Skip to content
2000
Volume 24, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disorder mainly characterized by dementia and cognitive decline. AD is essentially associated with the presence of aggregates of the amyloid-β peptide and the hyperphosphorylated microtubule-associated protein tau. The available AD therapies can only alleviate the symptoms; therefore, the development of natural treatments that exhibit neuroprotective effects and correct the behavioral impairment is a critical requirement. The present review aims to collect the natural substances that have been evaluated for their neuroprotective profile against AD-like behaviors induced in zebrafish () by scopolamine. We focused on articles retrieved from the PubMed database preset searching strings from 2010 to 2023. Our review assembled 21 studies that elucidated the activities of 28 various natural substances, including bioactive compounds, extracts, fractions, commercial compounds, and essential oils. The listed compounds enhanced cognition and showed several mechanisms of action, namely antioxidant potential, acetylcholinesterase’s inhibition, and reduction of lipid peroxidation. Additional studies should be achieved to demonstrate their preventive and therapeutic activities in cellular and rodent models. Further clinical trials would be extremely solicited to support more insight into the neuroprotective effects of the most promising drugs in an AD context.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273309256240702053609
2024-07-19
2025-01-27
Loading full text...

Full text loading...

References

  1. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.17355432941929
    [Google Scholar]
  2. LiuP.P. XieY. MengX.Y. KangJ.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease.Signal Transduct. Target. Ther.2019412910.1038/s41392‑019‑0063‑831637009
    [Google Scholar]
  3. EbrahimighahnaviehM.A. LuoS. ChiongR. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review.Comput. Methods Programs Biomed.202018710524210.1016/j.cmpb.2019.10524231837630
    [Google Scholar]
  4. ZhangY ChenH LiR SterlingK SongW Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future.Signal Transduct Target Ther20238124810.1038/s41392‑023‑01484‑7
    [Google Scholar]
  5. Monzio CompagnoniG. Di FonzoA. CortiS. ComiG.P. BresolinN. MasliahE. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and parkinson’s disease.Mol. Neurobiol.20205772959298010.1007/s12035‑020‑01926‑132445085
    [Google Scholar]
  6. HabibN McCabeC MedinaS Disease-associated astrocytes in Alzheimer’s disease and aging.Nature Neurosci.202023670170610.1038/s41593‑020‑0624‑8
    [Google Scholar]
  7. VerkhratskyA. RodriguesJ.J. PivoriunasA. ZorecR. SemyanovA. Astroglial atrophy in Alzheimer’s disease.Pflugers Arch.2019471101247126110.1007/s00424‑019‑02310‑231520182
    [Google Scholar]
  8. SwarbrickS. WraggN. GhoshS. StolzingA. Systematic review of miRNA as biomarkers in Alzheimer’s disease.Mol. Neurobiol.20195696156616710.1007/s12035‑019‑1500‑y30734227
    [Google Scholar]
  9. RahmanS.O. PandaB.P. ParvezS. KaundalM. HussainS. AkhtarM. NajmiA.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease.Biomed. Pharmacother.2019110475810.1016/j.biopha.2018.11.04330463045
    [Google Scholar]
  10. SharmaH.S. MuresanuD.F. NozariA. LafuenteJ.V. TianZ.R. OzkizilcikA. ManzhuloI. MösslerH. SharmaA. 2019Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer’s disease.10.1016/bs.pbr.2019.03.009
    [Google Scholar]
  11. AbeysingheA.A.D.T. DeshapriyaR.D.U.S. UdawatteC. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions.Life Sci.202025611799610.1016/j.lfs.2020.11799632585249
    [Google Scholar]
  12. WanY.W. Al-OuranR. MangleburgC.G. PerumalT.M. LeeT.V. AllisonK. SwarupV. FunkC.C. GaiteriC. AllenM. WangM. NeunerS.M. KaczorowskiC.C. PhilipV.M. HowellG.R. Martini-StoicaH. ZhengH. MeiH. ZhongX. KimJ.W. DawsonV.L. DawsonT.M. PaoP.C. TsaiL.H. Haure-MirandeJ.V. EhrlichM.E. ChakrabartyP. LevitesY. WangX. DammerE.B. SrivastavaG. MukherjeeS. SiebertsS.K. OmbergL. DangK.D. EddyJ.A. SnyderP. ChaeY. AmberkarS. WeiW. HideW. PreussC. ErgunA. EbertP.J. AireyD.C. MostafaviS. YuL. KleinH.U. CarterG.W. CollierD.A. GoldeT.E. LeveyA.I. BennettD.A. EstradaK. TownsendT.M. ZhangB. SchadtE. De JagerP.L. PriceN.D. Ertekin-TanerN. LiuZ. ShulmanJ.M. MangraviteL.M. LogsdonB.A. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models.Cell Rep.202032210790810.1016/j.celrep.2020.10790832668255
    [Google Scholar]
  13. JiaJ. WeiC. ChenS. LiF. TangY. QinW. ZhaoL. JinH. XuH. WangF. ZhouA. ZuoX. WuL. HanY. HanY. HuangL. WangQ. LiD. ChuC. ShiL. GongM. DuY. ZhangJ. ZhangJ. ZhouC. LvJ. LvY. XieH. JiY. LiF. YuE. LuoB. WangY. YangS. QuQ. GuoQ. LiangF. ZhangJ. TanL. ShenL. ZhangK. ZhangJ. PengD. TangM. LvP. FangB. ChuL. JiaL. GauthierS. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide.Alzheimers Dement.201814448349110.1016/j.jalz.2017.12.00629433981
    [Google Scholar]
  14. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  15. GiacomeliR. IzotonJ.C. dos SantosR.B. BoeiraS.P. JesseC.R. HaasS.E. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice.Brain Res.2019172114632510.1016/j.brainres.2019.14632531325424
    [Google Scholar]
  16. AndrewsS.J. Fulton-HowardB. GoateA. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease.Lancet Neurol.202019432633510.1016/S1474‑4422(19)30435‑131986256
    [Google Scholar]
  17. Sadigh-EteghadS. SabermaroufB. MajdiA. TalebiM. FarhoudiM. MahmoudiJ. Amyloid-beta: A crucial factor in Alzheimer’s disease.Med. Princ. Pract.201524111010.1159/00036910125471398
    [Google Scholar]
  18. WicińskiM. SochaM. MalinowskiB. WódkiewiczE. WalczakM. GórskiK. SłupskiM. Pawlak-OsińskaK. Liraglutide and its neuroprotective properties—focus on possible biochemical mechanisms in Alzheimer’s disease and cerebral ischemic events.Int. J. Mol. Sci.2019205105010.3390/ijms2005105030823403
    [Google Scholar]
  19. SongH.L. DemirevA.V. KimN.Y. KimD.H. YoonS.Y. Ouabain activates transcription factor EB and exerts neuroprotection in models of Alzheimer’s disease.Mol. Cell. Neurosci.201995132410.1016/j.mcn.2018.12.00730594669
    [Google Scholar]
  20. MathysH. Davila-VelderrainJ. PengZ. GaoF. MohammadiS. YoungJ.Z. MenonM. HeL. AbdurrobF. JiangX. MartorellA.J. RansohoffR.M. HaflerB.P. BennettD.A. KellisM. TsaiL.H. Single-cell transcriptomic analysis of Alzheimer’s disease.Nature2019570776133233710.1038/s41586‑019‑1195‑231042697
    [Google Scholar]
  21. EssaM.M. VijayanR.K. Castellano-GonzalezG. MemonM.A. BraidyN. GuilleminG.J. Neuroprotective effect of natural products against Alzheimer’s disease.Neurochem. Res.20123791829184210.1007/s11064‑012‑0799‑922614926
    [Google Scholar]
  22. Griñán-FerréC. Bellver-SanchisA. IzquierdoV. CorpasR. Roig-SorianoJ. ChillónM. Andres-LacuevaC. SomogyváriM. SőtiC. SanfeliuC. PallàsM. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy.Ageing Res. Rev.20216710127110.1016/j.arr.2021.10127133571701
    [Google Scholar]
  23. PintoA. BonucciA. MaggiE. CorsiM. BusinaroR. Anti-oxidant and anti-inflammatory activity of ketogenic diet: New perspectives for neuroprotection in Alzheimer’s disease.Antioxidants2018756310.3390/antiox705006329710809
    [Google Scholar]
  24. WangL. PuZ. LiM. WangK. DengL. ChenW. Antioxidative and antiapoptosis: Neuroprotective effects of dauricine in Alzheimer’s disease models.Life Sci.202024311723710.1016/j.lfs.2019.11723731887302
    [Google Scholar]
  25. RenC. LiD. ZhouQ. HuX. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model.Biomaterials202023211975210.1016/j.biomaterials.2019.11975231923845
    [Google Scholar]
  26. SengokuR. Aging and Alzheimer’s disease pathology.Neuropathology2020401222910.1111/neup.1262631863504
    [Google Scholar]
  27. LeeJ.C. KimS.J. HongS. KimY. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers.Exp. Mol. Med.201951511010.1038/s12276‑019‑0250‑231073121
    [Google Scholar]
  28. BilalM. BaraniM. SabirF. RahdarA. KyzasG.Z. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview.NanoImpact20202010025110.1016/j.impact.2020.100251
    [Google Scholar]
  29. Pardo-MorenoT. González-AcedoA. Rivas-DomínguezA. García-MoralesV. García-CozarF.J. Ramos-RodríguezJ.J. Melguizo-RodríguezL. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives.Pharmaceutics2022146111710.3390/pharmaceutics1406111735745693
    [Google Scholar]
  30. Se ThoeE. FauziA. TangY.Q. ChamyuangS. ChiaA.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease.Life Sci.202127611912910.1016/j.lfs.2021.11912933515559
    [Google Scholar]
  31. YouD. Hasley bin RamliS. IbrahimR. Hibatullah bin RomliM. LiZ. ChuQ. YuX. A thematic review on therapeutic toys and games for the elderly with Alzheimer’s disease.Disabil. Rehabil. Assist. Technol.2024202411310.1080/17483107.2023.229971338299880
    [Google Scholar]
  32. ColesM. Steiner-LimG.Z. KarlT. Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease.Front. Neurosci.20221696292210.3389/fnins.2022.96292236117622
    [Google Scholar]
  33. CanoA. TurowskiP. EttchetoM. DuskeyJ.T. TosiG. Sánchez-LópezE. GarcíaM.L. CaminsA. SoutoE.B. RuizA. MarquiéM. BoadaM. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: from current to future challenges.J. Nanobiotechnology202119112210.1186/s12951‑021‑00864‑x33926475
    [Google Scholar]
  34. AtharT. Al BalushiK. KhanS.A. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease.Mol. Biol. Rep.20214875629564510.1007/s11033‑021‑06512‑934181171
    [Google Scholar]
  35. TagliaviniF. TiraboschiP. FedericoA. Alzheimer’s disease: The controversial approval of Aducanumab.Neurol. Sci.20214283069307010.1007/s10072‑021‑05497‑434322762
    [Google Scholar]
  36. WainbergM. LuquezT. KoelleD.M. ReadheadB. JohnstonC. DarvasM. FunkC.C. The viral hypothesis: How herpesviruses may contribute to Alzheimer’s disease.Mol. Psychiatry202126105476548010.1038/s41380‑021‑01138‑633972690
    [Google Scholar]
  37. GoughS.M. CasellaA. OrtegaK.J. HackamA.S. Neuroprotection by the ketogenic diet: Evidence and controversies.Front. Nutr.2021878265710.3389/fnut.2021.78265734888340
    [Google Scholar]
  38. AmatoA. TerzoS. MulèF. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer’s disease.Antioxidants201981260810.3390/antiox812060831801234
    [Google Scholar]
  39. DeyA. BhattacharyaR. MukherjeeA. PandeyD.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions.Biotechnol. Adv.201735217821610.1016/j.biotechadv.2016.12.00528043897
    [Google Scholar]
  40. AkramM. NawazA. Effects of medicinal plants on Alzheimer’s disease and memory deficits.Neural Regen. Res.201712466067010.4103/1673‑5374.20510828553349
    [Google Scholar]
  41. RamalhoM.J. AndradeS. LoureiroJ.A. do Carmo PereiraM. Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds.Drug Deliv. Transl. Res.202010238040210.1007/s13346‑019‑00694‑331773421
    [Google Scholar]
  42. UddinM.S. MamunA.A. HossainM.S. AshaduzzamanM. NoorM.A.A. HossainM.S. UddinM.J. SarkerJ. AsaduzzamanM. Neuroprotective Effect of Phyllanthus acidu L. on learning and memory impairment in scopolamine-induced animal model of dementia and oxidative stress: Natural wonder for regulating the development and progression of alzheimer’s disease.Adv. Alzheimer Dis.201652537210.4236/aad.2016.52005
    [Google Scholar]
  43. SilvaR.F.M. PogačnikL. Polyphenols from food and natural products: Neuroprotection and safety.Antioxidants2020916110.3390/antiox901006131936711
    [Google Scholar]
  44. NabaviS.F. BraidyN. OrhanI.E. BadieeA. DagliaM. NabaviS.M. Rhodiola rosea L. and Alzheimer’s disease: From farm to pharmacy.Phytother. Res.201630453253910.1002/ptr.556927059687
    [Google Scholar]
  45. RichettiS.K. RosembergD.B. Ventura-LimaJ. MonserratJ.M. BogoM.R. BonanC.D. Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure.Neurotoxicology201132111612210.1016/j.neuro.2010.11.00121074552
    [Google Scholar]
  46. RaoR.V. DescampsO. JohnV. BredesenD.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review.Alzheimers Res. Ther.2012432210.1186/alzrt12522747839
    [Google Scholar]
  47. KaufmannD. Kaur DograA. TahraniA. HerrmannF. WinkM. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target.Molecules2016219116110.3390/molecules2109116127589716
    [Google Scholar]
  48. DumitruG. El-NasharH.A.S. MostafaN.M. EldahshanO.A. BoiangiuR.S. Todirascu-CiorneaE. HritcuL. SingabA.N.B. Agathisflavone isolated from Schinus polygamus (Cav.) Cabrera leaves prevents scopolamine-induced memory impairment and brain oxidative stress in zebrafish (Danio rerio).Phytomedicine20195815288910.1016/j.phymed.2019.15288930901660
    [Google Scholar]
  49. DevidasS.B. RahmatkarS.N. SinghR. SendriN. PurohitR. SinghD. BhandariP. Amelioration of cognitive deficit in zebrafish by an undescribed anthraquinone from Juglans regia L. : An in-silico, in-vitro and in-vivo approach.Eur. J. Pharmacol.202190617423410.1016/j.ejphar.2021.17423434090895
    [Google Scholar]
  50. BrinzaI. AyoubI.M. EldahshanO.A. HritcuL. Baicalein 5,6-dimethyl ether prevents memory deficits in the scopolamine zebrafish model by regulating cholinergic and antioxidant systems.Plants2021106124510.3390/plants1006124534207381
    [Google Scholar]
  51. YendapalliP.R. DavidD.C. BalasundaramA. Evaluating the combined cognitive enhancement effect of brassica juncea and cynadon dactylon extract in scopolamine induced amnesia zebrafish model.Toxicol. Environ. Health Sci.201911319019610.1007/s13530‑019‑0393‑5
    [Google Scholar]
  52. ValuM.V. SoareL.C. DucuC. MogaS. NegreaD. VamanuE. BalseanuT.A. CarradoriS. HritcuL. BoiangiuR.S. Hericium erinaceus (Bull.) Pers. ethanolic extract with antioxidant properties on scopolamine-induced memory deficits in a zebrafish model of cognitive impairment.J. Fungi20217647710.3390/jof706047734204787
    [Google Scholar]
  53. ValuM.V. DucuC. MogaS. NegreaD. HritcuL. BoiangiuR.S. VamanuE. BalseanuT.A. CarradoriS. SoareL.C. Effects of the hydroethanolic extract of Lycopodium selago L. on scopolamine-induced memory deficits in zebrafish.Pharmaceuticals202114656810.3390/ph1406056834198639
    [Google Scholar]
  54. RichettiS.K. BlankM. CapiottiK.M. PiatoA.L. BogoM.R. ViannaM.R. BonanC.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish.Behav. Brain Res.20112171101510.1016/j.bbr.2010.09.02720888863
    [Google Scholar]
  55. BrinzaI. Abd-AlkhalekA.M. El-RaeyM.A. BoiangiuR.S. EldahshanO.A. HritcuL. Ameliorative effects of rhoifolin in scopolamine-induced amnesic zebrafish (Danio rerio) model.Antioxidants20209758010.3390/antiox907058032635149
    [Google Scholar]
  56. Todirascu-CiorneaE. El-NasharH.A.S. MostafaN.M. EldahshanO.A. BoiangiuR.S. DumitruG. HritcuL. SingabA.N.B. Schinus terebinthifolius essential oil attenuates scopolamine-induced memory deficits via cholinergic modulation and antioxidant properties in a zebrafish model.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/525678131885652
    [Google Scholar]
  57. AlyS.H. ElissawyA.M. FayezA.M. EldahshanO.A. ElshanawanyM.A. SingabA.N.B. Neuroprotective effects of Sophora secundiflora, Sophora tomentosa leaves and formononetin on scopolamine-induced dementia.Nat. Prod. Res.202135245848585210.1080/14786419.2020.179585332696670
    [Google Scholar]
  58. SingsaiK. LadpalaN. DangjaN. BoonchuenT. JaikhamfuN. FakthongP. Effect of Streblus asper leaf extract on scopolamine-induced memory deficits in zebrafish: The model of Alzheimer’s disease.Adv. Pharmacol. Pharm. Sci.202120211710.1155/2021/666672633987539
    [Google Scholar]
  59. RajeshV. IlanthalirS. Cognition enhancing activity of sulforaphane against scopolamine induced cognitive impairment in zebra fish (Danio rerio).Neurochem. Res.201641102538254810.1007/s11064‑016‑1965‑227255600
    [Google Scholar]
  60. CapatinaL. Todirascu-CiorneaE. NapoliE.M. RubertoG. HritcuL. DumitruG. Thymus vulgaris essential oil protects zebrafish against cognitive dysfunction by regulating cholinergic and antioxidants systems.Antioxidants2020911108310.3390/antiox911108333158153
    [Google Scholar]
  61. CapatinaL. BoiangiuR.S. DumitruG. NapoliE.M. RubertoG. HritcuL. Todirascu-CiorneaE. Rosmarinus officinalis essential oil improves scopolamine-induced neurobehavioral changes via restoration of cholinergic function and brain antioxidant status in zebrafish (Danio rerio).Antioxidants2020916210.3390/antiox901006231936730
    [Google Scholar]
  62. KimY.H. LeeY. KimD. JungM.W. LeeC.J. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish.Neurosci. Res.201067215616110.1016/j.neures.2010.03.00320298728
    [Google Scholar]
  63. BoiangiuR.S. BagciE. DumitruG. HritcuL. Todirascu-CiorneaE. Angelica purpurascens (Avé-Lall.) Gilli. essential oil improved brain function via cholinergic modulation and antioxidant effects in the scopolamine-induced zebrafish (Danio rerio) Model.Plants2022118109610.3390/plants1108109635448824
    [Google Scholar]
  64. KarunakaranK.B. ThiyagarajA. SanthakumarK. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish.Nat. Prod. Bioprospect.2022121610.1007/s13659‑022‑00332‑535212831
    [Google Scholar]
  65. BoiangiuR.S. MihasanM. GorganD.L. StacheB.A. HritcuL. Anxiolytic, promnesic, anti-acetylcholinesterase and antioxidant effects of cotinine and 6-hydroxy-l-nicotine in scopolamine-induced zebrafish (Danio rerio) model of Alzheimer’s disease.Antioxidants202110221210.3390/antiox1002021233535660
    [Google Scholar]
  66. PecioŁ. KozachokS. BrinzaI. BoiangiuR.S. HritcuL. MirceaC. BurlecA.F. CioancaO. HancianuM. Wronikowska-DenysiukO. Skalicka-WoźniakK. OleszekW. Neuroprotective effect of Yucca schidigera roezl ex ortgies bark phenolic fractions, yuccaol B and gloriosaol A on scopolamine-induced memory deficits in zebrafish.Molecules20222712369210.3390/molecules2712369235744815
    [Google Scholar]
  67. DamoJ.L.K. BoiangiuR.S. BrinzaI. Kenko DjoumessiL.B. RebeR.N. KamleuB.N. GuedangS.D.N. CamdiG.W. BouvournéP. KeugongE.W. NgatankoH.H.A. CioancaO. HancianuM. FoyetH.S. HritcuL. Neuroprotective potential of guiera senegalensis (combretaceae) leaf hydroethanolic extract against cholinergic system dysfunctions and oxidative stress in scopolamine-induced cognitive impairment in zebrafish (Danio rerio).Plants2022119114910.3390/plants1109114935567150
    [Google Scholar]
  68. CapatinaL. NapoliE.M. RubertoG. HritcuL. Origanum vulgare ssp. hirtum (Lamiaceae) essential oil prevents behavioral and oxidative stress changes in the scopolamine zebrafish model.Molecules20212623708510.3390/molecules2623708534885665
    [Google Scholar]
  69. SarkarS. MukherjeeS. ChattopadhyayA. BhattacharyaS. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes.Ecotoxicol. Environ. Saf.20141071810.1016/j.ecoenv.2014.05.01224905690
    [Google Scholar]
  70. Dal SantoG. ConteratoG.M.M. BarcellosL.J.G. RosembergD.B. PiatoA.L. Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain.Neurosci. Lett.201455810310810.1016/j.neulet.2013.11.01124262751
    [Google Scholar]
  71. CardosoB.R. HareD.J. BushA.I. RobertsB.R. Glutathione peroxidase 4: A new player in neurodegeneration?Mol. Psychiatry201722332833510.1038/mp.2016.19627777421
    [Google Scholar]
  72. Márquez-ValadezB. MaldonadoP.D. Galván-ArzateS. Méndez-CuestaL.A. Pérez-De La CruzV. Pedraza-ChaverríJ. Chánez-CárdenasM.E. SantamaríaA. Alpha-mangostin induces changes in glutathione levels associated with glutathione peroxidase activity in rat brain synaptosomes.Nutr. Neurosci.2012155131910.1179/147683012X1332757541640023232053
    [Google Scholar]
  73. ZhangD.L. HuC.X. LiD.H. LiuY.D. Lipid peroxidation and antioxidant responses in zebrafish brain induced by Aphanizomenon flos-aquae DC-1 aphantoxins.Aquat. Toxicol.2013144-14525025610.1016/j.aquatox.2013.10.01124189433
    [Google Scholar]
  74. AlakG. UcarA. ParlakV. YeltekinA.Ç. ÖzgerişF.B. AtamanalpM. TürkezH. Antioxidant potential of ulexite in zebrafish brain: Assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system.Biol. Trace Elem. Res.202119931092109910.1007/s12011‑020‑02231‑732557103
    [Google Scholar]
  75. BajoR PusilS LópezME CanuetL PeredaE OsipovaD MaestúF PekkonenE Scopolamine effects on functional brain connectivity: A pharmacological model of Alzheimer’s disease.Scientific Reports20155974810.1038/srep09748
    [Google Scholar]
  76. TangK.S. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers.Life Sci.201923311669510.1016/j.lfs.2019.11669531351082
    [Google Scholar]
  77. ZanandreaR. AbreuM.S. PiatoA. BarcellosL.J.G. GiacominiA.C.V.V. Lithium prevents scopolamine-induced memory impairment in zebrafish.Neurosci. Lett.2018664343710.1016/j.neulet.2017.11.01029126775
    [Google Scholar]
  78. CognatoG.P. BortolottoJ.W. BlazinaA.R. ChristoffR.R. LaraD.R. ViannaM.R. BonanC.D. Y-Maze memory task in zebrafish (Danio rerio): The role of glutamatergic and cholinergic systems on the acquisition and consolidation periods.Neurobiol. Learn. Mem.201298432132810.1016/j.nlm.2012.09.00823044456
    [Google Scholar]
  79. FontanaB.D. ClealM. ParkerM.O. Female adult zebrafish ( Danio rerio ) show higher levels of anxiety‐like behavior than males, but do not differ in learning and memory capacity.Eur. J. Neurosci.20205212604261310.1111/ejn.1458831597204
    [Google Scholar]
  80. BraidaD. PonzoniL. MartucciR. SalaM. A new model to study visual attention in zebrafish.Prog. Neuropsychopharmacol. Biol. Psychiatry201455808610.1016/j.pnpbp.2014.03.01024681194
    [Google Scholar]
  81. MagyaryI. Floating novel object recognition in adult zebrafish: a pilot study.Cogn. Process.201920335936210.1007/s10339‑019‑00910‑530810927
    [Google Scholar]
  82. LinF.J. LiH. WuD.T. ZhuangQ.G. LiH.B. GengF. GanR.Y. Recent development in zebrafish model for bioactivity and safety evaluation of natural products.Crit. Rev. Food Sci. Nutr.202262318646867410.1080/10408398.2021.193102334058920
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273309256240702053609
Loading
/content/journals/cnsnddt/10.2174/0118715273309256240702053609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test