Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide-1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273291985240430074053
2024-12-01
2024-11-15
Loading full text...

Full text loading...

References

  1. WellenK.E. HotamisligilG.S. Inflammation, stress, and diabetes.J. Clin. Invest.200511551111111910.1172/JCI25102 15864338
    [Google Scholar]
  2. CalleE.E. KaaksR. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms.Nat. Rev. Cancer20044857959110.1038/nrc1408 15286738
    [Google Scholar]
  3. ManninoD.M. MottJ. FerdinandsJ.M. Boys with high body masses have an increased risk of developing asthma: findings from the National Longitudinal Survey of Youth (NLSY).Int. J. Obes.200630161310.1038/sj.ijo.0803145 16344843
    [Google Scholar]
  4. BealT. MassiotE. ArsenaultJ.E. SmithM.R. HijmansR.J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes.PLoS One2017124e017555410.1371/journal.pone.0175554 28399168
    [Google Scholar]
  5. WilliamsE.P. MesidorM. WintersK. DubbertP.M. WyattS.B. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem.Curr. Obes. Rep.20154336337010.1007/s13679‑015‑0169‑4 26627494
    [Google Scholar]
  6. ShaharirS.S. GaforA.H.A. SaidM.S.M. KongN.C.T. Steroid‐induced diabetes mellitus in systemic lupus erythematosus patients: Analysis from a M alaysian multi‐ethnic lupus cohort.Int. J. Rheum. Dis.201518554154710.1111/1756‑185X.12474 25294584
    [Google Scholar]
  7. CamachoS. RuppelA. Is the calorie concept a real solution to the obesity epidemic?Glob. Health Action2017101128965010.1080/16549716.2017.1289650 28485680
    [Google Scholar]
  8. IbrahimS. AkramZ. NoreenA. Overweight and obesity prevalence and predictors in people living in Karachi.J. Pharm. Res. Int.20213319420210.9734/jpri/2021/v33i31B31708
    [Google Scholar]
  9. CsigeI. UjvárosyD. SzabóZ. The impact of obesity on the cardiovascular system.J. Diabetes Res.2018201811210.1155/2018/3407306 30525052
    [Google Scholar]
  10. PotiJ.M. BragaB. QinB. Ultra-processed food intake and obesity: what really matters for health-processing or nutrient content?Curr. Obes. Rep.20176442043110.1007/s13679‑017‑0285‑4 29071481
    [Google Scholar]
  11. ÇakmurH. Introductory chapter: unbearable burden of the diseases-obesity.IntechOpen202019
    [Google Scholar]
  12. LuppinoF.S. de WitL.M. BouvyP.F. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies.Arch. Gen. Psychiatry201067322022910.1001/archgenpsychiatry.2010.2 20194822
    [Google Scholar]
  13. de WitL.M. van StratenA. van HertenM. PenninxB.W.J.H. CuijpersP. Depression and body mass index, a u-shaped association.BMC Public Health2009911410.1186/1471‑2458‑9‑14 19144098
    [Google Scholar]
  14. McCreaR.L. BergerY.G. KingM.B. Body mass index and common mental disorders: Exploring the shape of the association and its moderation by age, gender and education.Int. J. Obes.201236341442110.1038/ijo.2011.65 21427699
    [Google Scholar]
  15. BombenV.C. TurnerK.L. BarclayT.T.C. SontheimerH. Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas.J. Cell. Physiol.201122671879188810.1002/jcp.22518 21506118
    [Google Scholar]
  16. van RossumE.F.C. Obesity and cortisol: New perspectives on an old theme.Obesity201725350050110.1002/oby.21774 28229549
    [Google Scholar]
  17. PervanidouP. ChrousosG.P. Stress and obesity/metabolic syndrome in childhood and adolescence.Int. J. Pediatr. Obes.20116S1Suppl. 1212810.3109/17477166.2011.615996 21905812
    [Google Scholar]
  18. AnsteyK.J. CherbuinN. BudgeM. YoungJ. Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies.Obes. Rev.2011125e426e43710.1111/j.1467‑789X.2010.00825.x 21348917
    [Google Scholar]
  19. PedditiziE. PetersR. BeckettN. The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies.Age Ageing2016451142110.1093/ageing/afv151 26764391
    [Google Scholar]
  20. EliasM.F. EliasP.K. SullivanL.M. WolfP.A. D’AgostinoR.B. Obesity, diabetes and cognitive deficit: The framingham heart study.Neurobiol. Aging2005261111610.1016/j.neurobiolaging.2005.08.019 16223549
    [Google Scholar]
  21. CournotM. MarquiéJ.C. AnsiauD. Relation between body mass index and cognitive function in healthy middle-aged men and women.Neurology20066771208121410.1212/01.wnl.0000238082.13860.50 17030754
    [Google Scholar]
  22. SabiaS. KivimakiM. ShipleyM.J. MarmotM.G. Singh-ManouxA. Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort Study.Am. J. Clin. Nutr.200989260160710.3945/ajcn.2008.26482 19073790
    [Google Scholar]
  23. HassingL.B. DahlA.K. PedersenN.L. JohanssonB. Overweight in midlife is related to lower cognitive function 30 years later: A prospective study with longitudinal assessments.Dement. Geriatr. Cogn. Disord.201029654355210.1159/000314874 20606436
    [Google Scholar]
  24. DahlA.K. HassingL.B. FranssonE.I. GatzM. ReynoldsC.A. PedersenN.L. Body mass index across midlife and cognitive change in late life.Int. J. Obes.201337229630210.1038/ijo.2012.37 22450854
    [Google Scholar]
  25. MinkwitzJ. ScheiplF. CartwrightL. Why some obese people become depressed whilst others do not: Exploring links between cognitive reactivity, depression and obesity.Psychol. Health Med.201924336237310.1080/13548506.2018.1524153 30252503
    [Google Scholar]
  26. ThormannJ. ChittkaT. MinkwitzJ. KlugeM. HimmerichH. [Obesity and depression: An overview on the complex interactions of two diseases].Fortschr Neurol Psychiatr2013813145153 23516104
    [Google Scholar]
  27. SchmidtF.M. LichtblauN. MinkwitzJ. Cytokine levels in depressed and non-depressed subjects, and masking effects of obesity.J. Psychiatr. Res.201455293410.1016/j.jpsychires.2014.04.021 24838047
    [Google Scholar]
  28. SchmidtF.M. WeschenfelderJ. SanderC. Inflammatory cytokines in general and central obesity and modulating effects of physical activity.PLoS One2015103e012197110.1371/journal.pone.0121971 25781614
    [Google Scholar]
  29. SchmidtF.M. MerglR. MinkwitzJ. Is there an association or not?—investigating the association of depressiveness, physical activity, body composition and sleep with mediators of inflammation.Front. Psychiatry20201156310.3389/fpsyt.2020.00563 32670105
    [Google Scholar]
  30. GrundyS.M. BrewerH.B.Jr CleemanJ.I. SmithS.C.Jr LenfantC. Definition of metabolic syndrome: Report of the national heart, lung, and blood institute/american heart association conference on scientific issues related to definition.Circulation2004109343343810.1161/01.CIR.0000111245.75752.C6 14744958
    [Google Scholar]
  31. SarmaS. SockalingamS. DashS. Obesity as a multisystem disease: Trends in obesity rates and obesity‐related complications.Diabetes Obes. Metab.202123S1Suppl. 131610.1111/dom.14290 33621415
    [Google Scholar]
  32. LeowM.K.S. AddyC.L. MantzorosC.S. Clinical review 159: Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies.J. Clin. Endocrinol. Metab.20038851961197610.1210/jc.2002‑021704 12727939
    [Google Scholar]
  33. HryhorczukC. SharmaS. FultonS.E. Metabolic disturbances connecting obesity and depression.Front. Neurosci.2013717710.3389/fnins.2013.00177 24109426
    [Google Scholar]
  34. AlgoblanA. AlalfiM. KhanM. Mechanism linking diabetes mellitus and obesity.Diabetes Metab. Syndr. Obes.2014758759110.2147/DMSO.S67400 25506234
    [Google Scholar]
  35. AndersonR.J. FreedlandK.E. ClouseR.E. LustmanP.J. The prevalence of comorbid depression in adults with diabetes: A meta-analysis.Diabetes Care20012461069107810.2337/diacare.24.6.1069 11375373
    [Google Scholar]
  36. RobertsR.E. DelegerS. StrawbridgeW.J. KaplanG.A. Prospective association between obesity and depression: Evidence from the alameda county study.Int. J. Obes.200327451452110.1038/sj.ijo.0802204 12664085
    [Google Scholar]
  37. DongY. FurutaT. SabitH. Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug.Oncotarget201786711172811174110.18632/oncotarget.22904 29340087
    [Google Scholar]
  38. SimonO.J. MünteferingT. GrauerO.M. MeuthS.G. The role of ion channels in malignant brain tumors.J. Neurooncol.2015125222523510.1007/s11060‑015‑1896‑9 26334315
    [Google Scholar]
  39. HamerM. BattyG.D. KivimakiM. Risk of future depression in people who are obese but metabolically healthy: the English longitudinal study of ageing.Mol. Psychiatry201217994094510.1038/mp.2012.30 22525487
    [Google Scholar]
  40. BlascoB.V. García-JiménezJ. BodoanoI. Gutiérrez-RojasL. Obesity and depression: its prevalence and influence as a prognostic factor: A systematic review.Psychiatry Investig.202017871572410.30773/pi.2020.0099 32777922
    [Google Scholar]
  41. MilanoW. AmbrosioP. CarizzoneF. Depression and obesity: Analysis of common biomarkers.Diseases2020822310.3390/diseases8020023 32545890
    [Google Scholar]
  42. AfridiR. SukK. Neuroinflammatory basis of depression: learning from experimental models.Front. Cell. Neurosci.20211569106710.3389/fncel.2021.691067
    [Google Scholar]
  43. MillerA.A. SpencerS.J. Obesity and neuroinflammation: A pathway to cognitive impairment.Brain Behav. Immun.201442102110.1016/j.bbi.2014.04.001 24727365
    [Google Scholar]
  44. CaiD. Neuroinflammation and neurodegeneration in overnutrition-induced diseases.Trends Endocrinol Metab2013241404710.1016/j.tem.2012.11.003 23265946
    [Google Scholar]
  45. GregorM.F. HotamisligilG.S. Inflammatory mechanisms in obesity.Annu. Rev. Immunol.201129141544510.1146/annurev‑immunol‑031210‑101322 21219177
    [Google Scholar]
  46. HotamisligilG.S. Inflammation and metabolic disorders.Nature2006444712186086710.1038/nature05485 17167474
    [Google Scholar]
  47. MakkiK. FroguelP. WolowczukI. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines.ISRN Inflamm.2013201311210.1155/2013/139239 24455420
    [Google Scholar]
  48. MauryE. BrichardS.M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome.Mol. Cell. Endocrinol.2010314111610.1016/j.mce.2009.07.031 19682539
    [Google Scholar]
  49. KhanU.I. RastogiD. IsasiC.R. CoupeyS.M. Independent and synergistic associations of asthma and obesity with systemic inflammation in adolescents.J. Asthma201249101044105010.3109/02770903.2012.728271 23050876
    [Google Scholar]
  50. ReavenG.M. HollenbeckC. JengC.Y. WuM.S. ChenY.D.I. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM.Diabetes19883781020102410.2337/diab.37.8.1020 3292322
    [Google Scholar]
  51. MoreiraMC PiazzonFB CarvalhoMDF A dominant ABCC8-related hyperinsulinism: familial case report.Moreira et al. ABCC8-related hyperinsulinism. Fetal Pediatr Pathol201332538438610.3109/15513815.2012.754531 23301914
    [Google Scholar]
  52. SmithE. HayP. CampbellL. TrollorJ.N. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment.Obes. Rev.201112974075510.1111/j.1467‑789X.2011.00920.x 21991597
    [Google Scholar]
  53. Pereira-MirandaE. CostaP.R.F. QueirozV.A.O. Pereira-SantosM. SantanaM.L.P. Overweight and obesity associated with higher depression prevalence in adults: A systematic review and meta-analysis.J. Am. Coll. Nutr.201736322323310.1080/07315724.2016.1261053 28394727
    [Google Scholar]
  54. Vaghef-MehrabanyE. RanjbarF. Asghari-JafarabadiM. Hosseinpour-ArjmandS. Ebrahimi-MameghaniM. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response.Nutr. Neurosci.202124533935310.1080/1028415X.2019.1630985 31241002
    [Google Scholar]
  55. GalletlyC. MoranL. NoakesM. CliftonP. TomlinsonL. NormanR. Psychological benefits of a high-protein, low-carbohydrate diet in obese women with polycystic ovary syndrome—A pilot study.Appetite200749359059310.1016/j.appet.2007.03.222 17509728
    [Google Scholar]
  56. HalyburtonA.K. BrinkworthG.D. WilsonC.J. Low- and high-carbohydrate weight-loss diets have similar effects on mood but not cognitive performance.Am. J. Clin. Nutr.200786358058710.1093/ajcn/86.3.580 17823420
    [Google Scholar]
  57. BeutlerB.A. The role of tumor necrosis factor in health and disease.J. Rheumatol. Suppl.1999571621 10328138
    [Google Scholar]
  58. CavaliereG. TrincheseG. PennaE. High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction.Front. Cell. Neurosci.20191350910.3389/fncel.2019.00509 31798417
    [Google Scholar]
  59. DutheilS. OtaK.T. WohlebE.S. RasmussenK. DumanR.S. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation.Neuropsychopharmacology20164171874188710.1038/npp.2015.357 26658303
    [Google Scholar]
  60. de MelloA.H. SchraiberR.B. GoldimM.P.S. Omega-3 fatty acids attenuate brain alterations in high-fat diet-induced obesity model.Mol. Neurobiol.201956151352410.1007/s12035‑018‑1097‑6 29728888
    [Google Scholar]
  61. DinelA.L. AndréC. AubertA. FerreiraG. LayéS. CastanonN. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome.PLoS One201169e2432510.1371/journal.pone.0024325 21949705
    [Google Scholar]
  62. KlausF. PaternaJ.C. MarzoratiE. Differential effects of peripheral and brain tumor necrosis factor on inflammation, sickness, emotional behavior and memory in mice.Brain Behav. Immun.20165831032610.1016/j.bbi.2016.08.001 27515532
    [Google Scholar]
  63. SetoyamaD. KatoT.A. HashimotoR. Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients a multicenter pilot analysis.PLoS One20161112e016526710.1371/journal.pone.0165267 27984586
    [Google Scholar]
  64. AkimotoH. TezukaK. NishidaY. NakayamaT. TakahashiY. AsaiS. Association between use of oral hypoglycemic agents in Japanese patients with type 2 diabetes mellitus and risk of depression: A retrospective cohort study.Pharmacol. Res. Perspect.201976e0053610.1002/prp2.536 31768258
    [Google Scholar]
  65. RichardJ.E. AnderbergR.H. GötesonA. GribbleF.M. ReimannF. SkibickaK.P. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system.PLoS One2015103e011903410.1371/journal.pone.0119034 25793511
    [Google Scholar]
  66. PetraA.I. PanagiotidouS. HatziagelakiE. StewartJ.M. ContiP. TheoharidesT.C. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation.Clin. Ther.201537598499510.1016/j.clinthera.2015.04.002 26046241
    [Google Scholar]
  67. BhattaraiY. Microbiota‐gut‐brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers.Neurogastroenterol. Motil.2018306e1336610.1111/nmo.13366 29878576
    [Google Scholar]
  68. FarziA. HassanA.M. ZenzG. HolzerP. Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis.Mol. Aspects Med.201966809310.1016/j.mam.2018.11.003 30513310
    [Google Scholar]
  69. EvrenselA. CeylanM.E. The Gut-Brain Axis: The Missing Link in Depression.Clin. Psychopharmacol. Neurosci.201513323924410.9758/cpn.2015.13.3.239 26598580
    [Google Scholar]
  70. KunduP. BlacherE. ElinavE. PetterssonS. Our gut microbiome: The evolving inner self.Cell201717171481149310.1016/j.cell.2017.11.024 29245010
    [Google Scholar]
  71. TrayhurnP. Endocrine and signalling role of adipose tissue: new perspectives on fat.Acta Physiol. Scand.2005184428529310.1111/j.1365‑201X.2005.01468.x 16026420
    [Google Scholar]
  72. SiiteriP.K. Adipose tissue as a source of hormones.Am. J. Clin. Nutr.1987451Suppl.27728210.1093/ajcn/45.1.277 3541569
    [Google Scholar]
  73. FlierJ.S. CookK.S. UsherP. SpiegelmanB.M. Severely impaired adipsin expression in genetic and acquired obesity.Science1987237481340540810.1126/science.3299706 3299706
    [Google Scholar]
  74. IzquierdoA.G. CrujeirasA.B. CasanuevaF.F. CarreiraM.C. Leptin, obesity, and leptin resistance: Where are we 25 years later?Nutrients20191111270410.3390/nu11112704 31717265
    [Google Scholar]
  75. MilaneschiY. LamersF. BotM. DrentM.L. PenninxB.W.J.H. Leptin dysregulation is specifically associated with major depression with atypical features: Evidence for a mechanism connecting obesity and depression.Biol. Psychiatry201781980781410.1016/j.biopsych.2015.10.023 26742925
    [Google Scholar]
  76. DongC. SanchezL.E. PriceR.A. Relationship of obesity to depression: A family-based study.Int. J. Obes.200428679079510.1038/sj.ijo.0802626 15024401
    [Google Scholar]
  77. SimonG.E. Von KorffM. SaundersK. Association between obesity and psychiatric disorders in the US adult population.Arch. Gen. Psychiatry200663782483010.1001/archpsyc.63.7.824 16818872
    [Google Scholar]
  78. ZhaoG. FordE.S. LiC. TsaiJ. DhingraS. BalluzL.S. Waist circumference, abdominal obesity, and depression among overweight and obese U.S. adults: national health and nutrition examination survey 2005-2006.BMC Psychiatry201111113010.1186/1471‑244X‑11‑130 21834955
    [Google Scholar]
  79. LeoR. Di LorenzoG. TesauroM. Decreased plasma adiponectin concentration in major depression.Neurosci. Lett.2006407321121310.1016/j.neulet.2006.08.043 16973279
    [Google Scholar]
  80. ChenY. LinY.C. KuoT.W. KnightZ.A. Sensory detection of food rapidly modulates arcuate feeding circuits.Cell2015160582984110.1016/j.cell.2015.01.033 25703096
    [Google Scholar]
  81. CimminoM.A. AndraghettiG. BriatoreL. Changes in adiponectin and leptin concentrations during glucocorticoid treatment: A pilot study in patients with polymyalgia rheumatica.Ann. N. Y. Acad. Sci.20101193116016310.1111/j.1749‑6632.2009.05364.x 20398023
    [Google Scholar]
  82. SandovalD.A. DavisS.N. Leptin.J. Diabetes Complications200317210811310.1016/S1056‑8727(02)00167‑8 12614978
    [Google Scholar]
  83. WozniakS.E. GeeL.L. WachtelM.S. FrezzaE.E. Adipose tissue: the new endocrine organ? A review article.Dig. Dis. Sci.20095491847185610.1007/s10620‑008‑0585‑3 19052866
    [Google Scholar]
  84. BornsteinS.R. SchuppeniesA. WongM-L. LicinioJ. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene–environment interactions.Mol. Psychiatry2006111089290210.1038/sj.mp.4001873 16880826
    [Google Scholar]
  85. LuX.Y. The leptin hypothesis of depression: A potential link between mood disorders and obesity?Curr. Opin. Pharmacol.20077664865210.1016/j.coph.2007.10.010 18032111
    [Google Scholar]
  86. LuX.Y. KimC.S. FrazerA. ZhangW. Leptin: A potential novel antidepressant.Proc. Natl. Acad. Sci.200610351593159810.1073/pnas.0508901103 16423896
    [Google Scholar]
  87. AntonijevicI. MurckH. FrieboesR.M. HornR. BrabantG. SteigerA. Elevated nocturnal profiles of serum leptin in patients with depression.J. Psychiatr. Res.199832640341010.1016/S0022‑3956(98)00032‑6 9844957
    [Google Scholar]
  88. RubinR.T. RhodesM.E. CzambelR.K. Sexual diergism of baseline plasma leptin and leptin suppression by arginine vasopressin in major depressives and matched controls.Psychiatry Res.2002113325526810.1016/S0165‑1781(02)00263‑9 12559482
    [Google Scholar]
  89. JowG.M. YangT.T. ChenC.L. Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia.J. Affect. Disord.2006901212710.1016/j.jad.2005.09.015 16324751
    [Google Scholar]
  90. KrausT. HaackM. SchuldA. Hinze-SelchD. PollmächerT. Low leptin levels but normal body mass indices in patients with depression or schizophrenia.Neuroendocrinology200173424324710.1159/000054641 11340338
    [Google Scholar]
  91. DeuschleM. BlumW. EnglaroP. Plasma leptin in depressed patients and healthy controls.Horm. Metab. Res.1996281271471710.1055/s‑2007‑979885 9013749
    [Google Scholar]
  92. MüllerT.D. NogueirasR. AndermannM.L. Ghrelin.Mol. Metab.20154643746010.1016/j.molmet.2015.03.005 26042199
    [Google Scholar]
  93. ArvatE. Di VitoL. BroglioF. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans.J. Endocrinol. Invest.200023849349510.1007/BF03343763 11021763
    [Google Scholar]
  94. YilmazY. Psychopathology in the context of obesity: The adiponectin hypothesis.Med. Hypotheses200870490290310.1016/j.mehy.2007.08.019 17920209
    [Google Scholar]
  95. NaritaK. MurataT. TakahashiT. KosakaH. OmataN. WadaY. Plasma levels of adiponectin and tumor necrosis factor-alpha in patients with remitted major depression receiving long-term maintenance antidepressant therapy.Prog. Neuropsychopharmacol. Biol. Psychiatry20063061159116210.1016/j.pnpbp.2006.03.030 16678955
    [Google Scholar]
  96. MamalakisG. KiriakakisM. TsibinosG. Depression and serum adiponectin and adipose omega-3 and omega-6 fatty acids in adolescents.Pharmacol. Biochem. Behav.200685247447910.1016/j.pbb.2006.10.008 17126386
    [Google Scholar]
  97. PanA. YeX. FrancoO.H. The association of depressive symptoms with inflammatory factors and adipokines in middle-aged and older Chinese.PLoS One200831e139210.1371/journal.pone.0001392 18167551
    [Google Scholar]
  98. ChenY.C. LinW.W. ChenY.J. MaoW.C. HungY.J. Antidepressant effects on insulin sensitivity and proinflammatory cytokines in the depressed males.Mediators Inflamm.201020101710.1155/2010/573594 20490354
    [Google Scholar]
  99. YouT. NicklasB.J. DingJ. The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity.J. Gerontol. A Biol. Sci. Med. Sci.200863441441910.1093/gerona/63.4.414 18426966
    [Google Scholar]
  100. ZeugmannS. QuanteA. HeuserI. SchwarzerR. AnghelescuI. Inflammatory biomarkers in 70 depressed inpatients with and without the metabolic syndrome.J. Clin. Psychiatry20107181007101610.4088/JCP.08m04767blu 20156411
    [Google Scholar]
  101. Fernández-RealJ.M. López-BermejoA. CasamitjanaR. RicartW. Novel interactions of adiponectin with the endocrine system and inflammatory parameters.J. Clin. Endocrinol. Metab.20038862714271810.1210/jc.2002‑021583 12788878
    [Google Scholar]
  102. AldhahiW. HamdyO. Adipokines, inflammation, and the endothelium in diabetes.Curr. Diab. Rep.20033429329810.1007/s11892‑003‑0020‑2 12866991
    [Google Scholar]
  103. OuchiN. KiharaS. FunahashiT. MatsuzawaY. WalshK. Obesity, adiponectin and vascular inflammatory disease.Curr. Opin. Lipidol.200314656156610.1097/00041433‑200312000‑00003 14624132
    [Google Scholar]
  104. TilgH. WolfA.M. Adiponectin: A key fat-derived molecule regulating inflammation.Expert Opin. Ther. Targets20059224525110.1517/14728222.9.2.245 15934913
    [Google Scholar]
  105. FasshauerM. KralischS. KlierM. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes.Biochem. Biophys. Res. Commun.200330141045105010.1016/S0006‑291X(03)00090‑1 12589818
    [Google Scholar]
  106. BruunJ.M. LihnA.S. VerdichC. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans.Am. J. Physiol. Endocrinol. Metab.20032853E527E53310.1152/ajpendo.00110.2003 12736161
    [Google Scholar]
  107. FasshauerM. KleinJ. NeumannS. EszlingerM. PaschkeR. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.Biochem. Biophys. Res. Commun.200229031084108910.1006/bbrc.2001.6307 11798186
    [Google Scholar]
  108. FalloF. ScardaA. SoninoN. Effect of glucocorticoids on adiponectin: A study in healthy subjects and in Cushing’s syndrome.Eur. J. Endocrinol.2004150333934410.1530/eje.0.1500339 15012619
    [Google Scholar]
  109. KushiroT. KobayashiF. OsadaH. Role of sympathetic activity in blood pressure reduction with low calorie regimen.Hypertension1991176_pt_296596810.1161/01.HYP.17.6.965 2045177
    [Google Scholar]
  110. SchwartzM.W. WoodsS.C. PorteD.Jr SeeleyR.J. BaskinD.G. Central nervous system control of food intake.Nature2000404677866167110.1038/35007534 10766253
    [Google Scholar]
  111. BalciogluA. WurtmanR.J. Effects of phentermine on striatal dopamine and serotonin release in conscious rats:In vivo microdialysis study.Int. J. Obes.199822432532810.1038/sj.ijo.0800589 9578237
    [Google Scholar]
  112. MartelP. FantinoM. Mesolimbic dopaminergic system activity as a function of food reward: A microdialysis study.Pharmacol. Biochem. Behav.199653122122610.1016/0091‑3057(95)00187‑5 8848454
    [Google Scholar]
  113. BaptistaT. Body weight gain induced by antipsychotic drugs: mechanisms and management.Acta Psychiatr. Scand.1999100131610.1111/j.1600‑0447.1999.tb10908.x 10442434
    [Google Scholar]
  114. TowellA. MuscatR. WillnerP. Behavioural microanalysis of the role of dopamine in amphetamine anorexia.Pharmacol. Biochem. Behav.198830364164810.1016/0091‑3057(88)90077‑9 3211973
    [Google Scholar]
  115. WangG.J. VolkowN.D. HitzemannR.J. Behavioral and cardiovascular effects of intravenous methylphenidate in normal subjects and cocaine abusers.Eur. Addict. Res.199731495410.1159/000259147
    [Google Scholar]
  116. LanniC. GovoniS. LucchelliA. BoselliC. Depression and antidepressants: molecular and cellular aspects.Cell. Mol. Life Sci.200966182985300810.1007/s00018‑009‑0055‑x 19521663
    [Google Scholar]
  117. KimbroughT.D. WeekleyL.B. The effect of a high-fat diet on brainstem and duodenal serotonin (5-HT) metabolism in Sprague-Dawley and Osborne-Mendel rats.Int. J. Obes.198484305310 6210259
    [Google Scholar]
  118. MadsenD. McguireM.T. Rapid communication whole blood serotonin and the type A behavior pattern.Psychosom. Med.198446654654810.1097/00006842‑198411000‑00007 6514952
    [Google Scholar]
  119. MoffittT.E. BrammerG.L. CaspiA. Whole blood serotonin relates to violence in an epidemiological study.Biol. Psychiatry199843644645710.1016/S0006‑3223(97)00340‑5 9532350
    [Google Scholar]
  120. KlimekV. SchenckJ.E. HanH. StockmeierC.A. OrdwayG.A. Dopaminergic abnormalities in amygdaloid nuclei in major depression: A postmortem study.Biol. Psychiatry200252774074810.1016/S0006‑3223(02)01383‑5 12372665
    [Google Scholar]
  121. WangG.J. VolkowN.D. FowlerJ.S. The role of dopamine in motivation for food in humans: implications for obesity.Expert Opin. Ther. Targets20026560160910.1517/14728222.6.5.601 12387683
    [Google Scholar]
  122. JohnsonP.M. KennyP.J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.Nat. Neurosci.201013563564110.1038/nn.2519 20348917
    [Google Scholar]
  123. CorwinR.L. AvenaN.M. BoggianoM.M. Feeding and reward: Perspectives from three rat models of binge eating.Physiol. Behav.20111041879710.1016/j.physbeh.2011.04.041 21549136
    [Google Scholar]
  124. SakaguchiT. BrayG.A. Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves.Brain Res.19894921-227128010.1016/0006‑8993(89)90910‑4 2752301
    [Google Scholar]
  125. PedersonK.J. RoerigJ.L. MitchellJ.E. Towards the pharmacotherapy of eating disorders.Expert Opin. Pharmacother.20034101659167810.1517/14656566.4.10.1659 14521477
    [Google Scholar]
  126. CurzonG. GibsonE.L. OluyomiA.O. Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability.Trends Pharmacol. Sci.1997181212510.1016/S0165‑6147(96)01003‑6 9114726
    [Google Scholar]
  127. PazosA. PalaciosJ.M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors.Brain Res.1985346220523010.1016/0006‑8993(85)90856‑X 4052776
    [Google Scholar]
  128. SpeakmanJ. HamblyC. MitchellS. KrólE. Animal models of obesity.Obes. Rev.20078s1Suppl. 1556110.1111/j.1467‑789X.2007.00319.x 17316303
    [Google Scholar]
  129. CarabottiM. SciroccoA. MaselliM.A. SeveriC. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems.Ann. Gastroenterol.2015282203209 25830558
    [Google Scholar]
  130. BreitS. KupferbergA. RoglerG. HaslerG. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders.Front. Psychiatry201894410.3389/fpsyt.2018.00044 29593576
    [Google Scholar]
  131. SchlaepferT.E. FrickC. ZobelA. Vagus nerve stimulation for depression: Efficacy and safety in a European study.Psychol. Med.200838565166110.1017/S0033291707001924 18177525
    [Google Scholar]
  132. BerryS.M. BroglioK. BunkerM. JayewardeneA. OlinB. RushA.J. A patient-level meta-analysis of studies evaluating vagus nerve stimulation therapy for treatment-resistant depression.Med. Devices201361735 23482508
    [Google Scholar]
  133. RushA.J. MarangellL.B. SackeimH.A. Vagus nerve stimulation for treatment-resistant depression: A randomized, controlled acute phase trial.Biol. Psychiatry200558534735410.1016/j.biopsych.2005.05.025 16139580
    [Google Scholar]
  134. GeorgeM.S. RushA.J. MarangellL.B. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression.Biol. Psychiatry200558536437310.1016/j.biopsych.2005.07.028 16139582
    [Google Scholar]
  135. NahasZ. MarangellL.B. HusainM.M. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes.J. Clin. Psychiatry20056691097110410.4088/JCP.v66n0902 16187765
    [Google Scholar]
  136. AaronsonS.T. SearsP. RuvunaF. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission, and suicidality.Am. J. Psychiatry2017174764064810.1176/appi.ajp.2017.16010034 28359201
    [Google Scholar]
  137. SuarezE.C. KrishnanR.R. LewisJ.G. The relation of severity of depressive symptoms to monocyte-associated proinflammatory cytokines and chemokines in apparently healthy men.Psychosom. Med.200365336236810.1097/01.PSY.0000035719.79068.2B 12764208
    [Google Scholar]
  138. CorcoranC. ConnorT.J. O’KeaneV. GarlandM.R. The effects of vagus nerve stimulation on pro and anti-inflammatory cytokines in humans: A preliminary report.Neuroimmunomodulation200512530730910.1159/000087109 16166810
    [Google Scholar]
  139. O’KeaneV. DinanT.G. ScottL. CorcoranC. Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression.Biol. Psychiatry2005581296396810.1016/j.biopsych.2005.04.049 16005439
    [Google Scholar]
  140. KoopmanF.A. ChavanS.S. MiljkoS. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.Proc. Natl. Acad. Sci.2016113298284828910.1073/pnas.1605635113 27382171
    [Google Scholar]
  141. de LartigueG. Role of the vagus nerve in the development and treatment of diet‐induced obesity.J. Physiol.2016594205791581510.1113/JP271538 26959077
    [Google Scholar]
  142. TomovaA. BukovskyI. RembertE. The Effects of Vegetarian and Vegan Diets on Gut Microbiota.Front. Nutr.201964710.3389/fnut.2019.00047 31058160
    [Google Scholar]
  143. ChristensenJ. YamakawaG.R. ShultzS.R. MychasiukR. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties.Prog. Neurobiol.202119810191710.1016/j.pneurobio.2020.101917 32991958
    [Google Scholar]
  144. RajabI.M. HartP.C. PotempaL.A. How C-reactive protein structural isoforms with distinctive bioactivities affect disease progression.Front. Immunol.202011212610.3389/fimmu.2020.02126 33013897
    [Google Scholar]
  145. SantosS. OliveiraA. CasalS. LopesC. Saturated fatty acids intake in relation to C-reactive protein, adiponectin, and leptin: A population-based study.Nutrition201329689289710.1016/j.nut.2013.01.009 23594583
    [Google Scholar]
  146. PasupuletiP. SuchitraM.M. BitlaA.R. SachanA. Attenuation of oxidative stress, interleukin-6, high-sensitivity c-reactive protein, plasminogen activator inhibitor-1, and fibrinogen with oral vitamin D supplementation in patients with T2DM having vitamin D deficiency.J. Lab. Physicians2021142190196 35982882
    [Google Scholar]
  147. BraunM. IliffJ.J. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases.Int. Rev. Neurobiol.202015441343610.1016/bs.irn.2020.02.006 32739013
    [Google Scholar]
  148. LeyR.E. PetersonD.A. GordonJ.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine.Cell2006124483784810.1016/j.cell.2006.02.017 16497592
    [Google Scholar]
  149. SekirovI. RussellS.L. AntunesL.C.M. FinlayB.B. Gut microbiota in health and disease.Physiol. Rev.201090385990410.1152/physrev.00045.2009 20664075
    [Google Scholar]
  150. FosterJ.A. McVey NeufeldK.A. Gut–brain axis: how the microbiome influences anxiety and depression.Trends Neurosci.201336530531210.1016/j.tins.2013.01.005 23384445
    [Google Scholar]
  151. KarlssonF.H. UsseryD.W. NielsenJ. NookaewI. A closer look at bacteroides: phylogenetic relationship and genomic implications of a life in the human gut.Microb. Ecol.201161347348510.1007/s00248‑010‑9796‑1 21222211
    [Google Scholar]
  152. Dominguez-BelloM.G. CostelloE.K. ContrerasM. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.Proc. Natl. Acad. Sci.201010726119711197510.1073/pnas.1002601107 20566857
    [Google Scholar]
  153. FallaniM. YoungD. ScottJ. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics.J. Pediatr. Gastroenterol. Nutr.2010511778410.1097/MPG.0b013e3181d1b11e 20479681
    [Google Scholar]
  154. YatsunenkoT. ReyF.E. ManaryM.J. Human gut microbiome viewed across age and geography.Nature2012486740222222710.1038/nature11053 22699611
    [Google Scholar]
  155. ClaessonM.J. JefferyI.B. CondeS. Gut microbiota composition correlates with diet and health in the elderly.Nature2012488741017818410.1038/nature11319 22797518
    [Google Scholar]
  156. WinterG. HartR.A. CharlesworthR.P.G. SharpleyC.F. Gut microbiome and depression: what we know and what we need to know.Rev. Neurosci.201829662964310.1515/revneuro‑2017‑0072 29397391
    [Google Scholar]
  157. WallaceC.J.K. MilevR. The effects of probiotics on depressive symptoms in humans: A systematic review.Ann. Gen. Psychiatry20171611410.1186/s12991‑017‑0138‑2
    [Google Scholar]
  158. ClappM. AuroraN. HerreraL. BhatiaM. WilenE. WakefieldS. Gut microbiota’s effect on mental health: The gut-brain axis.Clin. Pract.20177498710.4081/cp.2017.987 29071061
    [Google Scholar]
  159. SandhuK.V. SherwinE. SchellekensH. StantonC. DinanT.G. CryanJ.F. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.Transl. Res.201717922324410.1016/j.trsl.2016.10.002 27832936
    [Google Scholar]
  160. KohlerO. KroghJ. MorsO. Eriksen BenrosM. Inflammation in depression and the potential for anti-inflammatory treatment.Curr. Neuropharmacol.201614773274210.2174/1570159X14666151208113700 27640518
    [Google Scholar]
  161. BerkM. WilliamsL.J. JackaF.N. So depression is an inflammatory disease, but where does the inflammation come from?BMC Med.201311120010.1186/1741‑7015‑11‑200 24228900
    [Google Scholar]
  162. LernerA. NeidhöferS. MatthiasT. The gut microbiome feelings of the brain: A perspective for non-microbiologists.Microorganisms2017546610.3390/microorganisms5040066 29023380
    [Google Scholar]
  163. KoopmanM. El AidyS. Depressed gut? The microbiota-diet-inflammation trialogue in depression.Curr. Opin. Psychiatry201730536937710.1097/YCO.0000000000000350 28654462
    [Google Scholar]
  164. SlyepchenkoA. MaesM. JackaF.N. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities.Psychother. Psychosom.2017861314610.1159/000448957 27884012
    [Google Scholar]
  165. PeirceJ.M. AlviñaK. The role of inflammation and the gut microbiome in depression and anxiety.J. Neurosci. Res.201997101223124110.1002/jnr.24476 31144383
    [Google Scholar]
  166. LeonardB.E. Inflammation and depression: A causal or coincidental link to the pathophysiology?Acta Neuropsychiatr.201830111610.1017/neu.2016.69 28112061
    [Google Scholar]
  167. MillerA.H. MaleticV. RaisonC.L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression.Biol. Psychiatry200965973274110.1016/j.biopsych.2008.11.029 19150053
    [Google Scholar]
  168. StillingR.M. van de WouwM. ClarkeG. StantonC. DinanT.G. CryanJ.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?Neurochem. Int.20169911013210.1016/j.neuint.2016.06.011 27346602
    [Google Scholar]
  169. GibsonG.R. HutkinsR. SandersM.E. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  170. CarmodyR.N. GerberG.K. LuevanoJ.M.Jr Diet dominates host genotype in shaping the murine gut microbiota.Cell Host Microbe2015171728410.1016/j.chom.2014.11.010 25532804
    [Google Scholar]
  171. KennedyPJ CryanJF DinanTG ClarkeG Kynurenine pathway metabolism and the microbiota-gut-brain axis.Neuropharmacology2017112Pt B39941210.1016/j.neuropharm.2016.07.002 27392632
    [Google Scholar]
  172. MikaA. DayH.E.W. MartinezA. Early life diets with prebiotics and bioactive milk fractions attenuate the impact of stress on learned helplessness behaviours and alter gene expression within neural circuits important for stress resistance.Eur. J. Neurosci.201745334235710.1111/ejn.13444 27763700
    [Google Scholar]
  173. GilbertK. Arseneault-BréardJ. Flores MonacoF. Attenuation of post-myocardial infarction depression in rats by n -3 fatty acids or probiotics starting after the onset of reperfusion.Br. J. Nutr.20131091505610.1017/S0007114512003807 23068715
    [Google Scholar]
  174. RobertsonR.C. Seira OriachC. MurphyK. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood.Brain Behav. Immun.201759213710.1016/j.bbi.2016.07.145 27423492
    [Google Scholar]
  175. LiangS. WangT. HuX. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress.Neuroscience201531056157710.1016/j.neuroscience.2015.09.033 26408987
    [Google Scholar]
  176. CryanJ.F. DinanT.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour.Nat. Rev. Neurosci.2012131070171210.1038/nrn3346 22968153
    [Google Scholar]
  177. ParkA.J. CollinsJ. BlennerhassettP.A. Altered colonic function and microbiota profile in a mouse model of chronic depression.Neurogastroenterol. Motil.2013259733e57510.1111/nmo.12153 23773726
    [Google Scholar]
  178. CervenkaI. AgudeloL.Z. RuasJ.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health.Science20173576349eaaf979410.1126/science.aaf9794 28751584
    [Google Scholar]
  179. Ait-BelgnaouiA. ColomA. BranisteV. Probiotic gut effect prevents the chronic psychological stress‐induced brain activity abnormality in mice.Neurogastroenterol. Motil.201426451052010.1111/nmo.12295 24372793
    [Google Scholar]
  180. BercikP. DenouE. CollinsJ. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.Gastroenterology2011141259960910.1053/j.gastro.2011.04.052
    [Google Scholar]
  181. DumanR.S. LiN. LiuR.J. DuricV. AghajanianG. Signaling pathways underlying the rapid antidepressant actions of ketamine.Neuropharmacology2012621354110.1016/j.neuropharm.2011.08.044 21907221
    [Google Scholar]
  182. GrenhamS. ClarkeG. CryanJ.F. DinanT.G. Brain-gut-microbe communication in health and disease.Front. Physiol.201129410.3389/fphys.2011.00094 22162969
    [Google Scholar]
  183. Rahul MittalR.M. DebsL. PatelA. Neurotransmitters: the critical modulators regulating gut-brain axis.J. Cell. Physiol.2017232923592372
    [Google Scholar]
  184. DesbonnetL. ClarkeG. TraplinA. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.Brain Behav. Immun.20154816517310.1016/j.bbi.2015.04.004 25866195
    [Google Scholar]
  185. WalkerJ.K.L. GainetdinovR.R. MangelA.W. CaronM.G. ShetzlineM.A. Mice lacking the dopamine transporter display altered regulation of distal colonic motility.Am. J. Physiol. Gastrointest. Liver Physiol.20002792G311G31810.1152/ajpgi.2000.279.2.G311 10915639
    [Google Scholar]
  186. VillageliúD. LyteM. Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential.PLoS One20181311e020703810.1371/journal.pone.0207038 30485295
    [Google Scholar]
  187. EssnerR.A. SmithA.G. JamnikA.A. RybaA.R. TrutnerZ.D. CarterM.E. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons.J. Neurosci.201737368678868710.1523/JNEUROSCI.0798‑17.2017 28821663
    [Google Scholar]
  188. DinanT.G. CryanJ.F. Melancholic microbes: A link between gut microbiota and depression?Neurogastroenterol. Motil.201325971371910.1111/nmo.12198 23910373
    [Google Scholar]
  189. HughesD.T. SperandioV. Inter-kingdom signalling: Communication between bacteria and their hosts.Nat. Rev. Microbiol.20086211112010.1038/nrmicro1836 18197168
    [Google Scholar]
  190. HabibA.M. RichardsP. RogersG.J. ReimannF. GribbleF.M. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells.Diabetologia20135661413141610.1007/s00125‑013‑2887‑z 23519462
    [Google Scholar]
  191. AthaudaD. FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action.Drug Discov. Today201621580281810.1016/j.drudis.2016.01.013 26851597
    [Google Scholar]
  192. HansenH.H. FabriciusK. BarkholtP. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of alzheimer’s disease.J. Alzheimers Dis.201546487788810.3233/JAD‑143090 25869785
    [Google Scholar]
  193. CandeiasE.M. SebastiãoI.C. CardosoS.M. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide.World J. Diabetes20156680782710.4239/wjd.v6.i6.807 26131323
    [Google Scholar]
  194. ManigaultK. ThurstonM.M. Liraglutide: A glucagon-like peptide-1 agonist for chronic weight management.Consult Pharm.2016311268569710.4140/TCP.n.2016.685 28074747
    [Google Scholar]
  195. de MirandaA.S. ZhangC.J. KatsumotoA. TeixeiraA.L. Hippocampal adult neurogenesis: Does the immune system matter?J. Neurol. Sci.201737248249510.1016/j.jns.2016.10.052 27838002
    [Google Scholar]
  196. Kopschina FeltesP. DoorduinJ. KleinH.C. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy.J. Psychopharmacol.20173191149116510.1177/0269881117711708 28653857
    [Google Scholar]
  197. PaudelY.N. ShaikhM.F. ShahS. KumariY. OthmanI. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy.Eur. J. Pharmacol.201883714515510.1016/j.ejphar.2018.08.020 30125565
    [Google Scholar]
  198. WoelferM. KastiesV. KahlfussS. WalterM. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder.Neuroscience20194039311010.1016/j.neuroscience.2018.03.034 29604382
    [Google Scholar]
  199. FelgerJ.C. TreadwayM.T. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine.Neuropsychopharmacology201742121624110.1038/npp.2016.143 27480574
    [Google Scholar]
  200. SongC. WangH. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression.Prog. Neuropsychopharmacol. Biol. Psychiatry201135376076810.1016/j.pnpbp.2010.06.020 20600462
    [Google Scholar]
  201. CarvalhoL.A. TorreJ.P. PapadopoulosA.S. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system.J. Affect. Disord.2013148113614010.1016/j.jad.2012.10.036 23200297
    [Google Scholar]
  202. BertilssonG. PatroneC. ZachrissonO. Peptide hormone exendin‐4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease.J. Neurosci. Res.200886232633810.1002/jnr.21483 17803225
    [Google Scholar]
  203. LiY. PerryT. KindyM.S. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.Proc. Natl. Acad. Sci.200910641285129010.1073/pnas.0806720106 19164583
    [Google Scholar]
  204. HölscherC. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases.J. Endocrinol.20142211T31T4110.1530/JOE‑13‑0221 23999914
    [Google Scholar]
  205. SangoK. UtsunomiyaK. Efficacy of glucagon-like peptide-1 mimetics for neural regeneration.Neural Regen. Res.201510111723172410.4103/1673‑5374.169611 26807090
    [Google Scholar]
  206. IsacsonR. NielsenE. DannaeusK. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.Eur. J. Pharmacol.2011650124925510.1016/j.ejphar.2010.10.008 20951130
    [Google Scholar]
  207. CaiH.Y. HölscherC. YueX.H. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats.Neuroscience201427761310.1016/j.neuroscience.2014.02.022 24583037
    [Google Scholar]
  208. PetrikD. JiangY. BirnbaumS.G. Functional and mechanistic exploration of an adult neurogenesis‐promoting small molecule.FASEB J.20122683148316210.1096/fj.11‑201426 22542682
    [Google Scholar]
  209. KlempinF. BeisD. MosienkoV. KempermannG. BaderM. AleninaN. Serotonin is required for exercise-induced adult hippocampal neurogenesis.J. Neurosci.201333198270827510.1523/JNEUROSCI.5855‑12.2013 23658167
    [Google Scholar]
  210. WangY.H. LiouK.T. TsaiK.C. GSK-3 inhibition through GLP-1R allosteric activation mediates the neurogenesis promoting effect of P7C3 after cerebral ischemic/reperfusional injury in mice.Toxicol. Appl. Pharmacol.20183578810510.1016/j.taap.2018.08.023 30189238
    [Google Scholar]
  211. LiY. TweedieD. MattsonM.P. HollowayH.W. GreigN.H. Enhancing the GLP‐1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells.J. Neurochem.201011361621163110.1111/j.1471‑4159.2010.06731.x 20374430
    [Google Scholar]
  212. SalcedoI. TweedieD. LiY. GreigN.H. Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders.Br. J. Pharmacol.201216651586159910.1111/j.1476‑5381.2012.01971.x 22519295
    [Google Scholar]
  213. DennyC.A. BurghardtN.S. SchachterD.M. HenR. DrewM.R. 4‐ to 6‐week‐old adult‐born hippocampal neurons influence novelty‐evoked exploration and contextual fear conditioning.Hippocampus20122251188120110.1002/hipo.20964 21739523
    [Google Scholar]
  214. DumanR. NakagawaS. MalbergJ. Regulation of adult neurogenesis by antidepressant treatment.Neuropsychopharmacology200125683684410.1016/S0893‑133X(01)00358‑X 11750177
    [Google Scholar]
  215. ToniN. TengE.M. BushongE.A. Synapse formation on neurons born in the adult hippocampus.Nat. Neurosci.200710672773410.1038/nn1908 17486101
    [Google Scholar]
  216. BoldriniM. UnderwoodM.D. HenR. Antidepressants increase neural progenitor cells in the human hippocampus.Neuropsychopharmacology200934112376238910.1038/npp.2009.75 19606083
    [Google Scholar]
  217. AnackerC. ZunszainP.A. CattaneoA. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor.Mol. Psychiatry201116773875010.1038/mp.2011.26 21483429
    [Google Scholar]
  218. WeinaH. YuhuN. ChristianH. BirongL. FeiyuS. LeW. Liraglutide attenuates the depressive- and anxiety-like behaviour in the corticosterone induced depression model via improving hippocampal neural plasticity.Brain Res.20181694556210.1016/j.brainres.2018.04.031 29705602
    [Google Scholar]
  219. CuomoA. BolognesiS. GoracciA. Feasibility, adherence and efficacy of liraglutide treatment in a sample of individuals with mood disorders and obesity.Front. Psychiatry2019978410.3389/fpsyt.2018.00784 30728788
    [Google Scholar]
  220. HayesM.R. SchmidtH.D. GLP-1 influences food and drug reward.Curr. Opin. Behav. Sci.20169667010.1016/j.cobeha.2016.02.005 27066524
    [Google Scholar]
  221. FletcherJ.B. RebackC.J. Depression mediates and moderates effects of methamphetamine use on sexual risk taking among treatment-seeking gay and bisexual men.Health Psychol.201534886586910.1037/hea0000207 25581704
    [Google Scholar]
  222. SteinbergE.E. KeiflinR. BoivinJ.R. WittenI.B. DeisserothK. JanakP.H. A causal link between prediction errors, dopamine neurons and learning.Nat. Neurosci.201316796697310.1038/nn.3413 23708143
    [Google Scholar]
  223. LietzauG. MagniG. KehrJ. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging.Neurobiol. Aging202089122310.1016/j.neurobiolaging.2020.01.004 32143981
    [Google Scholar]
  224. KorolS.V. JinZ. BabateenO. BirnirB. GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons.Diabetes2015641798910.2337/db14‑0668 25114295
    [Google Scholar]
  225. LennoxR. PorterD.W. FlattP.R. HolscherC. IrwinN. GaultV.A. Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice.Neuropharmacology201486223010.1016/j.neuropharm.2014.06.026 24998752
    [Google Scholar]
  226. GaultV.A. PorterW.D. FlattP.R. HölscherC. Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet.Int. J. Obes.20103481341134410.1038/ijo.2010.59 20351729
    [Google Scholar]
  227. MilaneschiY. SimmonsW.K. van RossumE.F.C. PenninxB.W.J.H. Depression and obesity: Evidence of shared biological mechanisms.Mol. Psychiatry2019241183310.1038/s41380‑018‑0017‑5 29453413
    [Google Scholar]
  228. XuQ. AndersonD. Lurie-BeckJ. The relationship between abdominal obesity and depression in the general population: A systematic review and meta-analysis.Obes. Res. Clin. Pract.201154e267e27810.1016/j.orcp.2011.04.007 24331129
    [Google Scholar]
  229. RossR. NeelandI.J. YamashitaS. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity.Nat. Rev. Endocrinol.202016317718910.1038/s41574‑019‑0310‑7 32020062
    [Google Scholar]
  230. MannanM. MamunA. DoiS. ClavarinoA. Prospective associations between depression and obesity for adolescent males and females-a systematic review and meta-analysis of longitudinal studies.PLoS One2016116e015724010.1371/journal.pone.0157240 27285386
    [Google Scholar]
  231. ZhaoG. FordE.S. DhingraS. LiC. StrineT.W. MokdadA.H. Depression and anxiety among US adults: Associations with body mass index.Int. J. Obes.200933225726610.1038/ijo.2008.268 19125163
    [Google Scholar]
  232. GariepyG. WangJ. LesageA.D. SchmitzN. The longitudinal association from obesity to depression: results from the 12-year National Population Health Survey.Obesity20101851033103810.1038/oby.2009.333 19816409
    [Google Scholar]
  233. LaiJ.S. OldmeadowC. HureA.J. Inflammation mediates the association between fatty acid intake and depression in older men and women.Nutr. Res.201636323424510.1016/j.nutres.2015.11.017 26923510
    [Google Scholar]
  234. TsuboiH. WatanabeM. KobayashiF. KimuraK. KinaeN. Associations of depressive symptoms with serum proportions of palmitic and arachidonic acids, and α-tocopherol effects among male population: A preliminary study.Clin. Nutr.201332228929310.1016/j.clnu.2012.07.011 22901744
    [Google Scholar]
  235. SharmaS. FultonS. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry.Int. J. Obes.201337338238910.1038/ijo.2012.48 22508336
    [Google Scholar]
  236. AndréC. DinelA.L. FerreiraG. LayéS. CastanonN. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: Focus on brain indoleamine 2,3-dioxygenase activation.Brain Behav. Immun.201441102110.1016/j.bbi.2014.03.012 24681251
    [Google Scholar]
  237. NakajimaS. FukasawaK. GotohM. Murakami-MurofushiK. KunugiH. Saturated fatty acid is a principal cause of anxiety-like behavior in diet-induced obese rats in relation to serum lysophosphatidyl choline level.Int. J. Obes.202044372773810.1038/s41366‑019‑0468‑z 31636375
    [Google Scholar]
  238. SharmaS. FernandesM.F. FultonS. Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal.Int. J. Obes.20133791183119110.1038/ijo.2012.197 23229740
    [Google Scholar]
  239. HryhorczukC. Décarie-SpainL. SharmaS. Saturated high-fat feeding independent of obesity alters hypothalamus-pituitary-adrenal axis function but not anxiety-like behaviour.Psychoneuroendocrinology20178314214910.1016/j.psyneuen.2017.06.002 28623763
    [Google Scholar]
  240. DavisJ.F. TracyA.L. SchurdakJ.D. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat.Behav. Neurosci.200812261257126310.1037/a0013111 19045945
    [Google Scholar]
  241. SartoriusT. KettererC. KullmannS. Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior.Diabetes20126171669167910.2337/db11‑1521 22492529
    [Google Scholar]
  242. HryhorczukC. FloreaM. RodarosD. Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids.Neuropsychopharmacology201641381182110.1038/npp.2015.207 26171719
    [Google Scholar]
  243. SoriguerF. Rojo-MartínezG. GodayA. Olive oil has a beneficial effect on impaired glucose regulation and other cardiometabolic risk factors. [email protected] study.Eur. J. Clin. Nutr.201367991191610.1038/ejcn.2013.130 23859999
    [Google Scholar]
  244. Décarie-SpainL. SharmaS. HryhorczukC. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat.Mol. Metab.20181011310.1016/j.molmet.2018.01.018 29454579
    [Google Scholar]
  245. ThalerJ.P. SchwartzM.W. Minireview: Inflammation and obesity pathogenesis: the hypothalamus heats up.Endocrinology201015194109411510.1210/en.2010‑0336 20573720
    [Google Scholar]
  246. KimJ.D. YoonN.A. JinS. DianoS. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding.Cell Metab.2019305952962.e510.1016/j.cmet.2019.08.010 31495690
    [Google Scholar]
  247. DouglassJ.D. DorfmanM.D. FasnachtR. ShafferL.D. ThalerJ.P. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation.Mol. Metab.20176436637310.1016/j.molmet.2017.01.010 28377875
    [Google Scholar]
  248. AndréC. Guzman-QuevedoO. ReyC. Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation.Diabetes201766490891910.2337/db16‑0586 27903745
    [Google Scholar]
  249. Gutiérrez-MartosM. GirardB. Mendonça-NettoS. Cafeteria diet induces neuroplastic modifications in the nucleus accumbens mediated by microglia activation.Addict. Biol.201823273574910.1111/adb.12541 28872733
    [Google Scholar]
  250. XuM.X. YuR. ShaoL.F. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin.Brain Behav. Immun.201658698110.1016/j.bbi.2016.01.001 26765996
    [Google Scholar]
  251. WellsK.B. StewartA. HaysR.D. The functioning and well-being of depressed patients. Results from the Medical Outcomes Study.JAMA1989262791491910.1001/jama.1989.03430070062031 2754791
    [Google Scholar]
  252. FordE.S. MoriartyD.G. ZackM.M. MokdadA.H. ChapmanD.P. Self-reported body mass index and health-related quality of life: findings from the Behavioral Risk Factor Surveillance System.Obes. Res.200191213110.1038/oby.2001.4 11346664
    [Google Scholar]
  253. KolotkinR.L. MeterK. WilliamsG.R. Quality of life and obesity.Obes. Rev.20012421922910.1046/j.1467‑789X.2001.00040.x 12119993
    [Google Scholar]
  254. FontaineK.R. BarofskyI. Obesity and health‐related quality of life.Obes. Rev.20012317318210.1046/j.1467‑789x.2001.00032.x 12120102
    [Google Scholar]
  255. FerraroK.F. SuY. GretebeckR.J. BlackD.R. BadylakS.F. Body mass index and disability in adulthood: A 20-year panel study.Am. J. Public Health200292583484010.2105/AJPH.92.5.834 11988456
    [Google Scholar]
  256. HanT.S. TijhuisM.A. LeanM.E. SeidellJ.C. Quality of life in relation to overweight and body fat distribution.Am. J. Public Health199888121814182010.2105/AJPH.88.12.1814 9842379
    [Google Scholar]
  257. CamachoT.C. RobertsR.E. LazarusN.B. KaplanG.A. CohenR.D. Physical activity and depression: Evidence from the alameda county study.Am. J. Epidemiol.1991134222023110.1093/oxfordjournals.aje.a116074 1862805
    [Google Scholar]
  258. TalbotF. NouwenA. GingrasJ. BélangerA. AudetJ. Relations of diabetes intrusiveness and personal control to symptoms of depression among adults with diabetes.Health Psychol.199918553754210.1037/0278‑6133.18.5.537 10519470
    [Google Scholar]
  259. DevinsG.M. EdworthyS.M. SelandT.P. KleinG.M. PaulL.C. MandinH. Differences in illness intrusiveness across rheumatoid arthritis, end-stage renal disease, and multiple sclerosis.J. Nerv. Ment. Dis.1993181637738110.1097/00005053‑199306000‑00007 8501459
    [Google Scholar]
  260. NeugebauerA. KatzP.P. PaschL.A. Effect of valued activity disability, social comparisons, and satisfaction with ability on depressive symptoms in rheumatoid arthritis.Health Psychol.200322325326210.1037/0278‑6133.22.3.253 12790252
    [Google Scholar]
  261. WilliamsonG.M. SchulzR. Activity restriction mediates the association between pain and depressed affect: A study of younger and older adult cancer patients.Psychol. Aging199510336937810.1037/0882‑7974.10.3.369 8527058
    [Google Scholar]
  262. SabshinM. Depression: Clinical, experimental and theoretical aspects.Arch. Gen. Psychiatry196819676676710.1001/archpsyc.1968.01740120126024
    [Google Scholar]
  263. LuytenP. BlattS.J. CorveleynJ. Epilogue Towards Integration in the Theory and Treatment of Depression? The Time is Now.The theory and treatment of depression: Towards a dynamic interactionism model. Lawrence Erlbaum Associates Publishers.Leuven University Press2013253284
    [Google Scholar]
  264. KesslerR.C. MickelsonK.D. WilliamsD.R. The prevalence, distribution, and mental health correlates of perceived discrimination in the United States.J. Health Soc. Behav.199940320823010.2307/2676349 10513145
    [Google Scholar]
  265. CarrD. FriedmanM.A. Is obesity stigmatizing? Body weight, perceived discrimination, and psychological well-being in the United States.J. Health Soc. Behav.200546324425910.1177/002214650504600303 16259147
    [Google Scholar]
  266. PuhlR. BrownellK.D. Ways of coping with obesity stigma: review and conceptual analysis.Eat. Behav.200341537810.1016/S1471‑0153(02)00096‑X 15000988
    [Google Scholar]
  267. FriedmanM.A. BrownellK.D. Psychological correlates of obesity: Moving to the next research generation.Psychol. Bull.1995117132010.1037/0033‑2909.117.1.3 7870862
    [Google Scholar]
  268. FriedmanK.E. ReichmannS.K. CostanzoP.R. MusanteG.J. Body image partially mediates the relationship between obesity and psychological distress.Obes. Res.2002101334110.1038/oby.2002.5 11786599
    [Google Scholar]
  269. SarwerD.B. WaddenT.A. FosterG.D. Assessment of body image dissatisfaction in obese women: Specificity, severity, and clinical significance.J. Consult. Clin. Psychol.199866465165410.1037/0022‑006X.66.4.651 9735582
    [Google Scholar]
  270. WardleJ. WallerJ. FoxE. Age of onset and body dissatisfaction in obesity.Addict. Behav.200227456157310.1016/S0306‑4603(01)00193‑9 12188592
    [Google Scholar]
  271. GharipourM. BarekatainM. SungJ. The epigenetic overlap between obesity and mood disorders: A systematic review.Int. J. Mol. Sci.20202118675810.3390/ijms21186758 32942585
    [Google Scholar]
  272. MurphyT.M. CrawfordB. DempsterE.L. Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide.Transl. Psychiatry201771e98910.1038/tp.2016.249 28045465
    [Google Scholar]
  273. MartinC.L. JimaD. SharpG.C. Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: An epigenome-wide association study.Epigenetics201914432534010.1080/15592294.2019.1581594 30773972
    [Google Scholar]
  274. GrootjansJ. KaserA. KaufmanR.J. BlumbergR.S. The unfolded protein response in immunity and inflammation.Nat. Rev. Immunol.201616846948410.1038/nri.2016.62 27346803
    [Google Scholar]
  275. ÖzcanU. CaoQ. YilmazE. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.Science2004306569545746110.1126/science.1103160 15486293
    [Google Scholar]
  276. Abarca-HeidemannK. FriederichsS. KlampT. BoehmU. GuethleinL.A. OrtmannB. Regulation of the expression of mouse TAP-associated glycoprotein (tapasin) by cytokines.Immunol. Lett.200283319720710.1016/S0165‑2478(02)00104‑9 12095710
    [Google Scholar]
  277. MayerW.E. KleinJ. Is tapasin a modified Mhc class I molecule?Immunogenetics200153971972310.1007/s00251‑001‑0403‑y 11862402
    [Google Scholar]
  278. ZhuY. StrachanE. FowlerE. BacusT. Roy-ByrneP. ZhaoJ. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: A monozygotic discordant twin study.Transl. Psychiatry20199121510.1038/s41398‑019‑0550‑2 31477685
    [Google Scholar]
  279. HindleyA. KolchW. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases.J. Cell Sci.200211581575158110.1242/jcs.115.8.1575 11950876
    [Google Scholar]
  280. McCarthyM.J. LeckbandS.G. KelsoeJ.R. Pharmacogenetics of lithium response in bipolar disorder.Pharmacogenomics201011101439146510.2217/pgs.10.127 21047205
    [Google Scholar]
  281. KellerM. HoppL. LiuX. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.Mol. Metab.2017618610010.1016/j.molmet.2016.11.003 28123940
    [Google Scholar]
  282. Ferrer-LorenteR. BejarM.T. BadimonL. Notch signaling pathway activation in normal and hyperglycemic rats differs in the stem cells of visceral and subcutaneous adipose tissue.Stem Cells Dev.201423243034304810.1089/scd.2014.0070 25035907
    [Google Scholar]
  283. ZhangQ. GaoX. LiC. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice.J. Neurosci.20163672247226010.1523/JNEUROSCI.2528‑15.2016 26888934
    [Google Scholar]
  284. CaiZ. ZhaoB. DengY. Notch signaling in cerebrovascular diseases [Review].Mol. Med. Rep.20161442883289810.3892/mmr.2016.5641 27574001
    [Google Scholar]
  285. AhearnE.P. SpeerM.C. ChenY.T. Investigation of Notch3 as a candidate gene for bipolar disorder using brain hyperintensities as an endophenotype.Am. J. Med. Genet.2002114665265810.1002/ajmg.10512 12210282
    [Google Scholar]
  286. FungE. TangS.M.T. CannerJ.P. Delta-like 4 induces notch signaling in macrophages: Implications for inflammation.Circulation2007115232948295610.1161/CIRCULATIONAHA.106.675462 17533181
    [Google Scholar]
  287. AoyamaT. TakeshitaK. KikuchiR. γ-Secretase inhibitor reduces diet-induced atherosclerosis in apolipoprotein E-deficient mice.Biochem. Biophys. Res. Commun.2009383221622110.1016/j.bbrc.2009.03.154 19345673
    [Google Scholar]
  288. AndoK. KanazawaS. TetsukaT. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts.Oncogene200322497796780310.1038/sj.onc.1206965 14586405
    [Google Scholar]
  289. HuX. ChungA.Y. WuI. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways.Immunity200829569170310.1016/j.immuni.2008.08.016 18976936
    [Google Scholar]
  290. HansonI.M. SeawrightA. van HeyningenV. The human BDNF gene maps between FSHB and HVBS1 at the boundary of 11p13–p14.Genomics19921341331133310.1016/0888‑7543(92)90060‑6 1505967
    [Google Scholar]
  291. PruunsildP. KazantsevaA. AidT. PalmK. TimmuskT. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters.Genomics200790339740610.1016/j.ygeno.2007.05.004 17629449
    [Google Scholar]
  292. GrayJ. YeoG.S.H. CoxJ.J. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene.Diabetes200655123366337110.2337/db06‑0550 17130481
    [Google Scholar]
  293. BonaccorsoS. SodhiM. LiJ. The brain‐derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia.Bipolar Disord.201517552853510.1111/bdi.12294 25874530
    [Google Scholar]
  294. StanleyS. WynneK. McGowanB. BloomS. Hormonal regulation of food intake.Physiol. Rev.20058541131115810.1152/physrev.00015.2004 16183909
    [Google Scholar]
  295. RayM.T. WeickertC.S. WyattE. WebsterM.J. Decreased BDNF, trkB-TK+ and GAD 67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders.J. Psychiatry Neurosci.201136319520310.1503/jpn.100048 21223646
    [Google Scholar]
  296. ZhangY. ZhangJ. JiangD. Inhibition of T‐type Ca 2+ channels by endostatin attenuates human glioblastoma cell proliferation and migration.Br. J. Pharmacol.201216641247126010.1111/j.1476‑5381.2012.01852.x 22233416
    [Google Scholar]
  297. JinY. SunL.H. YangW. CuiR.J. XuS.B. The Role of BDNF in the neuroimmune axis regulation of mood disorders.Front. Neurol.20191051510.3389/fneur.2019.00515 31231295
    [Google Scholar]
  298. PolyakovaM. StukeK. SchuembergK. MuellerK. SchoenknechtP. SchroeterM.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis.J. Affect. Disord.201517443244010.1016/j.jad.2014.11.044 25553404
    [Google Scholar]
  299. FernandesB.S. MolendijkM.L. KöhlerC.A. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies.BMC Med.201513128910.1186/s12916‑015‑0529‑7 26621529
    [Google Scholar]
  300. FernandesB.S. SteinerJ. BerkM. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications.Mol. Psychiatry20152091108111910.1038/mp.2014.117 25266124
    [Google Scholar]
  301. PapathanassoglouE.D.E. MiltiadousP. KaranikolaM.N. May BDNF be implicated in the exercise-mediated regulation of inflammation? critical review and synthesis of evidence.Biol. Res. Nurs.201517552153910.1177/1099800414555411 25358684
    [Google Scholar]
  302. ZhangJ. YaoW. HashimotoK. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets.Curr. Neuropharmacol.201614772173110.2174/1570159X14666160119094646 26786147
    [Google Scholar]
  303. ChaldakovG.N. FioreM. StankulovI.S. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: A role for NGF and BDNF in cardiovascular disease?Prog Brain Res200414627928910.1016/S0079‑6123(03)46018‑4 14699970
    [Google Scholar]
  304. SandriniL. Di MinnoA. AmadioP. IeraciA. TremoliE. BarbieriS. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and meta-analysis.Int. J. Mol. Sci.2018198228110.3390/ijms19082281 30081509
    [Google Scholar]
  305. GardnerK.R. SapienzaC. FisherJ.O. Genetic and epigenetic associations to obesity‐related appetite phenotypes among A frican– A merican children.Pediatr. Obes.201510647648210.1111/ijpo.12010 25779370
    [Google Scholar]
  306. MarosiK. MattsonM.P. BDNF mediates adaptive brain and body responses to energetic challenges.Trends Endocrinol. Metab.2014252899810.1016/j.tem.2013.10.006 24361004
    [Google Scholar]
  307. Martínez-LevyG.A. Cruz-FuentesC.S. Genetic and epigenetic regulation of the brain-derived neurotrophic factor in the central nervous system.Yale J. Biol. Med.2014872173186 24910563
    [Google Scholar]
  308. KellerS. SarchiaponeM. ZarrilliF. Increased BDNF promoter methylation in the Wernicke area of suicide subjects.Arch. Gen. Psychiatry201067325826710.1001/archgenpsychiatry.2010.9 20194826
    [Google Scholar]
  309. JanuarV. AncelinM-L. RitchieK. SafferyR. RyanJ. BDNF promoter methylation and genetic variation in late-life depression.Transl. Psychiatry201558e61910.1038/tp.2015.114 26285129
    [Google Scholar]
  310. TsankovaN.M. BertonO. RenthalW. KumarA. NeveR.L. NestlerE.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.Nat. Neurosci.20069451952510.1038/nn1659 16501568
    [Google Scholar]
  311. FuchikamiM. MorinobuS. SegawaM. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression.PLoS One201168e2388110.1371/journal.pone.0023881 21912609
    [Google Scholar]
  312. KuritaM. NishinoS. KatoM. NumataY. SatoT. Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study.PLoS One201276e3921210.1371/journal.pone.0039212 22761741
    [Google Scholar]
  313. KimJ.M. StewartR. GlozierN. Physical health, depression and cognitive function as correlates of disability in an older Korean population.Int. J. Geriatr. Psychiatry200520216016710.1002/gps.1266
    [Google Scholar]
  314. KimJ.M. StewartR. KangH.J. A longitudinal study of BDNF promoter methylation and genotype with poststroke depression.J. Affect. Disord.20131491-3939910.1016/j.jad.2013.01.008 23399480
    [Google Scholar]
  315. KangH.J. KimJ.M. LeeJ.Y. BDNF promoter methylation and suicidal behavior in depressive patients.J. Affect. Disord.2013151267968510.1016/j.jad.2013.08.001 23992681
    [Google Scholar]
  316. JinH.J. PeiL. LiY.N. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression.Sci. Rep.2017711492610.1038/s41598‑017‑13929‑5 29097744
    [Google Scholar]
  317. BathinaS. DasU.N. Brain-derived neurotrophic factor and its clinical implications.Arch. Med. Sci.2015661164117810.5114/aoms.2015.56342 26788077
    [Google Scholar]
  318. CrowderR.J. FreemanR.S. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons.J. Neurosci.19981882933294310.1523/JNEUROSCI.18‑08‑02933.1998 9526010
    [Google Scholar]
  319. HanB.H. HoltzmanD.M. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway.J. Neurosci.200020155775578110.1523/JNEUROSCI.20‑15‑05775.2000 10908618
    [Google Scholar]
  320. MakarT.K. TrislerD. SuraK.T. SultanaS. PatelN. BeverC.T. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis.J. Neurol. Sci.20082701-2707610.1016/j.jns.2008.02.011 18374360
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273291985240430074053
Loading
/content/journals/cnsnddt/10.2174/0118715273291985240430074053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test