Skip to content
2000
Volume 24, Issue 1
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

A family of peptides known as bioactive peptides has unique physiological properties and may be used to improve human health and prevent illness. Because bioactive peptides impact the immunological, endocrine, neurological, and cardiovascular systems, they have drawn a lot of interest from researchers. According to recent studies, bioactive peptides have a lot to offer in the treatment of inflammation, neuronal regeneration, localized ischemia, and the blood-brain barrier. It investigates various peptide moieties, including antioxidative properties, immune response modulation, and increased blood-brain barrier permeability. It also looks at how well they work as therapeutic candidates and finds promising peptide-based strategies for better outcomes. Furthermore, it underscores the need for further studies to support their clinical utility and suggests that results from such investigations will enhance our understanding of the pathophysiology of these conditions. In order to understand recent advances in BPs and to plan future research, academic researchers and industrial partners will find this review article to be a helpful resource.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273316382240807120241
2024-08-09
2024-11-22
Loading full text...

Full text loading...

References

  1. SzymanowskaU. BaraniakB. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries.Antioxidants20198829910.3390/antiox808029931405151
    [Google Scholar]
  2. ZłotekU. SzymanowskaU. Rybczyńska-TkaczykK. JakubczykA. Effect of jasmonic acid, yeast extract elicitation, and drying methods on the main bioactive compounds and consumer quality of lovage (Levisticum officinale Koch).Foods20209332310.3390/foods903032332168779
    [Google Scholar]
  3. KaraśM. JakubczykA. SzymanowskaU. JęderkaK. LewickiS. ZłotekU. Different temperature treatments of millet grains affect the biological activity of protein hydrolyzates.Nutrients201911355010.3390/nu1103055030841527
    [Google Scholar]
  4. Cacak-PietrzakG. RóżyłoR. DzikiD. Gawlik-DzikiU. SułekA. BiernackaB. Cistus incanus L. as an innovative functional additive to wheat bread.Foods20198834910.3390/foods808034931426333
    [Google Scholar]
  5. KaraśM. Influence of physiological and chemical factors on the absorption of bioactive peptides.Int. J. Food Sci. Technol.20195451486149610.1111/ijfs.14054
    [Google Scholar]
  6. Mazorra-ManzanoM.A. Ramírez-SuarezJ.C. YadaR.Y. Plant proteases for bioactive peptides release: A review.Crit. Rev. Food Sci. Nutr.201858132147216310.1080/10408398.2017.130831228394630
    [Google Scholar]
  7. ArulrajahB. MuhialdinB.J. ZareiM. HasanH. SaariN. Lacto-fermented Kenaf (Hibiscus cannabinus L.) seed protein as a source of bioactive peptides and their applications as natural preservatives.Food Control202011010696910.1016/j.foodcont.2019.106969
    [Google Scholar]
  8. FidelerJ. JohanningsmeierS.D. EkelöfM. MuddimanD.C. Discovery and quantification of bioactive peptides in fermented cucumber by direct analysis IR-MALDESI mass spectrometry and LC-QQQ-MS.Food Chem.201927171572310.1016/j.foodchem.2018.07.18730236736
    [Google Scholar]
  9. JakubczykA. KaraśM. ZłotekU. SzymanowskaU. BaraniakB. BochnakJ. Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome.Lebensm. Wiss. Technol.201910530631310.1016/j.lwt.2019.02.009
    [Google Scholar]
  10. OkashaH. SamirS. Synthesis and molecular cloning of antimicrobial peptide chromogranin A N-46 gene using conventional PCR.Gene Rep.20201810057110.1016/j.genrep.2019.100571
    [Google Scholar]
  11. WuY. QiaoR. ChenT. WuJ. DuS. Identification and molecular cloning of novel antimicrobial peptides from skin secretions of the Chinese bamboo leaf odorous frog ( Odorrana versabilis ) and the North American pickerel frog ( Rana palustris ).J. Tradit. Chin. Med. Sci.20174329730510.1016/j.jtcms.2017.07.007
    [Google Scholar]
  12. ZłotekU. JakubczykA. Rybczyńska-TkaczykK. ĆwiekP. BaraniakB. LewickiS. Characteristics of new peptides GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT as inhibitors of enzymes involved in metabolic syndrome and antimicrobial potential.Molecules20202511249210.3390/molecules2511249232471271
    [Google Scholar]
  13. SouzaP.F.N. MarquesL.S.M. OliveiraJ.T.A. LimaP.G. DiasL.P. NetoN.A.S. LopesF.E.S. SousaJ.S. SilvaA.F.B. CaneiroR.F. LopesJ.L.S. RamosM.V. FreitasC.D.T. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms.Biochimie202017513214510.1016/j.biochi.2020.05.01632534825
    [Google Scholar]
  14. VermeirssenV. Van CampJ. DecroosK. Van WijmelbekeL. VerstraeteW. The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and whey protein.J. Dairy Sci.200386242943810.3168/jds.S0022‑0302(03)73621‑212647949
    [Google Scholar]
  15. KimS-K. NgoD-H. VoT-S. Marine fish-derived bioactive peptides as potential antihypertensive agents.Advances in Food and Nutrition Research. JeyaH. Cambridge, MA, USAAcademic Press201265249260
    [Google Scholar]
  16. ZielińskaE. BaraniakB. KaraśM. Identification of antioxidant and anti‐inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species ( Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria ).Int. J. Food Sci. Technol.201853112542255110.1111/ijfs.13848
    [Google Scholar]
  17. KangM.G. YiS.H. LeeJ.S. Production and characterization of a new α-glucosidase inhibitory peptide from Aspergillus oryzae N159-1.Mycobiology201341314915410.5941/MYCO.2013.41.3.14924198670
    [Google Scholar]
  18. HayesM. Food proteins and bioactive peptides: New and novel sources, characterisation strategies and applications.Foods2018733810.3390/foods703003829538293
    [Google Scholar]
  19. RogozhinE.A. SlezinaM.P. SlavokhotovaA.A. IstominaE.A. KorostylevaT.V. SmirnovA.N. GrishinE.V. EgorovT.A. OdintsovaT.I. A novel antifungal peptide from leaves of the weed Stellaria media L.Biochimie201511612513210.1016/j.biochi.2015.07.01426196691
    [Google Scholar]
  20. WaltherB. SieberR. Bioactive proteins and peptides in foods.Int. J. Vitam. Nutr. Res.2011812318119210.1024/0300‑9831/a00005422139569
    [Google Scholar]
  21. ShahidiF. ZhongY. Bioactive peptides.J. AOAC Int.200891491493110.1093/jaoac/91.4.91418727554
    [Google Scholar]
  22. KittsD. WeilerK. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery.Curr. Pharm. Des.20039161309132310.2174/138161203345488312769739
    [Google Scholar]
  23. SinghB.P. VijS. HatiS. Functional significance of bioactive peptides derived from soybean.Peptides20145417117910.1016/j.peptides.2014.01.02224508378
    [Google Scholar]
  24. FieldsK. FallaT.J. RodanK. BushL. Bioactive peptides: Signaling the future.J. Cosmet. Dermatol.20098181310.1111/j.1473‑2165.2009.00416.x19250159
    [Google Scholar]
  25. Carrasco-CastillaJ. Hernández-ÁlvarezA.J. Jiménez-MartínezC. Gutiérrez-LópezG.F. Dávila-OrtizG. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering.Food Eng. Rev.20124422424310.1007/s12393‑012‑9058‑8
    [Google Scholar]
  26. BhatZ.F. KumarS. BhatH.F. Bioactive peptides from egg: A review.Nutr. Food Sci.201545219021210.1108/NFS‑10‑2014‑0088
    [Google Scholar]
  27. LemesA. SalaL. OresJ. BragaA. EgeaM. FernandesK. A review of the latest advances in encrypted bioactive peptides from protein-rich waste.Int. J. Mol. Sci.201617695010.3390/ijms1706095027322241
    [Google Scholar]
  28. HaqueE. ChandR. KapilaS. Biofunctional properties of bioactive peptides of milk origin.Food Rev. Int.2008251284310.1080/87559120802458198
    [Google Scholar]
  29. MoldesA.B. VecinoX. CruzJ.M. Nutraceuticals and food additives.Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. PandeyA. DuG. SanromanM.A. SoccolC.R. DussapC-G. Amsterdam, NetherlandsElsevier201714316410.1016/B978‑0‑444‑63666‑9.00006‑6
    [Google Scholar]
  30. PrzybylskiR. FirdaousL. ChâtaignéG. DhulsterP. NedjarN. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative.Food Chem.201621130631310.1016/j.foodchem.2016.05.07427283637
    [Google Scholar]
  31. MohantyD. JenaR. ChoudhuryP.K. PattnaikR. MohapatraS. SainiM.R. Milk derived antimicrobial bioactive peptides: A review.Int. J. Food Prop.201619483784610.1080/10942912.2015.1048356
    [Google Scholar]
  32. Torres-LlanezM. de J. Vallejo-CordobaB. González-CórdovaA.F. Bioactive peptides derived from milk proteins.Arch. Latinoam. Nutr.200555211111716335219
    [Google Scholar]
  33. PritchardS.R. PhillipsM. KailasapathyK. Identification of bioactive peptides in commercial Cheddar cheese.Food Res. Int.20104351545154810.1016/j.foodres.2010.03.007
    [Google Scholar]
  34. LassouedI. MoraL. BarkiaA. AristoyM.C. NasriM. ToldráF. Bioactive peptides identified in thornback ray skin’s gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens.J. Proteomics201512881710.1016/j.jprot.2015.06.01626149667
    [Google Scholar]
  35. MöllerN.P. Scholz-AhrensK.E. RoosN. SchrezenmeirJ. Bioactive peptides and proteins from foods: Indication for health effects.Eur. J. Nutr.200847417118210.1007/s00394‑008‑0710‑218506385
    [Google Scholar]
  36. KumagaiH. Wheat proteins and peptides.Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals. MineY. Li-ChanE. JiangB. Oxford, UKWiley-Blackwell201028930310.1002/9780813811048.ch20
    [Google Scholar]
  37. DziubaB. DziubaM. Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects.Acta Sci. Pol. Technol. Aliment.201413152610.17306/J.AFS.2014.1.124583380
    [Google Scholar]
  38. PeighambardoustS.H. BeigmohammadiF. PeighambardoustS.J. Application of organoclay nanoparticle in low-density polyethylene films for packaging of UF cheese.Packag. Technol. Sci.201629735536310.1002/pts.2212
    [Google Scholar]
  39. FasihniaS.H. PeighambardoustS.H. PeighambardoustS.J. Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application.J. Food Process. Preserv.2018422e1348810.1111/jfpp.13488
    [Google Scholar]
  40. KlompongV. BenjakulS. KantachoteD. ShahidiF. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type.Food Chem.200710241317132710.1016/j.foodchem.2006.07.016
    [Google Scholar]
  41. MundiS. AlukoR.E. Inhibitory properties of kidney bean protein hydrolysate and its membrane fractions against renin, angiotensin converting enzyme, and free radicals.Austin J. Nutr. Food Sci.2014210081018
    [Google Scholar]
  42. Golshan TaftiA. PeighambardoustS.H. HejaziM.A. MoosavyM.H. Diversity of Lactobacillus strains in Iranian traditional wheat sourdough.J. Food Qual. Hazards Control201414145
    [Google Scholar]
  43. CumbyN. ZhongY. NaczkM. ShahidiF. Antioxidant activity and water-holding capacity of canola protein hydrolysates.Food Chem.2008109114414810.1016/j.foodchem.2007.12.03926054275
    [Google Scholar]
  44. ŠližyteR. MozuraityteR. Martínez-AlvarezO. FalchE. Fouchereau-PeronM. RustadT. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones.Process Biochem.20094466877
    [Google Scholar]
  45. PeighambardoustS.H. Golshan TaftiA. HesariJ. Application of spray drying for preservation of lactic acid starter cultures: A review.Trends Food Sci. Technol.201122521522410.1016/j.tifs.2011.01.009
    [Google Scholar]
  46. EltzschigH.K. EckleT. Ischemia and reperfusion—from mechanism to translation.Nat. Med.201117111391140110.1038/nm.250722064429
    [Google Scholar]
  47. WuD. WangJ. LiH. XueM. JiA. LiY. Role of hydrogen sulfide in ischemia-reperfusion injury.Oxid. Med. Cell. Longev.2015201511610.1155/2015/18690826064416
    [Google Scholar]
  48. ChenX. ChenH. XuM. ShenJ. Targeting reactive nitrogen species: A promising therapeutic strategy for cerebral ischemia-reperfusion injury.Acta Pharmacol. Sin.2013341677710.1038/aps.2012.8222842734
    [Google Scholar]
  49. QiuB. HuS. LiuL. ChenM. WangL. ZengX. ZhuS. CART attenuates endoplasmic reticulum stress response induced by cerebral ischemia and reperfusion through upregulating BDNF synthesis and secretion.Biochem. Biophys. Res. Commun.2013436465565910.1016/j.bbrc.2013.05.14223770418
    [Google Scholar]
  50. CollinoM. PatelN.S.A. ThiemermannC. Review: PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury.Ther. Adv. Cardiovasc. Dis.20082317919710.1177/175394470809092419124421
    [Google Scholar]
  51. WangH. AndersonL.G. LascolaC.D. JamesM.L. VenkatramanT.N. BennettE.R. AchesonS.K. VitekM.P. LaskowitzD.T. ApolipoproteinE mimetic peptides improve outcome after focal ischemia.Exp. Neurol.2013241677410.1016/j.expneurol.2012.11.02723219883
    [Google Scholar]
  52. SatoK. KamedaM. YasuharaT. AgariT. BabaT. WangF. ShinkoA. WakamoriT. ToyoshimaA. TakeuchiH. SasakiT. SasadaS. KondoA. BorlonganC. MatsumaeM. DateI. Neuroprotective effects of liraglutide for stroke model of rats.Int. J. Mol. Sci.20131411215132152410.3390/ijms14112151324177570
    [Google Scholar]
  53. LiuZ. LiuQ. CaiH. XuC. LiuG. LiZ. Calcitonin gene-related peptide prevents blood–brain barrier injury and brain edema induced by focal cerebral ischemia reperfusion.Regul. Pept.20111711-3192510.1016/j.regpep.2011.05.01421718723
    [Google Scholar]
  54. WangJ. LiuY.M. CaoW. YaoK.W. LiuZ.Q. GuoJ.Y. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats.Metab. Brain Dis.201227215916510.1007/s11011‑012‑9282‑122327557
    [Google Scholar]
  55. DesaiA. SinghN. RaghubirR. Neuroprotective potential of the NF-κB inhibitor peptide IKK-NBD in cerebral ischemia-reperfusion injury.Neurochem. Int.201057887688310.1016/j.neuint.2010.09.00620868715
    [Google Scholar]
  56. BorlonganC.V. HayashiT. OeltgenP.R. SuT.P. WangY. Hibernation-like state induced by an opioid peptide protects against experimental stroke.BMC Biol.2009713110.1186/1741‑7007‑7‑3119534760
    [Google Scholar]
  57. SongJ. ParkJ. OhY. LeeJ.E. Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: Involvement of FOXO3 inactivation and Bcl2 expression.Oxid. Med. Cell. Longev.2015201511110.1155/2015/42606925722793
    [Google Scholar]
  58. DingH. YanC.Z. ShiH. ZhaoY.S. ChangS.Y. YuP. WuW.S. ZhaoC.Y. ChangY.Z. DuanX.L. Hepcidin is involved in iron regulation in the ischemic brain.PLoS One201169e2532410.1371/journal.pone.002532421957487
    [Google Scholar]
  59. ZhouF. XuJ. YingG.Y. WangL. ZhuX.D. Ghrelin attenuated cerebral ischemia reperfusion injury in rats.CNS Neurosci. Ther.2012181194594610.1111/cns.1200623106976
    [Google Scholar]
  60. YuanL. DongH. ZhangH.P. ZhaoR. GongG. ChenX. ZhangL. XiongL. Neuroprotective effect of orexin-A is mediated by an increase of hypoxia-inducible factor-1 activity in rat.Anesthesiology2011114234035410.1097/ALN.0b013e318206ff6f21239965
    [Google Scholar]
  61. YangY. ZhangX.J. LiL.T. CuiH.Y. ZhangC. ZhuC.H. MiaoJ.Y. Apelin-13 protects against apoptosis by activating AMP-activated protein kinase pathway in ischemia stroke.Peptides2016759610010.1016/j.peptides.2015.11.00226631263
    [Google Scholar]
  62. NishimuraM. IzumiyaY. HiguchiA. ShibataR. QiuJ. KudoC. ShinH.K. MoskowitzM.A. OuchiN. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms.Circulation2008117221622310.1161/CIRCULATIONAHA.107.72504418158361
    [Google Scholar]
  63. YangJ. SongT.B. ZhaoZ.H. QiuS.D. HuX.D. ChangL. Vasoactive intestinal peptide protects against ischemic brain damage induced by focal cerebral ischemia in rats.Brain Res.201113989410110.1016/j.brainres.2011.05.00721620378
    [Google Scholar]
  64. BhowmikA. KhanR. GhoshM.K. Blood brain barrier: A challenge for effectual therapy of brain tumors.BioMed Res. Int.2015201512010.1155/2015/32094125866775
    [Google Scholar]
  65. StewartM.P. ShareiA. DingX. SahayG. LangerR. JensenK.F. In vitro and ex vivo strategies for intracellular delivery.Nature2016538762418319210.1038/nature1976427734871
    [Google Scholar]
  66. BerilloD. YeskendirA. ZharkinbekovZ. RaziyevaK. SaparovA. Peptide-based drug delivery systems.Medicina20215711120910.3390/medicina5711120934833427
    [Google Scholar]
  67. ZhangD. WangJ. XuD. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems.J. Control. Release201622913013910.1016/j.jconrel.2016.03.02026993425
    [Google Scholar]
  68. ArukuuskP. PärnasteL. MargusH. ErikssonN.K.J. VasconcelosL. PadariK. PoogaM. LangelÜ. Differential endosomal pathways for radically modified peptide vectors.Bioconjug. Chem.201324101721173210.1021/bc400275723981119
    [Google Scholar]
  69. KominA. RussellL.M. HristovaK.A. SearsonP.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges.Adv. Drug Deliv. Rev.2017110-111526410.1016/j.addr.2016.06.00227313077
    [Google Scholar]
  70. HuG. ZhengW. LiA. MuY. ShiM. LiT. ZouH. ShaoH. QinA. YeJ. A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis.Vet. Res.20184911610.1186/s13567‑018‑0513‑229439726
    [Google Scholar]
  71. RuseskaI. ZimmerA. Internalization mechanisms of cell-penetrating peptides.Beilstein J. Nanotechnol.20201110112310.3762/bjnano.11.1031976201
    [Google Scholar]
  72. KaksonenM. RouxA. Mechanisms of clathrin-mediated endocytosis.Nat. Rev. Mol. Cell Biol.201819531332610.1038/nrm.2017.13229410531
    [Google Scholar]
  73. FutakiS. NakaseI. Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization.Acc. Chem. Res.201750102449245610.1021/acs.accounts.7b0022128910080
    [Google Scholar]
  74. ReissmannS. State of art: Cell penetration and cell-penetrating peptides and proteins.Health Educ. Public Health20214393410
    [Google Scholar]
  75. StalmansS. BrackeN. WynendaeleE. GevaertB. PeremansK. BurvenichC. PolisI. De SpiegeleerB. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo.PLoS One20151010e013965210.1371/journal.pone.013965226465925
    [Google Scholar]
  76. ChenY. LiuL. Modern methods for delivery of drugs across the blood–brain barrier.Adv. Drug Deliv. Rev.201264764066510.1016/j.addr.2011.11.01022154620
    [Google Scholar]
  77. ZhangY. GuoP. MaZ. LuP. KebebeD. LiuZ. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: A review.J. Nanobiotechnology202119125510.1186/s12951‑021‑01002‑334425832
    [Google Scholar]
  78. KumarP. WuH. McBrideJ.L. JungK.E. Hee KimM. DavidsonB.L. Kyung LeeS. ShankarP. ManjunathN. Transvascular delivery of small interfering RNA to the central nervous system.Nature20074487149394310.1038/nature0590117572664
    [Google Scholar]
  79. JavedH. MenonS.A. Al-MansooriK.M. Al-WandiA. MajbourN.K. ArdahM.T. VargheseS. VaikathN.N. HaqueM.E. AzzouzM. El-AgnafO.M.A. RETRACTED: Development of nonviral vectors targeting the brain as a therapeutic approach for parkinson’s disease and other brain disorders.Mol. Ther.201624474675810.1038/mt.2015.23226700614
    [Google Scholar]
  80. LeeJ.H. ZhangA. YouS.S. LieberC.M. Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons.Nano Lett.20161621509151310.1021/acs.nanolett.6b0002026745653
    [Google Scholar]
  81. SpencerB.J. VermaI.M. Targeted delivery of proteins across the blood–brain barrier.Proc. Natl. Acad. Sci. USA2007104187594759910.1073/pnas.070217010417463083
    [Google Scholar]
  82. DattaG. ChaddhaM. GarberD.W. ChungB.H. TytlerE.M. DashtiN. BradleyW.A. GianturcoS.H. AnantharamaiahG.M. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts.Biochemistry200039121322010.1021/bi991209w10625496
    [Google Scholar]
  83. ZouZ. ShenQ. PangY. LiX. ChenY. WangX. LuoX. WuZ. BaoZ. ZhangJ. LiangJ. KongL. YanL. XiongL. ZhuT. YuanS. WangM. CaiK. YaoY. WuJ. JiangY. LiuH. LiuJ. ZhouY. DongQ. WangW. ZhuK. LiL. LouY. WangH. LiY. LinH. The synthesized transporter K16APoE enabled the therapeutic HAYED peptide to cross the blood-brain barrier and remove excess iron and radicals in the brain, thus easing Alzheimer’s disease.Drug Deliv. Transl. Res.20199139440310.1007/s13346‑018‑0579‑430136122
    [Google Scholar]
  84. WangD. El-AmouriS.S. DaiM. KuanC.Y. HuiD.Y. BradyR.O. PanD. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood–brain barrier.Proc. Natl. Acad. Sci. USA201311082999300410.1073/pnas.122274211023382178
    [Google Scholar]
  85. NevesV. Aires-da-SilvaF. MoraisM. GanoL. RibeiroE. PintoA. AguiarS. GasparD. FernandesC. CorreiaJ.D.G. CastanhoM.A.R.B. Novel peptides derived from dengue virus capsid protein translocate reversibly the blood–brain barrier through a receptor-free mechanism.ACS Chem. Biol.20171251257126810.1021/acschembio.7b0008728263555
    [Google Scholar]
  86. Oller-SalviaB. Sánchez-NavarroM. CiudadS. GuiuM. Arranz-GibertP. GarciaC. GomisR.R. CecchelliR. GarcíaJ. GiraltE. TeixidóM. MiniAp‐4: A venom‐inspired peptidomimetic for brain delivery.Angew. Chem. Int. Ed.201655257257510.1002/anie.20150844526492861
    [Google Scholar]
  87. GaoH. QianJ. CaoS. YangZ. PangZ. PanS. FanL. XiZ. JiangX. ZhangQ. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles.Biomaterials201233205115512310.1016/j.biomaterials.2012.03.05822484043
    [Google Scholar]
  88. WuC.H. LiuI.J. LuR.M. WuH.C. Advancement and applications of peptide phage display technology in biomedical science.J. Biomed. Sci.2016231810.1186/s12929‑016‑0223‑x26786672
    [Google Scholar]
  89. PradesR. GuerreroS. ArayaE. MolinaC. SalasE. ZuritaE. SelvaJ. EgeaG. López-IglesiasC. TeixidóM. KoganM.J. GiraltE. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor.Biomaterials201233297194720510.1016/j.biomaterials.2012.06.06322795856
    [Google Scholar]
  90. PradesR. Oller-SalviaB. SchwarzmaierS.M. SelvaJ. MorosM. BalbiM. GrazúV. de La FuenteJ.M. EgeaG. PlesnilaN. TeixidóM. GiraltE. Applying the retro-enantio approach to obtain a peptide capable of overcoming the blood-brain barrier.Angew. Chem. Int. Ed.201554133967397210.1002/anie.20141140825650865
    [Google Scholar]
  91. WuJ. MajumderK. GibbonsK. Bioactive proteins and peptides from egg proteins.Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals. MineY. Li-ChanE. JiangB. Oxford, UKWileyBlackwell201024726310.1002/9780813811048.ch17
    [Google Scholar]
  92. XieH. HuffG.R. HuffW.E. BalogJ.M. HoltP. RathN.C. Identification of ovotransferrin as an acute phase protein in chickens.Poult. Sci.200281111212010.1093/ps/81.1.11211885890
    [Google Scholar]
  93. KimS.K. WijesekaraI. Development and biological activities of marine-derived bioactive peptides: A review.J. Funct. Foods2010211910.1016/j.jff.2010.01.003
    [Google Scholar]
  94. Aguilar-ToaláJ.E. Santiago-LópezL. PeresC.M. PeresC. GarciaH.S. Vallejo-CordobaB. González-CórdovaA.F. Hernández-MendozaA. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains.J. Dairy Sci.20171001657510.3168/jds.2016‑1184627865495
    [Google Scholar]
  95. IalentiA. SantagadaV. CaliendoG. SeverinoB. FiorinoF. MaffiaP. IanaroA. MorelliF. Di MiccoB. CartenìM. StiusoP. MetaforaV. MetaforaS. Synthesis of novel anti‐inflammatory peptides derived from the amino‐acid sequence of the bioactive protein SV‐IV.Eur. J. Biochem.2001268123399340610.1046/j.1432‑1327.2001.02236.x11422369
    [Google Scholar]
  96. ZhaoL. WangX. ZhangX-L. XieQ-F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus).Yao Wu Shi Pin Fen Xi201624237638428911592
    [Google Scholar]
  97. DumeusS. ShibuM.A. LinW.T. WangM.F. LaiC.H. ShenC.Y. LinY.M. ViswanadhaV.P. KuoW.W. HuangC.Y. Bioactive peptide improves diet-induced hepatic fat deposition and hepatocyte proinflammatory response in SAMP8 ageing mice.Cell. Physiol. Biochem.20184851942195210.1159/00049251830092591
    [Google Scholar]
  98. Mohammad ShahiM. RashidiM.R. MahboobS. HaidariF. RashidiB. HanaeeJ. Protective effect of soy protein on collagen-induced arthritis in rat.Rheumatol. Int.20123282407241410.1007/s00296‑011‑1979‑721681567
    [Google Scholar]
  99. DiaV.P. BringeN.A. de MejiaE.G. Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages.Food Chem.201415242343110.1016/j.foodchem.2013.11.15524444957
    [Google Scholar]
  100. GlassC.K. SaijoK. WinnerB. MarchettoM.C. GageF.H. Mechanisms underlying inflammation in neurodegeneration.Cell2010140691893410.1016/j.cell.2010.02.01620303880
    [Google Scholar]
  101. KigerlK.A. de Rivero VaccariJ.P. DietrichW.D. PopovichP.G. KeaneR.W. Pattern recognition receptors and central nervous system repair.Exp. Neurol.201425851610.1016/j.expneurol.2014.01.00125017883
    [Google Scholar]
  102. LiangY. LinQ. HuangP. WangY. LiJ. ZhangL. CaoJ. Rice bioactive peptide binding with TLR4 to overcome H2O2-induced injury in human umbilical vein endothelial cells through NF-κB signaling.J. Agric. Food Chem.201866244044810.1021/acs.jafc.7b0403629276944
    [Google Scholar]
  103. KoW. SohnJ.H. JangJ.H. AhnJ.S. KangD.G. LeeH.S. KimJ.S. KimY.C. OhH. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-кB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells.Chem. Biol. Interact.2016244162610.1016/j.cbi.2015.11.02426620692
    [Google Scholar]
  104. CiesielskaA. MatyjekM. KwiatkowskaK. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling.Cell. Mol. Life Sci.20217841233126110.1007/s00018‑020‑03656‑y33057840
    [Google Scholar]
  105. Caetano-SilvaM.E. RundL.A. Vailati-RiboniM. PachecoM.T.B. JohnsonR.W. Copper-binding peptides attenuate microglia inflammation through suppression of NF-kB Pathway.Mol. Nutr. Food Res.20216522210015310.1002/mnfr.20210015334532985
    [Google Scholar]
  106. SilverJ. MillerJ.H. Regeneration beyond the glial scar.Nat. Rev. Neurosci.20045214615610.1038/nrn132614735117
    [Google Scholar]
  107. HornerP.J. GageF.H. Regenerating the damaged central nervous system.Nature2000407680796397010.1038/3503955911069169
    [Google Scholar]
  108. Abdal DayemA. LeeS.B. LimK.M. KimA. ShinH.J. VellingiriB. KimY.B. ChoS.G. Bioactive peptides for boosting stem cell culture platform: Methods and applications.Biomed. Pharmacother.202316011437610.1016/j.biopha.2023.11437636764131
    [Google Scholar]
  109. GelainF. SilvaD. CapriniA. TaraballiF. NatalelloA. VillaO. NamK.T. ZuckermannR.N. DogliaS.M. VescoviA. BMHP1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications.ACS Nano2011531845185910.1021/nn102663a21314189
    [Google Scholar]
  110. PashuckE.T. CuiH. StuppS.I. Tuning supramolecular rigidity of peptide fibers through molecular structure.J. Am. Chem. Soc.2010132176041604610.1021/ja908560n20377229
    [Google Scholar]
  111. KimM.H. ParkM. KangK. ChoiI.S. Neurons on nanometric topographies: Insights into neuronal behaviors in vitro.Biomater. Sci.20142214815510.1039/C3BM60255A32481875
    [Google Scholar]
  112. SilvaG.A. CzeislerC. NieceK.L. BeniashE. HarringtonD.A. KesslerJ.A. StuppS.I. Selective differentiation of neural progenitor cells by high-epitope density nanofibers.Science200430356621352135510.1126/science.109378314739465
    [Google Scholar]
  113. SurS. PashuckE.T. GulerM.O. ItoM. StuppS.I. LauneyT. A hybrid nanofiber matrix to control the survival and maturation of brain neurons.Biomaterials201233254555510.1016/j.biomaterials.2011.09.09322018390
    [Google Scholar]
  114. SurS. NewcombC.J. WebberM.J. StuppS.I. Tuning supramolecular mechanics to guide neuron development.Biomaterials201334204749475710.1016/j.biomaterials.2013.03.02523562052
    [Google Scholar]
  115. ChengT.Y. ChenM.H. ChangW.H. HuangM.Y. WangT.W. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.Biomaterials20133482005201610.1016/j.biomaterials.2012.11.04323237515
    [Google Scholar]
  116. BernsE.J. SurS. PanL. GoldbergerJ.E. SureshS. ZhangS. KesslerJ.A. StuppS.I. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels.Biomaterials201435118519510.1016/j.biomaterials.2013.09.07724120048
    [Google Scholar]
  117. RanN. LiW. ZhangR. LinC. ZhangJ. WeiZ. LiZ. YuanZ. WangM. FanB. ShenW. LiX. ZhouH. YaoX. KongX. FengS. Autologous exosome facilitates load and target delivery of bioactive peptides to repair spinal cord injury.Bioact. Mater.20232576678210.1016/j.bioactmat.2022.07.00237056263
    [Google Scholar]
  118. Ellis-BehnkeR.G. LiangY.X. YouS.W. TayD.K.C. ZhangS. SoK.F. SchneiderG.E. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision.Proc. Natl. Acad. Sci. USA2006103135054505910.1073/pnas.060055910316549776
    [Google Scholar]
  119. GubertC. KongG. RenoirT. HannanA.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases.Neurobiol. Dis.202013410462110.1016/j.nbd.2019.10462131628992
    [Google Scholar]
  120. WangS. HarveyL. MartinR. van der BeekE.M. KnolJ. CryanJ.F. RenesI.B. Targeting the gut microbiota to influence brain development and function in early life.Neurosci. Biobehav. Rev.20189519120110.1016/j.neubiorev.2018.09.00230195933
    [Google Scholar]
  121. GhoshT.S. RampelliS. JefferyI.B. SantoroA. NetoM. CapriM. GiampieriE. JenningsA. CandelaM. TurroniS. ZoetendalE.G. HermesG.D.A. ElodieC. MeunierN. BrugereC.M. Pujos-GuillotE. BerendsenA.M. De GrootL.C.P.G.M. FeskinsE.J.M. KaluzaJ. PietruszkaB. BielakM.J. ComteB. Maijo-FerreM. NicolettiC. De VosW.M. Fairweather-TaitS. CassidyA. BrigidiP. FranceschiC. O’TooleP.W. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries.Gut20206971218122810.1136/gutjnl‑2019‑31965432066625
    [Google Scholar]
  122. NagpalR. NethB.J. WangS. CraftS. YadavH. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment.EBioMedicine20194752954210.1016/j.ebiom.2019.08.03231477562
    [Google Scholar]
  123. MaX. CuiX. LiJ. LiC. WangZ. Peptides from sesame cake reduce oxidative stress and amyloid-β-induced toxicity by upregulation of SKN-1 in a transgenic Caenorhabditis elegans model of Alzheimer’s disease.J. Funct. Foods20173928729810.1016/j.jff.2017.10.032
    [Google Scholar]
  124. RochaE.M. De MirandaB. SandersL.H. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease.Neurobiol. Dis.2018109Pt B24925710.1016/j.nbd.2017.04.00428400134
    [Google Scholar]
  125. MaX. LiJ. CuiX. LiC. WangZ. Dietary supplementation with peptides from sesame cake alleviates Parkinson’s associated pathologies in Caenorhabditis elegans.J. Funct. Foods20206510373710.1016/j.jff.2019.103737
    [Google Scholar]
  126. WangM. AmakyeW.K. GuoL. GongC. ZhaoY. YaoM. RenJ. Walnut-derived peptide PW5 ameliorates cognitive impairments and alters gut microbiota in APP/PS1 transgenic mice.Mol. Nutr. Food Res.20196318190032610.1002/mnfr.20190032631237989
    [Google Scholar]
  127. ZhangZ. HeS. CaoX. YeY. YangL. WangJ. LiuH. SunH. Potential prebiotic activities of soybean peptides Maillard reaction products on modulating gut microbiota to alleviate aging-related disorders in D-galactose-induced ICR mice.J. Funct. Foods20206510372910.1016/j.jff.2019.103729
    [Google Scholar]
  128. NiY. WangZ. MaL. YangL. WuT. FuZ. Pilose antler polypeptides ameliorate inflammation and oxidative stress and improves gut microbiota in hypoxic-ischemic injured rats.Nutr. Res.2019649310810.1016/j.nutres.2019.01.00530802728
    [Google Scholar]
  129. RandolphJ. DeGoeyD. Peptidomimetic inhibitors of HIV protease.Curr. Top. Med. Chem.20044101079109510.2174/156802604338833015193140
    [Google Scholar]
  130. OjimaI. ChakravartyS. DongQ. Antithrombotic agents: From RGD to peptide mimetics.Bioorg. Med. Chem.19953433736010.1016/0968‑0896(95)00036‑G8581417
    [Google Scholar]
  131. GanteJ. KrugM. LauterbachG. WeitzelR. HillerW. Synthesis and properties of the first all‐aza analogue of a biologically active peptide.J. Pept. Sci.19951320120610.1002/psc.3100103079222997
    [Google Scholar]
  132. MagrathJ. AbelesR.H. Cysteine protease inhibition by azapeptide esters.J. Med. Chem.199235234279428310.1021/jm00101a0041447732
    [Google Scholar]
  133. YamadaR. KeraY. D-amino acid hydrolyzing enzymes. (D-Amino Acids in Sequences of Secreted Peptides of Multicellular Organisms).EXS199885143155
    [Google Scholar]
  134. DuraniS. Protein design with L- and D-alpha-amino acid structures as the alphabet.Acc. Chem. Res.200841101301130810.1021/ar700265t18642934
    [Google Scholar]
  135. AgyeiD. OngkudonC.M. WeiC.Y. ChanA.S. DanquahM.K. Bioprocess challenges to the isolation and purification of bioactive peptides.Food Bioprod. Process.20169824425610.1016/j.fbp.2016.02.003
    [Google Scholar]
  136. KasparA.A. ReichertJ.M. Future directions for peptide therapeutics development.Drug Discov. Today20131817-1880781710.1016/j.drudis.2013.05.01123726889
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273316382240807120241
Loading
/content/journals/cnsnddt/10.2174/0118715273316382240807120241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test