Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

Background and Objective

The association between carbamazepine (CBZ) metabolism and resistance in epilepsy and the genetic polymorphisms of CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) has been the subject of previous investigations with controversial results. Hence, we conducted a systematic review to assess the potential link between these polymorphisms and CBZ metabolism and resistance.

Methods

Identifying relevant studies was carried out by searching PubMed, Scopus, PharmGKB, EPIGAD, and PHARMAADME databases up until June 2023. The studies included in our analysis investigated the connection between CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) polymorphisms and CBZ metabolism and resistance.

Results

This review included a total of 23 studies and more than 2177 epilepsy patients. It was found that the CYP3A4 (rs12721627 and rs28371759) polymorphisms are associated with reduced catalytic activity, whereas the CYP3A4 (rs2740574) polymorphism is linked to lower levels of CBZ-diol and decreased activity. It was also observed that the CYP3A5 (rs776746) polymorphism influences the dose-adjusted plasma levels of CBZ.

Conclusion

Although these findings highlight the impact of genetic variations in the CYP3A4 and CYP3A5 genes on CBZ pharmacokinetics and pharmacodynamics, further studies across diverse populations are essential to enhance personalized epilepsy therapy in clinical settings.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273298953240529100325
2024-12-01
2024-11-14
Loading full text...

Full text loading...

References

  1. López-GarcíaM.A. Feria-RomeroI.A. SerranoH. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy.Pharmacol. Rep.201769350451110.1016/j.pharep.2017.01.007 28343093
    [Google Scholar]
  2. YuenA.W.C. KeezerM.R. SanderJ.W. Epilepsy is a neurological and a systemic disorder.Epilepsy Behav.201878576110.1016/j.yebeh.2017.10.010 29175221
    [Google Scholar]
  3. NeliganA. HauserW.A. SanderJ.W. The epidemiology of the epilepsies.Handb Clin Neurol.AmsterdamElsevier201211313310.1016/B978‑0‑444‑52898‑8.00006‑9
    [Google Scholar]
  4. BeghiE. Social functions and socioeconomic vulnerability in epilepsy.Epilepsy Behav2019100Pt B10636310.1016/j.yebeh.2019.05.051 31300385
    [Google Scholar]
  5. GiourouE. Stavropoulou-DeliA. GiannakopoulouA. KostopoulosG.K. KoutroumanidisM. Introduction to Epilepsy and Related Brain Disorders.Cyberphysical Syst Epilepsy Relat Brain Disord Multi-Parametr Monit Anal Diagn Optim Dis Manag.ChamSpringer International Publishing2015113810.1007/978‑3‑319‑20049‑1_2
    [Google Scholar]
  6. StafstromC.E. CarmantL. Seizures and epilepsy: An overview for neuroscientists.Cold Spring Harb. Perspect. Med.201556a022426a610.1101/cshperspect.a022426 26033084
    [Google Scholar]
  7. IdrisA. AlabdaljabarM.S. AlmiroA. Prevalence, incidence, and risk factors of epilepsy in arab countries: A systematic review.Seizure202192405010.1016/j.seizure.2021.07.031 34418747
    [Google Scholar]
  8. VogrigA. HsiangJ.C. NgJ. RolnickJ. ChengJ. ParviziJ. A systematic study of stereotypy in epileptic seizures versus psychogenic seizure-like events.Epilepsy Behav.20199017217710.1016/j.yebeh.2018.11.030 30580068
    [Google Scholar]
  9. FeyissaA.M. BowerJ.H. Evaluation of the patient with paroxysmal spells mimicking epileptic seizures.Neurologist202328420721710.1097/NRL.0000000000000469
    [Google Scholar]
  10. LiuT-T. HeZ-G. TianX-B. XiangH-B. Neural mechanisms and potential treatment of epilepsy and its complications.Am. J. Transl. Res.201466625630 25628775
    [Google Scholar]
  11. CookM. Differential diagnosis of epilepsy.The Treatment of Epilepsy.Hoboken, New JerseyWiley2015
    [Google Scholar]
  12. BeghiE. The epidemiology of epilepsy.Neuroepidemiology202054218519110.1159/000503831
    [Google Scholar]
  13. AL-EitanLN Al-Dalalah IM MustafaMM Genetic polymorphisms of CYP3A5, CHRM2, and ZNF498 and their association with epilepsy susceptibility: A pharmacogenetic and case–control study.Pharm. Genomics Pers. Med.20191222523310.2147/PGPM.S212433
    [Google Scholar]
  14. OdhiamboM. Therapeutic monitoring of anti-seizure medications in low- and middle-income countries: A systematic review.Wellcome Open Res.2021692
    [Google Scholar]
  15. JaramilloN.M. GalindoI.F. VázquezA.O. CookH.J. LLerena A, López ML. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response.Drug Metabol. Drug Interact.2014292677910.1515/dmdi‑2013‑0046 24406279
    [Google Scholar]
  16. PuranikY.G. BirnbaumA.K. MarinoS.E. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy.Pharmacogenomics2013141354510.2217/pgs.12.180 23252947
    [Google Scholar]
  17. BeydounA. DuPontS. ZhouD. MattaM. NagireV. LagaeL. Current role of carbamazepine and oxcarbazepine in the management of epilepsy.Seizure20208325126310.1016/j.seizure.2020.10.018 33334546
    [Google Scholar]
  18. GoodwinG.M. Evidence-based guidelines for treating bipolar disorder: Recommendations from the British Association for Psychopharmacology.J. Psychopharmacol.200317214917310.1177/0269881103017002003 12870562
    [Google Scholar]
  19. AmbrósioA.F. Soares-da-SilvaP. CarvalhoC.M. CarvalhoA.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024.Neurochem. Res.2002271/212113010.1023/A:1014814924965 11926264
    [Google Scholar]
  20. LeckbandS.G. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and carbamazepine dosing.Clin. Pharmacol. Therapuet2023943324328
    [Google Scholar]
  21. HebeisenS. PiresN. LoureiroA.I. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: A comparison with carbamazepine, oxcarbazepine and lacosamide.Neuropharmacology20158912213510.1016/j.neuropharm.2014.09.008 25242737
    [Google Scholar]
  22. ShastryC. ShafeequeA. AshwathnarayanaB. Effect of combination of aripiprazole with carbamazepine and fluvoxamine on liver functions in experimental animals.Indian J. Pharmacol.201345212112510.4103/0253‑7613.108280 23716885
    [Google Scholar]
  23. KwanP. BrodieM.J. Neuropsychological effects of epilepsy and antiepileptic drugs.Lancet2001357925121622210.1016/S0140‑6736(00)03600‑X 11213111
    [Google Scholar]
  24. ZhangM.L. ChenX.L. BaiZ.F. ABCB1 c.3435C > T and EPHX1 c.416A > G polymorphisms influence plasma carbamazepine concentration, metabolism, and pharmacoresistance in epileptic patients.Gene202180514590710.1016/j.gene.2021.145907 34411648
    [Google Scholar]
  25. SpatzeneggerM. JaegerW. Clinical importance of hepatic cytochrome P450 in drug metabolism.Drug Metab. Rev.199527339741710.3109/03602539508998329 8521748
    [Google Scholar]
  26. SpatzeneggerM. JaegerW. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism.Drug Metabol Dispos.200432123397417
    [Google Scholar]
  27. YunW. ZhangF. HuC. Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy.Epilepsy Res.2013107323123710.1016/j.eplepsyres.2013.09.011 24125961
    [Google Scholar]
  28. GoR.E. HwangK.A. ChoiK.C. Cytochrome P450 1 family and cancers.J. Steroid Biochem. Mol. Biol.2015147243010.1016/j.jsbmb.2014.11.003 25448748
    [Google Scholar]
  29. WangP YinT MaHY Effects of CYP3A4/5 and ABCB1 genetic polymorphisms on carbamazepine metabolism and transport in Chinese patients with epilepsy treated with carbamazepine in monotherapy and bitherapy.Epilepsy Res2015117525710.1016/j.eplepsyres.2015.09.001 26421491
    [Google Scholar]
  30. ZhuX. YunW. SunX. QiuF. ZhaoL. GuoY. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy.Pharmacogenomics201415151867187910.2217/pgs.14.142 25495409
    [Google Scholar]
  31. KataraP. YadavA. Pharmacogenes (PGx-genes): Current understanding and future directions.Gene201971814405010.1016/j.gene.2019.144050 31425740
    [Google Scholar]
  32. PetrP. Xenobiotic-induced transcriptional regulation of Xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues.Curr. Drug Metabol200892
    [Google Scholar]
  33. ShimadaT. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians.J. Pharmacol. Exp. Therapeut19942701423
    [Google Scholar]
  34. ThornC.F. LeckbandS.G. KelsoeJ. PharmGKB summary.Pharmacogenet. Genomics2011211290691010.1097/FPC.0b013e328348c6f2 21738081
    [Google Scholar]
  35. WilliamsJ.A. RingB.J. CantrellV.E. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7.Drug Metab. Dispos.200230888389110.1124/dmd.30.8.883 12124305
    [Google Scholar]
  36. WilkinsonG.R. Cytochrome P4503A (CYP3A) metabolism: Prediction of in vivo activity in humans.J. Pharmacokinet. Biopharm.199624547549010.1007/BF02353475 9131486
    [Google Scholar]
  37. LöscherW. The clinical impact of pharmacogenetics on the treatment of epilepsy.Epilepsia2009501123
    [Google Scholar]
  38. ZhaoG.X. ZhangZ. CaiW.K. ShenM.L. WangP. HeG.H. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis.Epilepsy Res.202117310661510.1016/j.eplepsyres.2021.106615 33756436
    [Google Scholar]
  39. ZhaoW. MengH. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population.Bioengineered20221337709774510.1080/21655979.2022.2036916 35290166
    [Google Scholar]
  40. BrooksB.A. McBrideO.W. DolphinC.T. The gene CYP3 encoding P450pcn1 (nifedipine oxidase) is tightly linked to the gene COL1A2 encoding collagen type 1 alpha on 7q21-q22.1.Am. J. Hum. Genet.1988433280284 2901225
    [Google Scholar]
  41. FalconerS.J. Tacrolimus pharmacogenomics in abdominal solid organ transplantation.2018Available From: https://era.ed.ac.uk/handle/1842/31355?show=full
    [Google Scholar]
  42. Rodriguez-AntonaC. SavieoJ.L. LauschkeV.M. PharmVar GeneFocus: CYP3A5.Clin. Pharmacol. Ther.202211261159117110.1002/cpt.2563 35202484
    [Google Scholar]
  43. MacDonaldJ.R. ZimanR. YuenR.K.C. FeukL. SchererS.W. The Database of Genomic Variants: A curated collection of structural variation in the human genome.Nucleic Acids Res.201442D1D986D99210.1093/nar/gkt958 24174537
    [Google Scholar]
  44. Saiz-RodríguezM. AlmenaraS. Navares-GómezM. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates.Biomedicines2020849410.3390/biomedicines8040094 32331352
    [Google Scholar]
  45. PubChem. CYP3A5 - cytochrome P450 family 3 subfamily A member 5 (human).Available From: https://pubchem.ncbi.nlm.nih.gov/gene/CYP3A5/human
  46. ShengY. YangH. WuT. ZhuL. LiuL. LiuX. Alterations of cytochrome P450s and UDP-glucuronosyltransferases in brain under diseases and their clinical significances.Front. Pharmacol.20211265002710.3389/fphar.2021.650027 33967789
    [Google Scholar]
  47. ManikandanP. NaginiS. Cytochrome P450 structure, function and clinical significance: A review.Curr. Drug Targets2018191385410.2174/1389450118666170125144557 28124606
    [Google Scholar]
  48. OmuraT. Structural diversity of cytochrome P450 enzyme system.J. Biochem.2010147329730610.1093/jb/mvq001 20068028
    [Google Scholar]
  49. AoyamaT. YamanoS. WaxmanD.J. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine.J. Biol. Chem.198926418103881039510.1016/S0021‑9258(18)81632‑5 2732228
    [Google Scholar]
  50. LeeA.J. CaiM.X. ThomasP.E. ConneyA.H. ZhuB.T. Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms.Endocrinology200314483382339810.1210/en.2003‑0192 12865317
    [Google Scholar]
  51. MarillJ. CresteilT. LanotteM. ChabotG.G. Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites.Mol. Pharmacol.20005861341134810.1124/mol.58.6.1341 11093772
    [Google Scholar]
  52. GuengerichF.P. Cytochrome p450 enzymes in the generation of commercial products.Nat. Rev. Drug Discov.20021535936610.1038/nrd792 12120411
    [Google Scholar]
  53. NebertD.W. RussellD.W. Clinical importance of the cytochromes P450.Lancet200236093401155116210.1016/S0140‑6736(02)11203‑7 12387968
    [Google Scholar]
  54. ChenH. HowaldW.N. JuchauM.R. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: Catalysis of all-trans-retinol oxidation by human P-450 cytochromes.Drug Metab. Dispos.2000283315322 10681376
    [Google Scholar]
  55. ZhaoM. Cytochrome P450 enzymes and drug metabolism in humans.Int. J. Mol. Sci.2021222312808
    [Google Scholar]
  56. PalD. MitraA.K. MDR- and CYP3A4-mediated drug–herbal interactions.Life Sci.200678182131214510.1016/j.lfs.2005.12.010 16442130
    [Google Scholar]
  57. KuehlP. ZhangJ. LinY. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression.Nat. Genet.200127438339110.1038/86882 11279519
    [Google Scholar]
  58. WojtczakA. SkretkowiczJ. [Clinical significance of some genetic polymorphisms of cytochrome P-450: Family CYP1 and subfamilies CYP2A, CYP2B and CYP2C].Pol. Merkuriusz Lek.200926248252
    [Google Scholar]
  59. MauryaM.R. GautamS. RajJ.P. Evaluation of genetic polymorphism of CYP3A5 in normal healthy participants from western India - A cross-sectional study.Indian J. Pharmacol.20225429710110.4103/ijp.ijp_279_21 35546460
    [Google Scholar]
  60. FukuenS. FukudaT. MauneH. Novel detection assay by PCR???RFLP and frequency of the CYP3A5 SNPs, CYP3A5 *3 and *6, in a Japanese population.Pharmacogenetics200212433133410.1097/00008571‑200206000‑00009 12042671
    [Google Scholar]
  61. DanielsonP.B. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans.Curr. Drug Metab.20023656159710.2174/1389200023337054 12369887
    [Google Scholar]
  62. a Emich-WideraE. LikusW. KazekB. CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents.BioMed Res. Int.201320131710.1155/2013/526837 23984379
    [Google Scholar]
  63. b Al-GahtanyM. KarunakaranG. MunisamyM. Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity.BMC Genomics201415Suppl. 2210.1186/1471‑2164‑15‑S2‑P2
    [Google Scholar]
  64. BurnsM.L. Pharmacokinetic variability, clinical use and therapeutic drug monitoring of antiepileptic drugs in special patient groups.2019Available From: https://www.duo.uio.no/handle/10852/70923
    [Google Scholar]
  65. CharlierB. CoglianeseA. De RosaF. The effect of plasma protein binding on the therapeutic monitoring of antiseizure medications.Pharmaceutics2021138120810.3390/pharmaceutics13081208
    [Google Scholar]
  66. ReithD.M. HooperW.D. ParkeJ. CharlesB. Population pharmacokinetic modeling of steady state carbamazepine clearance in children, adolescents, and adults.J. Pharmacokinet. Pharmacodyn.2001281799210.1023/A:1011569703060 11253616
    [Google Scholar]
  67. VučićevićK. MiljkovićB. VeličkovićR. PokrajacM. MrharA. GrabnarI. Population pharmacokinetic model of carbamazepine derived from routine therapeutic drug monitoring data.Ther. Drug Monit.200729678178810.1097/FTD.0b013e31815c15f3 18043476
    [Google Scholar]
  68. DécimaM.A. MarzedduS. BarchiesiM. Di MarcantonioC. ChiavolaA. BoniM.R. A review on the removal of carbamazepine from aqueous solution by using activated carbon and biochar.Sustainability (Basel)202113211176010.3390/su132111760
    [Google Scholar]
  69. SeoT. NakadaN. UedaN. Effect of CYP3A5*3 on carbamazepine pharmacokinetics in Japanese patients with epilepsy.Clin. Pharmacol. Ther.200679550951010.1016/j.clpt.2006.02.009 16678552
    [Google Scholar]
  70. PanomvanaD. TraiyawongT. TowanabutS. Effect of CYP3A5 genotypes on the pharmacokinetics of carbamazepine when used as monotherapy or co-administered with phenytoin, phenobarbital or valproic acid in Thai patients.J. Pharm. Pharm. Sci.201316450251010.18433/J3Q888 24210059
    [Google Scholar]
  71. SataF. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity.Clin. Pharmacol. Therapeut20006714856
    [Google Scholar]
  72. AdeagboA.B. Influence of CYP3A5*3 and ABCB1 C3435T on clinical outcomes and trough plasma concentrations of imatinib in Nigerians with chronic myeloid leukaemia.J Clin Pharmacol Therapeut2016411546551
    [Google Scholar]
  73. RamasamyK. GanesapandianM. AdithanS. NarayanS. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population.Indian J. Pharmacol.201951638438810.4103/ijp.IJP_122_19 32029960
    [Google Scholar]
  74. ParkP.W. SeoY.H. AhnJ.Y. KimK.A. ParkJ.Y. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients.J. Clin. Pharm. Ther.200934556957410.1111/j.1365‑2710.2009.01057.x 19744012
    [Google Scholar]
  75. Abo El FotohW.M.M. Abd el naby SA, Habib MSE, ALrefai AA, Kasemy ZA. The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children.Seizure201641758010.1016/j.seizure.2016.07.005 27498208
    [Google Scholar]
  76. LuQ. HuangY.T. ShuY. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients.Medicine (Baltimore)20189730e1166210.1097/MD.0000000000011662 30045320
    [Google Scholar]
  77. MousaviS.F. HasanpourK. NazarzadehM. ABCG2, SCN1A and CYP3A5 genes polymorphism and drug-resistant epilepsy in children: A case-control study.Seizure202297586210.1016/j.seizure.2022.03.009 35338956
    [Google Scholar]
  78. EnsemblGene: CYP3A4 ENSG00000160868.2024Available From: https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000160868;r=7:99756960-99784248;t=ENST00000415003
  79. HGNCHGNC data for CYP3A4.2024Available From: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:2637
  80. WerkA.N. CascorbiI. Functional gene variants of CYP3A4.Clin. Pharmacol. Ther.201496334034810.1038/clpt.2014.129 24926778
    [Google Scholar]
  81. LambaV. Genetic predictors of interindividual variability in Hepatic CYP3A4 expression.J. Pharmacol. Exp. Therapeut2010332310881099
    [Google Scholar]
  82. Westlind-JohnssonA. MalmeboS. JohanssonA. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism.Drug Metab. Dispos.200331675576110.1124/dmd.31.6.755 12756208
    [Google Scholar]
  83. ElensL. van GelderT. HesselinkD.A. HaufroidV. van SchaikR.H.N. CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy.Pharmacogenomics2013141476210.2217/pgs.12.187 23252948
    [Google Scholar]
  84. ElensL. BeckerM.L. HaufroidV. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in The Rotterdam Study.Pharmacogenet. Genomics2011211286186610.1097/FPC.0b013e32834c6edb 21946898
    [Google Scholar]
  85. a MaekawaK. HarakawaN. YoshimuraT. CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs.Drug Metab. Dispos.201038122100210410.1124/dmd.110.034140 20847137
    [Google Scholar]
  86. b TantsuraL.M. PylypetsO.Y. TretiakovD.V. TantsuraY.O. Variants of the formation and course of drug-resistant epilepsy in children with genetic polymorphisms of CYP2C9, CYP2C19, CYP3A4.Wiad. Lek.20237651007101310.36740/WLek202305118 37326083
    [Google Scholar]
  87. HGNCCYP3A4 cytochrome P450 family 3 subfamily A member 4 [ Homo sapiens (human)].Drug Metab Dispos2024Available From: https://www.ncbi.nlm.nih.gov/gene/1576
    [Google Scholar]
  88. NiwaT. YabusakiY. HonmaK. Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones.Xenobiotica199828653954710.1080/004982598239290
    [Google Scholar]
  89. AchourB. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: A meta-analysis.Drug Metab. Dispos.20144228813491356
    [Google Scholar]
  90. ZangerU.M. SchwabM. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation.Pharmacol. Ther.2013138110314110.1016/j.pharmthera.2012.12.007 23333322
    [Google Scholar]
  91. MonostoryK. DvorakZ. Steroid regulation of drug-metabolizing cytochromes P450.Curr. Drug Metab.201112215417210.2174/138920011795016854 21395541
    [Google Scholar]
  92. WaxmanD.J. AttisanoC. GuengerichF.P. LapensonD.P. Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6β-hydroxylase cytochrome P-450 enzyme.Arch. Biochem. Biophys.1988263242443610.1016/0003‑9861(88)90655‑8 3259858
    [Google Scholar]
  93. Shu-FengZ. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4.Curr. Drug Metabol200894310322
    [Google Scholar]
  94. MacdonaldR.L. Antiepileptic drug mechanisms of action.Epilepsia199536s2S1S12
    [Google Scholar]
  95. KerrB.M. ThummelK.E. WurdenC.J. Human liver carbamazepine metabolism.Biochem. Pharmacol.199447111969197910.1016/0006‑2952(94)90071‑X 8010982
    [Google Scholar]
  96. DuJ. ZhangA. WangL. Relationship between response to risperidone, plasma concentrations of risperidone and CYP3A4 polymorphisms in schizophrenia patients.J. Psychopharmacol.20102471115112010.1177/0269881109104932 19395426
    [Google Scholar]
  97. DuJ XingQ XuL Systematic screening for polymorphisms in the CYP3A4 gene in the Chinese population.Pharmacogenomics2006 107683184110.2217/14622416.7.6.831
    [Google Scholar]
  98. MaekawaK. YoshimuraT. SaitoY. Functional characterization of CYP3A4.16: Catalytic activities toward midazolam and carbamazepine.Xenobiotica200939214014710.1080/00498250802617746 19255940
    [Google Scholar]
  99. SachdevaJ. GargV.K. GoyalM.K. Presence of allele CYP3A4*16 does not have any bearing on carbamazepine-induced adverse drug reactions in North Indian people with epilepsy.Indian J. Pharmacol.202052537838210.4103/ijp.IJP_549_20 33283769
    [Google Scholar]
  100. CiaccioM. CarusoA. BelliaC. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients.Pharm. Genomics Pers. Med.2014711712010.2147/PGPM.S55548 24817818
    [Google Scholar]
  101. ChbiliC. FathallahN. LaouaniA. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients.J. Neurogenet.2016301162110.3109/01677063.2016.1155571 27276192
    [Google Scholar]
  102. PageM.J. McKenzieJ.E. BossuytP.M. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.Int. J. Surg.20218810590610.1016/j.ijsu.2021.105906 33789826
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273298953240529100325
Loading
/content/journals/cnsnddt/10.2174/0118715273298953240529100325
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): carbamazepine; CYP3A4; CYP3A5; Pharmacogenetics; polymorphisms; systematic review
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test