Tzvetkov N. Substituted benzamide derivatives as in vitro MAO-B inhibitors. US Patent 9738640, 2017
  88. Tzvetkov N. Substituted indazole derivatives as in vitro MAO-B inhibitors. US Patent 9643930, 2017
  89. Park K.D. Lee C.J. Kim D.J. Pae A. Nim Choo H.A. Min S.J. Kang Y.K. Kim Y.K. Song H.J. Choi J.W. Nam M.H. Heo J.Y. Yeon S.K. Jang B.K. Ju E.J. Jo S.M. Park J.H. 2017 Alpha-aminoamide derivative compound and pharmaceutical composition containing the same. E. Patent 3202759, 2017
  90. Tzvetkov N. Substituted indazole or indole derivatives as in vitro Mao-B inhibitors . E. Patent 2964219, 2017
  91. Tzvetkov N. Substituted benzamide derivatives as in vitro MAO-B inhibitors. E. Patent 2991986, 2017
/content/journals/cnsnddt/10.2174/0118715273340983241018095529
Loading
/content/journals/cnsnddt/10.2174/0118715273340983241018095529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test