Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

The involvement of psychological stress and Natural Killer T (NKT) cells in the pathophysiology of multiple sclerosis has been identified in the progression of this disease. Psychological stress can impact disease occurrence, relapse, and severity through its effects on the Hypothalamic-Pituitary-Adrenal (HPA) axis and immune responses. NKT cells are believed to play a pivotal role in the pathogenesis of multiple sclerosis, with recent evidence suggesting their distinct functional alterations following activation of the HPA axis under conditions of psychological stress. This review summarizes the associations between psychological stress, NKT cells, and multiple sclerosis while discussing the potential mechanism for how NKT cells mediate the effects of psychological stress on this disease.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273315953240528075542
2024-12-01
2024-11-15
Loading full text...

Full text loading...

References

  1. HusseiniL. GeladarisA. WeberM.S. Toward identifying key mechanisms of progression in multiple sclerosis.Trends Neurosci.2024471587010.1016/j.tins.2023.11.005 38102058
    [Google Scholar]
  2. PatsopoulosN.A. BaranziniS.E. SantanielloA. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility.Science20193656460eaav718810.1126/science.aav7188 31604244
    [Google Scholar]
  3. AbdollahpourI. NedjatS. MansourniaM.A. EckertS. Weinstock-GuttmanB. Stress-full life events and multiple sclerosis: A population-based incident case-control study.Mult. Scler. Relat. Disord.20182616817210.1016/j.msard.2018.09.026 30268037
    [Google Scholar]
  4. KuhlmannT. MocciaM. CoetzeeT. Multiple sclerosis progression: Time for a new mechanism-driven framework.Lancet Neurol.2023221788810.1016/S1474‑4422(22)00289‑7 36410373
    [Google Scholar]
  5. MohrD.C. LoveraJ. BrownT. A randomized trial of stress management for the prevention of new brain lesions in MS.Neurology201279541241910.1212/WNL.0b013e3182616ff9 22786596
    [Google Scholar]
  6. GodfreyD.I. StankovicS. BaxterA.G. Raising the NKT cell family.Nat. Immunol.201011319720610.1038/ni.1841 20139988
    [Google Scholar]
  7. LeeY.J. WangH. StarrettG.J. PhuongV. JamesonS.C. HogquistK.A. Tissue specific distribution of iNKT cells impacts their cytokine response.Immunity201543356657810.1016/j.immuni.2015.06.025 26362265
    [Google Scholar]
  8. CrosbyC.M. KronenbergM. Tissue-specific functions of invariant natural killer T cells.Nat. Rev. Immunol.201818955957410.1038/s41577‑018‑0034‑2 29967365
    [Google Scholar]
  9. CuiG. ShimbaA. JinJ. A circulating subset of iNKT cells mediates antitumor and antiviral immunity.Sci. Immunol.2022776eabj876010.1126/sciimmunol.abj8760 36269840
    [Google Scholar]
  10. CarriónB. LiuY. HadiM. Transcriptome and function of novel immunosuppressive autoreactive invariant natural killer t cells that are absent in progressive multiple sclerosis.Neurol. Neuroimmunol. Neuroinflamm.202186e106510.1212/NXI.0000000000001065 34385365
    [Google Scholar]
  11. KaerL.V. α-Galactosylceramide therapy for autoimmune diseases: Prospects and obstacles.Nat. Rev. Immunol.200551314210.1038/nri1531 15630427
    [Google Scholar]
  12. SatoW. NotoD. ArakiM. First-in-human clinical trial of the NKT cell-stimulatory glycolipid OCH in multiple sclerosis.Ther. Adv. Neurol. Disord.20231610.1177/17562864231162153 36993937
    [Google Scholar]
  13. HaykinH. RollsA. The neuroimmune response during stress: A physiological perspective.Immunity20215491933194710.1016/j.immuni.2021.08.023 34525336
    [Google Scholar]
  14. IrwinM.R. Human psychoneuroimmunology: 20 Years of discovery.Brain Behav. Immun.200822212913910.1016/j.bbi.2007.07.013 17911004
    [Google Scholar]
  15. TavesM.D. AshwellJ.D. Glucocorticoids in T cell development, differentiation and function.Nat. Rev. Immunol.202121423324310.1038/s41577‑020‑00464‑0 33149283
    [Google Scholar]
  16. RudakP.T. ChoiJ. ParkinsK.M. Chronic stress physically spares but functionally impairs innate-like invariant T cells.Cell Rep.202135210897910.1016/j.celrep.2021.108979 33852855
    [Google Scholar]
  17. KaragkouniA. AlevizosM. TheoharidesT.C. Effect of stress on brain inflammation and multiple sclerosis.Autoimmun. Rev.2013121094795310.1016/j.autrev.2013.02.006 23537508
    [Google Scholar]
  18. MohrD.C. HartS.L. JulianL. CoxD. PelletierD. Association between stressful life events and exacerbation in multiple sclerosis: A meta-analysis.BMJ2004328744273110.1136/bmj.38041.724421.55 15033880
    [Google Scholar]
  19. GrantI. BrownG.W. HarrisT. McDonaldW.I. PattersonT. TrimbleM.R. Severely threatening events and marked life difficulties preceding onset or exacerbation of multiple sclerosis.J. Neurol. Neurosurg. Psychiatry198952181310.1136/jnnp.52.1.8 2709039
    [Google Scholar]
  20. SpitzerC. BouchainM. WinklerL.Y. Childhood trauma in multiple sclerosis: A case-control study.Psychosom. Med.201274331231810.1097/PSY.0b013e31824c2013 22408134
    [Google Scholar]
  21. JiangJ. AbduljabbarS. ZhangC. OsierN. The relationship between stress and disease onset and relapse in multiple sclerosis: A systematic review.Mult. Scler. Relat. Disord.20226710414210.1016/j.msard.2022.104142 36155965
    [Google Scholar]
  22. RehanS.T. KhanZ. ShujaS.H. Association of adverse childhood experiences with adulthood multiple sclerosis: A systematic review of observational studies.Brain Behav.2023136e302410.1002/brb3.3024 37128143
    [Google Scholar]
  23. AckermanK.D. StoverA. HeymanR. Relationship of cardiovascular reactivity, stressful life events, and multiple sclerosis disease activity.Brain Behav. Immun.200317314115110.1016/S0889‑1591(03)00047‑3 12706412
    [Google Scholar]
  24. JiangX. OlssonT. HillertJ. KockumI. AlfredssonL. Stressful life events are associated with the risk of multiple sclerosis.Eur. J. Neurol.202027122539254810.1111/ene.14458
    [Google Scholar]
  25. MohrD.C. GoodkinD.E. BacchettiP. Psychological stress and the subsequent appearance of new brain MRI lesions in MS.Neurology2000551556110.1212/WNL.55.1.55 10891906
    [Google Scholar]
  26. Meyer-ArndtL. HetzerS. AsseyerS. Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis.Neurobiol. Stress20201310024410.1016/j.ynstr.2020.100244 33344700
    [Google Scholar]
  27. Meyer-ArndtL. Schmitz-HübschT. Bellmann-StroblJ. Neural processes of psychological stress and relaxation predict the future evolution of quality of life in multiple sclerosis.Front. Neurol.20211275310710.3389/fneur.2021.753107 34887828
    [Google Scholar]
  28. ConstantinescuC.S. FarooqiN. O’BrienK. GranB. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).Br. J. Pharmacol.201116441079110610.1111/j.1476‑5381.2011.01302.x 21371012
    [Google Scholar]
  29. GriffinA.C. LoW.D. WolnyA.C. WhitacreC.C. Suppression of experimental autoimmune encephalomyelitis by restraint stress: Sex differences.J. Neuroimmunol.199344110311610.1016/0165‑5728(93)90273‑2 8496336
    [Google Scholar]
  30. LevineS. StrebelR. WenkE.J. HarmanP.J. Suppression of experimental allergic encephalomyelitis by stress.Exp. Biol. Med.1962109229429810.3181/00379727‑109‑27183 14464656
    [Google Scholar]
  31. CorreaS.G. Rodriguez-GalánM.C. RiveroV.E. RieraC.M. Chronic varied stress modulates experimental autoimmune encephalomyelitis in Wistar rats.Brain Behav. Immun.199812213414810.1006/brbi.1998.0519 9646938
    [Google Scholar]
  32. HarpazI. AbutbulS. NemirovskyA. GalR. CohenH. MonsonegoA. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C 57 BL/6 mice: Glucocorticoids as a double‐edged sword.Eur. J. Immunol.201343375876910.1002/eji.201242613 23255172
    [Google Scholar]
  33. StephanM. StraubR.H. BreivikT. PabstR. von HörstenS. Postnatal maternal deprivation aggravates experimental autoimmune encephalomyelitis in adult Lewis rats: reversal by chronic imipramine treatment.Int. J. Dev. Neurosci.200220212513210.1016/S0736‑5748(02)00007‑2 12034143
    [Google Scholar]
  34. PaladiniM.S. MarangonD. RossettiA.C. Prenatal stress impairs spinal cord oligodendrocyte maturation via bdnf signaling in the experimental autoimmune encephalomyelitis model of multiple sclerosis.Cell. Mol. Neurobiol.20224241225124010.1007/s10571‑020‑01014‑x 33259004
    [Google Scholar]
  35. Pérez-NievasB.G. García-BuenoB. MadrigalJ.L.M. LezaJ.C. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated.J. Neuroinflammation2010716010.1186/1742‑2094‑7‑60 20929574
    [Google Scholar]
  36. GerrardB. SinghV. BabenkoO. Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers.Neuroscience201735929930710.1016/j.neuroscience.2017.07.033 28739526
    [Google Scholar]
  37. ChandlerN. JacobsonS. EspositoP. ConnollyR. TheoharidesT.C. Acute stress shortens the time to onset of experimental allergic encephalomyelitis in SJL/J mice.Brain Behav. Immun.200216675776310.1016/S0889‑1591(02)00028‑4 12776697
    [Google Scholar]
  38. HabekM. Immune and autonomic nervous system interactions in multiple sclerosis: clinical implications.Clin. Auton. Res.201929326727510.1007/s10286‑019‑00605‑z 30963343
    [Google Scholar]
  39. RacostaJ.M. KimpinskiK. Autonomic dysfunction, immune regulation, and multiple sclerosis.Clin. Auton. Res.2016261233110.1007/s10286‑015‑0325‑7 26691635
    [Google Scholar]
  40. ErkutZ.A. HofmanM.A. RavidR. SwaabD.F. Increased activity of hypothalamic corticotropin-releasing hormone neurons in multiple sclerosis.J. Neuroimmunol.1995621273310.1016/0165‑5728(95)00098‑M 7499489
    [Google Scholar]
  41. GençB. ŞenS. AslanK. İncesuL. Volumetric changes in hypothalamic subunits in patients with relapsing remitting multiple sclerosis.Neuroradiology202365589990510.1007/s00234‑023‑03122‑z 36720749
    [Google Scholar]
  42. StoppeM. MeyerK. SchlingmannM. OlbrichS. Then BerghF. Hyperstable arousal regulation in multiple sclerosis.Psychoneuroendocrinology201911010441710.1016/j.psyneuen.2019.104417 31546115
    [Google Scholar]
  43. ArataM. SternbergZ. Neuroendocrine responses to transvascular autonomic modulation: A modified balloon angioplasty in multiple sclerosis patients.Horm. Metab. Res.201548212312910.1055/s‑0035‑1547235 25789986
    [Google Scholar]
  44. YsrraelitM.C. GaitánM.I. LopezA.S. CorrealeJ. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis.Neurology200871241948195410.1212/01.wnl.0000336918.32695.6b 19064876
    [Google Scholar]
  45. HuitingaI. ErkutZ.A. van BeurdenD. SwaabD.F. Impaired hypothalamus‐pituitary‐adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions.Ann. Neurol.2004551374510.1002/ana.10766 14705110
    [Google Scholar]
  46. BerghF.T. KümpfelT. TrenkwalderC. RupprechtR. HolsboerF. Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical course of MS.Neurology199953477277710.1212/WNL.53.4.772 10489039
    [Google Scholar]
  47. MeliefJ. de WitS.J. van EdenC.G. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter.Acta Neuropathol.2013126223724910.1007/s00401‑013‑1140‑7 23812288
    [Google Scholar]
  48. PoliakS. MorF. ConlonP. Stress and autoimmunity: the neuropeptides corticotropin-releasing factor and urocortin suppress encephalomyelitis via effects on both the hypothalamic-pituitary-adrenal axis and the immune system.J. Immunol.1997158125751575610.4049/jimmunol.158.12.5751 9190925
    [Google Scholar]
  49. BenouC. WangY. ImitolaJ. Corticotropin-releasing hormone contributes to the peripheral inflammatory response in experimental autoimmune encephalomyelitis.J. Immunol.200517495407541310.4049/jimmunol.174.9.5407 15843539
    [Google Scholar]
  50. MacPheeI.A. AntoniF.A. MasonD.W. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids.J. Exp. Med.1989169243144510.1084/jem.169.2.431 2783450
    [Google Scholar]
  51. VillasP.A. DronsfieldM.J. BlankenhornE.P. Experimental allergic encephalomyelitis and corticosterone studies in resistant and] susceptible rat strains.Clin. Immunol. Immunopathol.1991611294010.1016/S0090‑1229(06)80005‑X 1959238
    [Google Scholar]
  52. MasonD. MacPheeI. AntoniF. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat.Immunology199070115 2354853
    [Google Scholar]
  53. JiN. KovalovskyA. Fingerle-RowsonG. GuentzelM.N. ForsthuberT.G. Macrophage migration inhibitory factor promotes resistance to glucocorticoid treatment in EAE.Neurol. Neuroimmunol. Neuroinflamm.201525e13910.1212/NXI.0000000000000139 26280015
    [Google Scholar]
  54. WangZ. ZhengG. LiG. Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation.J. Cell. Mol. Med.20202423137031371410.1111/jcmm.15928 33094923
    [Google Scholar]
  55. BenjaminsJ.A. NedelkoskaL. BealmearB. LisakR.P. ACTH protects mature oligodendroglia from excitotoxic and inflammation-related damage in vitro.Glia20136181206121710.1002/glia.22504 23832579
    [Google Scholar]
  56. DittelL.J. DittelB.N. BrodS.A. Ingested ACTH blocks Th17 production by inhibiting GALT IL-6.J. Neurol. Sci.202040911660210.1016/j.jns.2019.116602 31812846
    [Google Scholar]
  57. BerkovichR. AgiusM.A. Mechanisms of action of ACTH in the management of relapsing forms of multiple sclerosis.Ther. Adv. Neurol. Disord.201472839610.1177/1756285613518599 24587825
    [Google Scholar]
  58. CitterioA. La MantiaL. CiucciG. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis.Cochrane Libr.20004CD00133110.1002/14651858.CD001331 11034713
    [Google Scholar]
  59. SegamarchiC. SilvaB. SaidonP. GarceaO. AlonsoR. Would it be recommended treating multiple sclerosis relapses with high dose oral instead intravenous steroids during the COVID-19 pandemic? Yes.Mult. Scler. Relat. Disord.20204610244910.1016/j.msard.2020.102449 32853893
    [Google Scholar]
  60. BrusaferriF. CandeliseL. Steriods for multiple sclerosis and optic neuritis: A meta-analysis of randomized controlled clinical trials.J. Neurol.2000247643544210.1007/s004150070172 10929272
    [Google Scholar]
  61. Le PageE. VeillardD. LaplaudD.A. Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): A randomised, controlled, double-blind, non-inferiority trial.Lancet2015386999797498110.1016/S0140‑6736(15)61137‑0 26135706
    [Google Scholar]
  62. MyhrK.M. MellgrenS.I. Corticosteroids in the treatment of multiple sclerosis.Acta Neurol. Scand.2009120189738010.1111/j.1600‑0404.2009.01213.x 19566504
    [Google Scholar]
  63. ArnasonB.G. BerkovichR. CataniaA. LisakR.P. ZaidiM. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis.Mult. Scler.201319213013610.1177/1352458512458844 23034287
    [Google Scholar]
  64. BenjaminsJ.A. NedelkoskaL. LisakR.P. Melanocortin receptor subtypes are expressed on cells in the oligodendroglial lineage and signal ACTH protection.J. Neurosci. Res.201896342743510.1002/jnr.24141 28877366
    [Google Scholar]
  65. BerkovichR. BakshiR. AmezcuaL. Adrenocorticotropic hormone versus methylprednisolone added to interferon β in patients with multiple sclerosis experiencing breakthrough disease: A randomized, rater-blinded trial.Ther. Adv. Neurol. Disord.201710131710.1177/1756285616670060 28450891
    [Google Scholar]
  66. SimsarianJ. SaundersC. SmithM. Five-day regimen of intramuscular or subcutaneous self-administered adrenocorticotropic hormone gel for acute exacerbations of multiple sclerosis: A prospective, randomized, open-label pilot trial.Drug Des. Devel. Ther.2011538138910.2147/DDDT.S19331 21792296
    [Google Scholar]
  67. BerzinsS.P. SmythM.J. BaxterA.G. Presumed guilty: natural killer T cell defects and human disease.Nat. Rev. Immunol.201111213114210.1038/nri2904 21267014
    [Google Scholar]
  68. GatelyC.M. PodbielskaM. CounihanT. Invariant Natural Killer T-cell anergy to endogenous myelin acetyl-glycolipids in multiple sclerosis.J. Neuroimmunol.20132591-21710.1016/j.jneuroim.2013.02.020 23537888
    [Google Scholar]
  69. HeD. LiuL. ShenD. ZouP. CuiL. The effect of peripheral immune cell counts on the risk of multiple sclerosis: A mendelian randomization study.Front. Immunol.20221386769310.3389/fimmu.2022.867693 35619713
    [Google Scholar]
  70. JahngA.W. MaricicI. PedersenB. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis.J. Exp. Med.2001194121789179910.1084/jem.194.12.1789 11748280
    [Google Scholar]
  71. PálE. TabiraT. KawanoT. TaniguchiM. MiyakeS. YamamuraT. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V α 14 NK T cells.J. Immunol.2001166166266810.4049/jimmunol.166.1.662 11123351
    [Google Scholar]
  72. FurlanR. BergamiA. CantarellaD. Activation of invariant NKT cells by αGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-γ.Eur. J. Immunol.20033371830183810.1002/eji.200323885 12811843
    [Google Scholar]
  73. DenneyL. KokW.L. ColeS.L. SandersonS. McMichaelA.J. HoL.P. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome.J. Immunol.2012189255155710.4049/jimmunol.1103608 22685310
    [Google Scholar]
  74. SinghA.K. YangJ.Q. ParekhV.V. The natural killer T cell ligand α‐galactosylceramide prevents or promotes pristane‐induced lupus in mice.Eur. J. Immunol.20053541143115410.1002/eji.200425861 15761849
    [Google Scholar]
  75. KigerlK.A. McGaughyV.M. PopovichP.G. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury.J. Comp. Neurol.2006494457859410.1002/cne.20827 16374800
    [Google Scholar]
  76. MarsL.T. LalouxV. GoudeK. Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice.J. Immunol.2002168126007601110.4049/jimmunol.168.12.6007 12055208
    [Google Scholar]
  77. OhS.J. ChungD.H. Invariant NKT cells producing IL-4 or IL-10, but not IFN-γ, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response.J. Immunol.2011186126815682110.4049/jimmunol.1003916 21572032
    [Google Scholar]
  78. EtesamZ. NematiM. EbrahimizadehM.A. Different expressions of specific transcription factors of Th1 (T-bet) and Th2 cells (GATA-3) by peripheral blood mononuclear cells from patients with multiple sclerosis.Basic Clin. Neurosci.20189645846910.32598/bcn.9.6.458 30719260
    [Google Scholar]
  79. MiyamotoK. MiyakeS. YamamuraT. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells.Nature2001413685553153410.1038/35097097 11586362
    [Google Scholar]
  80. KrishnarajahS. BecherB. TH cells and cytokines in encephalitogenic disorders.Front. Immunol.20221382291910.3389/fimmu.2022.822919 35320935
    [Google Scholar]
  81. ParoniM. MalteseV. De SimoneM. Recognition of viral and self-antigens by T H 1 and T H 1/T H 17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses.J. Allergy Clin. Immunol.2017140379780810.1016/j.jaci.2016.11.045 28237728
    [Google Scholar]
  82. ZhangF. LiuG. WeiC. GaoC. HaoJ. Linc-MAF-4 regulates Th1/Th 2 differentiation and is associated with the pathogenesis] of multiple sclerosis by targeting MAF.FASEB J.201731251952510.1096/fj.201600838R 27756768
    [Google Scholar]
  83. SinghA.K. WilsonM.T. HongS. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis.J. Exp. Med.2001194121801181110.1084/jem.194.12.1801 11748281
    [Google Scholar]
  84. YoshimotoT. BendelacA. Hu-LiJ. PaulW.E. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4.Proc. Natl. Acad. Sci.19959225119311193410.1073/pnas.92.25.11931 8524877
    [Google Scholar]
  85. BugbeeE. WangA.A. GommermanJ.L. Under the influence: Environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis.Front. Immunol.202314118875010.3389/fimmu.2023.1188750 37600781
    [Google Scholar]
  86. KannO. AlmouhannaF. ChausseB. Interferon γ: A master cytokine in microglia-mediated neural network dysfunction and neurodegeneration.Trends Neurosci.2022451291392710.1016/j.tins.2022.10.007 36283867
    [Google Scholar]
  87. CarnaudC. LeeD. DonnarsO. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells.J. Immunol.199916394647465010.4049/jimmunol.163.9.4647 10528160
    [Google Scholar]
  88. GalliG. PittoniP. TontiE. Invariant NKT cells sustain specific B cell responses and memory.Proc. Natl. Acad. Sci.2007104103984398910.1073/pnas.0700191104 17360464
    [Google Scholar]
  89. KojoS. SeinoK. HaradaM. Induction of regulatory properties in dendritic cells by Valpha14 NKT cells.J. Immunol.200517563648365510.4049/jimmunol.175.6.3648 16148109
    [Google Scholar]
  90. SinghN. HongS. SchererD.C. Cutting edge: Activation of NK T cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype.J. Immunol.199916352373237710.4049/jimmunol.163.5.2373 10452969
    [Google Scholar]
  91. MimpenM. SmoldersJ. HuppertsR. DamoiseauxJ. Natural killer cells in multiple sclerosis: A review.Immunol. Lett.202022211110.1016/j.imlet.2020.02.012 32113900
    [Google Scholar]
  92. LiuC. ZhuJ. MiY. JinT. Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis.J. Neuroinflammation202219129810.1186/s12974‑022‑02663‑z 36510261
    [Google Scholar]
  93. OnoéK. YanagawaY. MinamiK. IijimaN. IwabuchiK. Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells.Immunol. Res.2007381-331933210.1007/s12026‑007‑0011‑5 17917039
    [Google Scholar]
  94. ChenY.G. Choisy-RossiC.M. HollT.M. Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes.J. Immunol.200517431196120410.4049/jimmunol.174.3.1196 15661873
    [Google Scholar]
  95. FujiiS.I. ShimizuK. HemmiH. SteinmanR.M. Innate Vα14+] natural killer T cells mature dendritic cells, leading to strong adaptive immunity.Immunol. Rev.2007220118319810.1111/j.1600‑065X.2007.00561.x 17979847
    [Google Scholar]
  96. YangJ.Q. WenX. KimP.J. SinghR.R. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner.J. Immunol.201118631512152010.4049/jimmunol.1002373 21209282
    [Google Scholar]
  97. AtanackovicD. NowottneU. FreierE. Acute psychological stress increases peripheral blood CD3 + CD56 + natural killer T cells in healthy men: possible implications for the development and treatment of allergic and autoimmune disorders.Stress201316442142810.3109/10253890.2013.777702 23425210
    [Google Scholar]
  98. RudakP.T. GangireddyR. ChoiJ. Stress-elicited glucocorticoid receptor signaling upregulates TIGIT in innate-like invariant T lymphocytes.Brain Behav. Immun.20198079380410.1016/j.bbi.2019.05.027 31108170
    [Google Scholar]
  99. BowersS.L. BilboS.D. DhabharF.S. NelsonR.J. Stressor-specific alterations in corticosterone and immune responses in mice.Brain Behav. Immun.200822110511310.1016/j.bbi.2007.07.012 17890050
    [Google Scholar]
  100. GongS. MiaoY.L. JiaoG.Z. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice.PLoS One2015102e011750310.1371/journal.pone.0117503 25699675
    [Google Scholar]
  101. Keller-WoodM. Hypothalamic-pituitary--adrenal axis-feedback control.Compr. Physiol.2015531161118210.1002/cphy.c140065 26140713
    [Google Scholar]
  102. FrancoA.J. ChenC. ScullenT. Sensitization of the hypothalamic-pituitary-adrenal axis in a male rat chronic stress model.Endocrinology201615762346235510.1210/en.2015‑1641 27054552
    [Google Scholar]
  103. StefferlA. LiningtonC. HolsboerF. ReulJ.M.H.M. Susceptibility and resistance to experimental allergic encephalomyelitis: relationship with hypothalamic-pituitary-adrenocortical axis responsiveness in the rat.Endocrinology1999140114932493810.1210/endo.140.11.7109 10537116
    [Google Scholar]
  104. WüstS. van den BrandtJ. TischnerD. Peripheral T cells are the therapeutic targets of glucocorticoids in experimental autoimmune encephalomyelitis.J. Immunol.2008180128434844310.4049/jimmunol.180.12.8434 18523311
    [Google Scholar]
  105. WüstS. van den BrandtJ. ReichardtH.M. LühderF. Preventive treatment with methylprednisolone paradoxically exacerbates experimental autoimmune encephalomyelitis.Int. J. Endocrinol.20128810.1155/2012/417017
    [Google Scholar]
  106. BierJ. SteigerS.M. ReichardtH.M. LühderF. Protection of antigen-primed effector t cells from glucocorticoid-induced apoptosis in cell culture and in a mouse model of multiple sclerosis.Front. Immunol.20211267125810.3389/fimmu.2021.671258 34177911
    [Google Scholar]
  107. MontaniM.S.G. TuostoL. GilibertiR. StefaniniL. CundariE. PiccolellaE. Dexamethasone induces apoptosis in human T cell clones expressing low levels of Bcl-2.Cell Death Differ.199961798610.1038/sj.cdd.4400461 10200551
    [Google Scholar]
  108. HeroldM.J. McPhersonK.G. ReichardtH.M. Glucocorticoids in T cell apoptosis and function.Cell. Mol. Life Sci.2006631607210.1007/s00018‑005‑5390‑y 16314919
    [Google Scholar]
  109. KainumaE. WatanabeM. Tomiyama-MiyajiC. Association of glucocorticoid with stress-induced modulation of body temperature, blood glucose and innate immunity.Psychoneuroendocrinology200934101459146810.1016/j.psyneuen.2009.04.021 19493627
    [Google Scholar]
  110. SakamiS. NakataA. YamamuraT. KawamuraN. Psychological stress increases human T cell apoptosis in vitro.Neuroimmunomodulation2002-200310422423110.1159/000068326 12584410
    [Google Scholar]
  111. ShimizuT. KawamuraT. MiyajiC. Resistance of extrathymic T cells to stress and the role of endogenous glucocorticoids in stress associated immunosuppression.Scand. J. Immunol.200051328529210.1046/j.1365‑3083.2000.00695.x 10736098
    [Google Scholar]
  112. TsengR.J. PadgettD.A. DhabharF.S. EnglerH. SheridanJ.F. Stress-induced modulation of NK activity during influenza viral infection: Role of glucocorticoids and opioids.Brain Behav. Immun.200519215316410.1016/j.bbi.2004.07.001 15664788
    [Google Scholar]
  113. CounotteJ. DrexhageH.A. WijkhuijsJ.M. Th17/T regulator cell balance and NK cell numbers in relation to psychosis liability and social stress reactivity.Brain Behav. Immun.20186940841710.1016/j.bbi.2017.12.015 29289662
    [Google Scholar]
  114. HuD. WanL. ChenM. Essential role of IL-10/STAT3 in chronic stress-induced immune suppression.Brain Behav. Immun.20143611812710.1016/j.bbi.2013.10.016 24513872
    [Google Scholar]
  115. PaikI. TohK. LeeC. KimJ. LeeS. Psychological stress may induce increased humoral and decreased cellular immunity.Behav. Med.200026313914110.1080/08964280009595761 11209594
    [Google Scholar]
  116. MarinT.J. ChenE. MunchJ.A. MillerG.E. Double-exposure to acute stress and chronic family stress is associated with immune changes in children with asthma.Psychosom. Med.200971437838410.1097/PSY.0b013e318199dbc3 19196805
    [Google Scholar]
  117. PalumboM.L. CanzobreM.C. PascuanC.G. RíosH. WaldM. GenaroA.M. Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice.J. Neuroimmunol.20102181-2122010.1016/j.jneuroim.2009.11.005 19942299
    [Google Scholar]
  118. GiannouA.D. KempskiJ. ShiriA.M. Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22.Immunity202356112514210.1016/j.immuni.2022.12.014 36630911
    [Google Scholar]
  119. ParkH.J. LeeS.W. ImW. KimM. Van KaerL. HongS. iNKT cell activation exacerbates the development of Huntington’s Disease in R6/2 transgenic mice.Mediators Inflamm.201920191010.1155/2019/3540974
    [Google Scholar]
  120. Montañés-MasiasB. Bort-RoigJ. PascualJ.C. SolerJ. Briones-BuixassaL. Online psychological interventions to improve symptoms in multiple sclerosis: A systematic review.Acta Neurol. Scand.2022146544846410.1111/ane.13709 36121184
    [Google Scholar]
  121. SimpsonR. SimpsonS. RamparsadN. LawrenceM. BoothJ. MercerS.W. Effects of Mindfulness-based interventions on physical symptoms in people with multiple sclerosis - a systematic review and meta-analysis.Mult. Scler. Relat. Disord.20203810149310.1016/j.msard.2019.101493 31835209
    [Google Scholar]
  122. ThomasP.W. ThomasS. HillierC. GalvinK. BakerR. Psychological interventions for multiple sclerosis.Cochrane Libr.200620101CD00443110.1002/14651858.CD004431.pub2 16437487
    [Google Scholar]
  123. LamkinD.M. LutgendorfS.K. McGinnS. Positive psychosocial factors and NKT cells in ovarian cancer patients.Brain Behav. Immun.2008221657310.1016/j.bbi.2007.06.005 17643954
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273315953240528075542
Loading
/content/journals/cnsnddt/10.2174/0118715273315953240528075542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test