Skip to content
2000
Volume 24, Issue 1
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of N-methyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the “two-way” microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota-gut-brain axis on AD pathogenesis will be discussed.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273302508240613114103
2024-07-04
2024-11-22
Loading full text...

Full text loading...

References

  1. 2022 Alzheimer’s disease facts and figures.Alzheimers Dement.202218470078910.1002/alz.1263835289055
    [Google Scholar]
  2. FerrettiC SartiFM NitriniR FerreiraFF BruckiSMD An assessment of direct and indirect costs of dementia in Brazil.PLoS One2018133e0193209
    [Google Scholar]
  3. AtriA. The alzheimer’s disease clinical spectrum.Med. Clin. North Am.2019103226329310.1016/j.mcna.2018.10.00930704681
    [Google Scholar]
  4. BakkourA. MorrisJ.C. WolkD.A. DickersonB.C. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: Specificity and differential relationships with cognition.Neuroimage20137633234410.1016/j.neuroimage.2013.02.05923507382
    [Google Scholar]
  5. NieX SunY WanS ZhaoH LiuR LiX Subregional structural alterations in hippocampus and nucleus accumbens correlate with the clinical impairment in patients with alzheimer’s disease clinical spectrum: Parallel combining volume and vertex-based approach.Front Neurol20178399
    [Google Scholar]
  6. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  7. DaulatzaiM. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.CNS Neurol. Disord. Drug Targets201514111013110.2174/187152731466615020215243625642988
    [Google Scholar]
  8. TseK.H. HerrupK. Re‐imagining Alzheimer’s disease – the diminishing importance of amyloid and a glimpse of what lies ahead.J. Neurochem.2017143443244410.1111/jnc.1407928547865
    [Google Scholar]
  9. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  10. LiuS. GaoJ. LiuK. ZhangH.L. Microbiota-gut-brain axis and Alzheimer’s disease: Implications of the blood-brain barrier as an intervention target.Mech. Ageing Dev.202119911156010.1016/j.mad.2021.11156034411603
    [Google Scholar]
  11. KowalskiK. MulakA. Brain-Gut-Microbiota Axis in Alzheimer’s Disease.J. Neurogastroenterol. Motil.2019251486010.5056/jnm1808730646475
    [Google Scholar]
  12. SochockaM. Donskow-ŁysoniewskaK. DinizB.S. KurpasD. BrzozowskaE. LeszekJ. The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer’s disease: A critical review.Mol. Neurobiol.20195631841185110.1007/s12035‑018‑1188‑429936690
    [Google Scholar]
  13. MartinCR OsadchiyV KalaniA MayerEA The brain-gut-microbiome axis.Cell Mol Gastroenterol Hepatol20186213314810.1016/j.jcmgh.2018.04.003
    [Google Scholar]
  14. TillischK. The effects of gut microbiota on CNS function in humans.Gut Microbes20145340441010.4161/gmic.29232
    [Google Scholar]
  15. CryanJ.F. DinanT.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour.Nat. Rev. Neurosci.2012131070171210.1038/nrn334622968153
    [Google Scholar]
  16. SharonG SampsonTR GeschwindDH MazmanianSK The central nervous system and the gut microbiome.Cell2016167491593210.1016/j.cell.2016.10.027
    [Google Scholar]
  17. AlsenaniF. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer’s diseases through comprehensive molecular docking analyses.Saudi J. Biol. Sci.202431610399810.1016/j.sjbs.2024.10399838681227
    [Google Scholar]
  18. WangX. SunG. FengT. ZhangJ. HuangX. WangT. XieZ. ChuX. YangJ. WangH. ChangS. GongY. RuanL. ZhangG. YanS. LianW. DuC. YangD. ZhangQ. LinF. LiuJ. ZhangH. GeC. XiaoS. DingJ. GengM. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res.2019291078780310.1038/s41422‑019‑0216‑x31488882
    [Google Scholar]
  19. LohJ.S. MakW.Q. TanL.K.S. NgC.X. ChanH.H. YeowS.H. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases.Signal Transduct Target Ther2024913710.1038/s41392‑024‑01743‑1
    [Google Scholar]
  20. Caballero-FloresG. PickardJ.M. NúñezG. Microbiota-mediated colonization resistance: Mechanisms and regulation.Nat. Rev. Microbiol.202321634736010.1038/s41579‑022‑00833‑736539611
    [Google Scholar]
  21. CollinsS.M. A role for the gut microbiota in IBS.Nat. Rev. Gastroenterol. Hepatol.201411849750510.1038/nrgastro.2014.4024751910
    [Google Scholar]
  22. TrapecarM. WogramE. SvobodaD. CommunalC. OmerA. LungjangwaT. SphabmixayP. VelazquezJ. SchneiderK. WrightC.W. MildrumS. HendricksA. LevineS. MuffatJ. LeeM.J. LauffenburgerD.A. TrumperD. JaenischR. GriffithL.G. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases.Sci. Adv.202175eabd170710.1126/sciadv.abd170733514545
    [Google Scholar]
  23. PigrauM. Rodiño-JaneiroB.K. Casado-BedmarM. LoboB. VicarioM. SantosJ. Alonso-CotonerC. The joint power of sex and stress to modulate brain–gut–microbiota axis and intestinal barrier homeostasis: Implications for irritable bowel syndrome.Neurogastroenterol. Motil.201628446348610.1111/nmo.1271726556786
    [Google Scholar]
  24. MoloneyR.D. JohnsonA.C. O’MahonyS.M. DinanT.G. Greenwood-Van MeerveldB. CryanJ.F. Stress and the microbiota–gut–brain axis in visceral pain: Relevance to irritable bowel syndrome.CNS Neurosci. Ther.201622210211710.1111/cns.1249026662472
    [Google Scholar]
  25. StrandwitzP. Neurotransmitter modulation by the gut microbiota.Brain Res16931693Pt B128133
    [Google Scholar]
  26. HarachT. MarungruangN. DuthilleulN. CheathamV. Mc CoyK.D. FrisoniG. NeherJ.J. FåkF. JuckerM. LasserT. BolmontT. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota.Sci. Rep.2017714180210.1038/srep41802
    [Google Scholar]
  27. ChenY. FangL. ChenS. ZhouH. FanY. LinL. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of alzheimer’s disease.Biomed Res Int20202020845659610.1155/2020/8456596
    [Google Scholar]
  28. Cuervo-ZanattaD. Garcia-MenaJ. Perez-CruzC. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of alzheimer’s disease.J. Alzheimers Dis.202182s1S195S21410.3233/JAD‑20136733492296
    [Google Scholar]
  29. BrandscheidC. SchuckF. ReinhardtS. SchäferK.H. PietrzikC.U. GrimmM. HartmannT. SchwiertzA. EndresK. Altered gut microbiome composition and tryptic activity of the 5xFAD alzheimer’s mouse model.J. Alzheimers Dis.201756277578810.3233/JAD‑16092628035935
    [Google Scholar]
  30. MinterM.R. HinterleitnerR. MeiselM. ZhangC. LeoneV. ZhangX. Oyler-CastrilloP. ZhangX. MuschM.W. ShenX. JabriB. ChangE.B. TanziR.E. SisodiaS.S. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease.Sci. Rep.2017711041110.1038/s41598‑017‑11047‑w28874832
    [Google Scholar]
  31. CattaneoA. CattaneN. GalluzziS. ProvasiS. LopizzoN. FestariC. FerrariC. GuerraU.P. PagheraB. MuscioC. BianchettiA. VoltaG.D. TurlaM. CotelliM.S. GennusoM. PrelleA. ZanettiO. LussignoliG. MirabileD. BellandiD. GentileS. BelottiG. VillaniD. HarachT. BolmontT. PadovaniA. BoccardiM. FrisoniG.B. INDIA-FBP Group Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly.Neurobiol. Aging201749606810.1016/j.neurobiolaging.2016.08.01927776263
    [Google Scholar]
  32. SajiN. NiidaS. MurotaniK. HisadaT. TsudukiT. SugimotoT. Analysis of the relationship between the gut microbiome and dementia: A cross-sectional study conducted in Japan.Sci Rep201991100810.1038/s41598‑018‑38218‑7
    [Google Scholar]
  33. KawashimaK. MisawaH. MoriwakiY. FujiiY.X. FujiiT. HoriuchiY. YamadaT. ImanakaT. KamekuraM. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems.Life Sci.20078024-252206220910.1016/j.lfs.2007.01.05917363003
    [Google Scholar]
  34. RussellW.R. HoylesL. FlintH.J. DumasM.E. Colonic bacterial metabolites and human health.Curr. Opin. Microbiol.201316324625410.1016/j.mib.2013.07.00223880135
    [Google Scholar]
  35. QianX.H. SongX.X. LiuX.L. ChenS.D. TangH.D. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota.Ageing Res. Rev.202168101317
    [Google Scholar]
  36. FriedlandR.P. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration.J. Alzheimers Dis.201545234936210.3233/JAD‑14284125589730
    [Google Scholar]
  37. SȩdzikowskaA SzablewskiL. Insulin and insulin resistance in alzheimer’s disease.Int J Mol Sci20212218998710.3390/ijms22189987
    [Google Scholar]
  38. KimS. KwonS.H. KamT.I. PanickerN. KaruppagounderS.S. LeeS. LeeJ.H. KimW.R. KookM. FossC.A. ShenC. LeeH. KulkarniS. PasrichaP.J. LeeG. PomperM.G. DawsonV.L. DawsonT.M. KoH.S. Transneuronal propagation of pathologic α-Synuclein from the gut to the brain models parkinson’s disease.Neuron20191034627641.e710.1016/j.neuron.2019.05.03531255487
    [Google Scholar]
  39. SgrittaM. DoolingS.W. BuffingtonS.A. MominE.N. FrancisM.B. BrittonR.A. Costa-MattioliM. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder.Neuron20191012246259.e610.1016/j.neuron.2018.11.01830522820
    [Google Scholar]
  40. ThalD.R. FändrichM. Protein aggregation in Alzheimer’s disease: Aβ and τ and their potential roles in the pathogenesis of AD.Acta Neuropathol.2015129216316510.1007/s00401‑015‑1387‑225600324
    [Google Scholar]
  41. BatistaC.R.A. GomesG.F. Candelario-JalilE. FiebichB.L. de OliveiraA.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration.Int. J. Mol. Sci.2019209229310.3390/ijms2009229331075861
    [Google Scholar]
  42. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet201137797701019103110.1016/S0140‑6736(10)61349‑921371747
    [Google Scholar]
  43. PistollatoF. Role of dietary patterns in the prevention and regression of insulin resistance-related cancers.Med. J. Nutrition Metab.201581374910.3233/MNM‑140024
    [Google Scholar]
  44. PistollatoF. BattinoM. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases.Trends Food Sci. Technol.2014401628110.1016/j.tifs.2014.07.012
    [Google Scholar]
  45. StenvinkelP. Obesity—a disease with many aetiologies disguised in the same oversized phenotype: Has the overeating theory failed?Nephrol. Dial. Transplant.201530101656166410.1093/ndt/gfu33825361999
    [Google Scholar]
  46. Lorente-CebriánS. CostaA.G.V. Navas-CarreteroS. ZabalaM. LaiglesiaL.M. MartínezJ.A. Moreno-AliagaM.J. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases.J. Physiol. Biochem.201571234134910.1007/s13105‑015‑0395‑y25752887
    [Google Scholar]
  47. GreinerA.K. PapineniR.V.L. UmarS. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome.Am. J. Physiol. Gastrointest. Liver Physiol.20143071G1G1510.1152/ajpgi.00044.201424789206
    [Google Scholar]
  48. GillP.A. InnissS. KumagaiT. RahmanF.Z. SmithA.M. The role of diet and gut microbiota in regulating gastrointestinal and inflammatory disease.Front. Immunol.20221386605910.3389/fimmu.2022.86605935450067
    [Google Scholar]
  49. FalluccaF. PorrataC. FalluccaS. PianesiM. Influence of diet on gut microbiota, inflammation and type 2 diabetes mellitus. First experience with macrobiotic Ma-Pi 2 diet.Diabetes Metab Res Rev201430Suppl 14854
    [Google Scholar]
  50. KalmanD.S. HewlingsS. Inactivated Probiotic Bacillus coagulans GBI-30 Demonstrates Immunosupportive Properties in Healthy Adults Following Stressful Exercise.J. Probiotics Health20186110.4172/2329‑8901.1000190
    [Google Scholar]
  51. TillischK. LabusJ. KilpatrickL. JiangZ. StainsJ. EbratB. GuyonnetD. Legrain-RaspaudS. TrotinB. NaliboffB. MayerE.A. Consumption of fermented milk product with probiotic modulates brain activity.Gastroenterology2013144713941401.e4, 1401.e1-1401.e410.1053/j.gastro.2013.02.04323474283
    [Google Scholar]
  52. TomasikJ. YolkenR.H. BahnS. DickersonF.B. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: A randomized, placebo-controlled trial.Biomark. Insights201510BMI.S2200710.4137/BMI.S2200726052224
    [Google Scholar]
  53. AtarashiK TanoueT ShimaT ImaokaA KuwaharaT MomoseY Induction of colonic regulatory T cells by indigenous Clostridium species.Science2011331601533741 https://pubmed.ncbi.nlm.nih.gov/21205640/.
    [Google Scholar]
  54. KangJ.W. ZivkovicA.M. The potential utility of prebiotics to modulate alzheimer’s disease: A review of the evidence.Microorganisms2021911231010.3390/microorganisms911231034835436
    [Google Scholar]
  55. BertiV. MurrayJ. DaviesM. SpectorN. TsuiW.H. LiY. WilliamsS. PirragliaE. VallabhajosulaS. McHughP. PupiA. de LeonM.J. MosconiL. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals.J. Nutr. Health Aging201519441342310.1007/s12603‑014‑0534‑025809805
    [Google Scholar]
  56. MosconiL. MurrayJ. DaviesM. WilliamsS. PirragliaE. SpectorN. TsuiW.H. LiY. ButlerT. OsorioR.S. GlodzikL. VallabhajosulaS. McHughP. MarmarC.R. de LeonM.J. Nutrient intake and brain biomarkers of Alzheimer’s disease in at-risk cognitively normal individuals: A cross-sectional neuroimaging pilot study.BMJ Open201446e00485010.1136/bmjopen‑2014‑00485024961717
    [Google Scholar]
  57. StefaniM. RigacciS. Beneficial properties of natural phenols: Highlight on protection against pathological conditions associated with amyloid aggregation.Biofactors201440548249310.1002/biof.117124890399
    [Google Scholar]
  58. RigacciS. StefaniM. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols.Expert Rev. Neurother.2015151415210.1586/14737175.2015.98610125418871
    [Google Scholar]
  59. KobayashiH MurataM KawanishiS OikawaS. Polyphenols with anti-amyloid β aggregation show potential risk of toxicity via pro-oxidant properties.Int J Mol Sci20202110356110.3390/ijms21103561
    [Google Scholar]
  60. RigacciS. Olive oil phenols as promising multi-targeting agents against alzheimer’s disease.Adv. Exp. Med. Biol.201586312010.1007/978‑3‑319‑18365‑7_126092624
    [Google Scholar]
  61. AbuznaitA.H. QosaH. BusnenaB.A. El SayedK.A. KaddoumiA. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies.ACS Chem. Neurosci.20134697398210.1021/cn400024q23414128
    [Google Scholar]
  62. QosaH. AbuasalB.S. RomeroI.A. WekslerB. CouraudP.O. KellerJ.N. KaddoumiA. Differences in amyloid-β clearance across mouse and human blood–brain barrier models: Kinetic analysis and mechanistic modeling.Neuropharmacology20147966867810.1016/j.neuropharm.2014.01.02324467845
    [Google Scholar]
  63. MaïzaA. ChantepieS. VeraC. FifreA. HuynhM.B. StettlerO. OuidjaM.O. Papy-GarciaD. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration.FEBS Lett.2018592233806381810.1002/1873‑3468.1308229729013
    [Google Scholar]
  64. FernandoW.M.A.D.B. MartinsI.J. GoozeeK.G. BrennanC.S. JayasenaV. MartinsR.N. The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: Potential mechanisms of action.Br. J. Nutr.2015114111410.1017/S000711451500145225997382
    [Google Scholar]
  65. LaparraJ.M. SanzY. Interactions of gut microbiota with functional food components and nutraceuticals.Pharmacol. Res.201061321922510.1016/j.phrs.2009.11.00119914380
    [Google Scholar]
  66. LeeH.C. JennerA.M. LowC.S. LeeY.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota.Res. Microbiol.2006157987688410.1016/j.resmic.2006.07.00416962743
    [Google Scholar]
  67. MerkleD.L. ChengC-H. CastellinoF.J. ChibberB.A.K. Modulation of fibrin assembly and polymerization by the?? -amyloid of Alzheimer??s disease.Blood Coagul. Fibrinolysis19967665065810.1097/00001721‑199609000‑000118899155
    [Google Scholar]
  68. ZamolodchikovD. StricklandS. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin.Blood2012119143342335110.1182/blood‑2011‑11‑38966822238323
    [Google Scholar]
  69. LipinskiB. PretoriusE. The role of iron-induced fibrin in the pathogenesis of Alzheimer’s disease and the protective role of magnesium.Front. Hum. Neurosci.20137OCT73510.3389/fnhum.2013.0073524194714
    [Google Scholar]
  70. Rebolledo-MendezJD VaishnavRA CooperNG FriedlandRP Cross-kingdom sequence similarities between human micro-RNAs and plant viruses.Commun Integr Biol201365e2495110.4161/cib.24951
    [Google Scholar]
  71. ChengL. QuekC.Y.J. SunX. BellinghamS.A. HillA.F. The detection of microRNA associated with Alzheimer’s disease in biological fluids using next-generation sequencing technologies.Front. Genet.20134AUG15010.3389/fgene.2013.0015023964286
    [Google Scholar]
  72. RutschA. KantsjöJ.B. RonchiF. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology.Front. Immunol.20201160417910.3389/fimmu.2020.60417933362788
    [Google Scholar]
  73. FranciscoÉ.C. FrancoT.T. WagnerR. Jacob-LopesE. Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria.Bioprocess Biosyst. Eng.20143781497150510.1007/s00449‑013‑1121‑124445336
    [Google Scholar]
  74. ThomsonP. MedinaD.A. GarridoD. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization.Food Microbiol.201875374610.1016/j.fm.2017.09.00130056961
    [Google Scholar]
  75. XiaoS. ChanP. WangT. HongZ. WangS. KuangW. HeJ. PanX. ZhouY. JiY. WangL. ChengY. PengY. YeQ. WangX. WuY. QuQ. ChenS. LiS. ChenW. XuJ. PengD. ZhaoZ. LiY. ZhangJ. DuY. ChenW. FanD. YanY. LiuX. ZhangW. LuoB. WuW. ShenL. LiuC. MaoP. WangQ. ZhaoQ. GuoQ. ZhouY. LiY. JiangL. RenW. OuyangY. WangY. LiuS. JiaJ. ZhangN. LiuZ. HeR. FengT. LuW. TangH. GaoP. ZhangY. ChenL. WangL. YinY. XuQ. XiaoJ. CongL. ChengX. ZhangH. GaoD. XiaM. LianT. PengG. ZhangX. JiaoB. HuH. ChenX. GuanY. CuiR. HuangQ. XinX. ChenH. DingY. ZhangJ. FengT. CantillonM. ChenK. CummingsJ.L. DingJ. GengM. ZhangZ. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia.Alzheimers Res. Ther.20211316210.1186/s13195‑021‑00795‑733731209
    [Google Scholar]
  76. WangJ. LeiX. XieZ. ZhangX. ChengX. ZhouW. ZhangY. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain.Aging201911113463348610.18632/aging.10199031160541
    [Google Scholar]
  77. AroraK GreenM PrakashS. The microbiome and alzheimer's disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations.Front Bioeng Biotechnol20208537847
    [Google Scholar]
  78. LeeH.J. LeeK.E. KimJ.K. KimD.H. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice.Sci. Rep.2019911181410.1038/s41598‑019‑48342‑731413350
    [Google Scholar]
  79. YangX. YuD. XueL. LiH. DuJ. Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice.Acta Pharm. Sin. B202010347548710.1016/j.apsb.2019.07.00132140393
    [Google Scholar]
  80. SunJ. XuJ. YangB. ChenK. KongY. FangN. GongT. WangF. LingZ. LiuJ. Effect of Clostridium butyricum against Microglia‐Mediated Neuroinflammation in Alzheimer’s Disease via Regulating Gut Microbiota and Metabolites Butyrate.Mol. Nutr. Food Res.2020642190063610.1002/mnfr.20190063631835282
    [Google Scholar]
  81. TranN. ZhebrakM. YacoubC. PelletierJ. HawleyD. The gut-brain relationship: Investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults.J. Affect. Disord.201925227127710.1016/j.jad.2019.04.04330991255
    [Google Scholar]
  82. van den BrinkA.C. Brouwer-BrolsmaE.M. BerendsenA.A.M. van de RestO. The mediterranean, dietary approaches to stop hypertension (DASH), and mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of alzheimer’s disease—A review.Adv. Nutr.20191061040106510.1093/advances/nmz05431209456
    [Google Scholar]
  83. SunJ. LiuS. LingZ. WangF. LingY. GongT. FangN. YeS. SiJ. LiuJ. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota.J. Agric. Food Chem.201967103006301710.1021/acs.jafc.8b0731330816709
    [Google Scholar]
  84. YuanT. ChuC. ShiR. CuiT. ZhangX. ZhaoY. ShiX. HuiY. PanJ. QianR. DaiX. LiuZ. LiuX. ApoE-dependent protective effects of sesamol on high-fat diet-induced behavioral disorders: Regulation of the microbiome-gut–brain axis.J. Agric. Food Chem.201967226190620110.1021/acs.jafc.9b0143631117496
    [Google Scholar]
  85. TanF.H.P. LiuG. LauS.Y.A. JaafarM.H. ParkY.H. AzzamG. LiY. LiongM.T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye.Benef. Microbes2020111799010.3920/BM2019.008632066253
    [Google Scholar]
  86. KimC.S. ChaL. SimM. JungS. ChunW.Y. BaikH.W. ShinD.M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial.J. Gerontol. A Biol. Sci. Med. Sci.2021761324010.1093/gerona/glaa09032300799
    [Google Scholar]
  87. WestfallS. LomisN. PrakashS. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster.PLoS One2019144e021498510.1371/journal.pone.021498531009489
    [Google Scholar]
  88. MaD. WangA.C. ParikhI. GreenS.J. HoffmanJ.D. ChlipalaG. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice.Sci Rep201881667010.1038/s41598‑018‑25190‑5
    [Google Scholar]
  89. NethB.J. MintzA. WhitlowC. JungY. Solingapuram SaiK. RegisterT.C. KellarD. LockhartS.N. HoscheidtS. MaldjianJ. HeslegraveA.J. BlennowK. CunnaneS.C. CastellanoC.A. ZetterbergH. CraftS. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study.Neurobiol. Aging202086546310.1016/j.neurobiolaging.2019.09.01531757576
    [Google Scholar]
  90. SyedaT. Sanchez-TapiaM. Pinedo-VargasL. GranadosO. Cuervo-ZanattaD. Rojas-SantiagoE. Díaz-CintraS. TorresN. Perez-CruzC. Bioactive food abates metabolic and synaptic alterations by modulation of gut microbiota in a mouse model of alzheimer’s disease.J. Alzheimers Dis.20186641657168210.3233/JAD‑18055630475761
    [Google Scholar]
  91. WangD. HoL. FaithJ. OnoK. JanleE.M. LachcikP.J. CooperB.R. JannaschA.H. D’ArcyB.R. WilliamsB.A. FerruzziM.G. LevineS. ZhaoW. DubnerL. PasinettiG.M. Role of intestinal microbiota in the generation of polyphenol‐derived phenolic acid mediated attenuation of Alzheimer’s disease β‐amyloid oligomerization.Mol. Nutr. Food Res.20155961025104010.1002/mnfr.20140054425689033
    [Google Scholar]
  92. HoffmanJ.D. YanckelloL.M. ChlipalaG. HammondT.C. McCullochS.D. ParikhI. SunS. MorgantiJ.M. GreenS.J. LinA.L. Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model.PLoS One2019148e022182810.1371/journal.pone.022182831461505
    [Google Scholar]
  93. ItzhakiR.F. LatheR. BalinB.J. BallM.J. BearerE.L. BraakH. BullidoM.J. CarterC. ClericiM. CosbyS.L. Del TrediciK. FieldH. FulopT. GrassiC. GriffinW.S.T. HaasJ. HudsonA.P. KamerA.R. KellD.B. LicastroF. LetenneurL. LövheimH. MancusoR. MiklossyJ. OtthC. PalamaraA.T. PerryG. PrestonC. PretoriusE. StrandbergT. TabetN. Taylor-RobinsonS.D. Whittum-HudsonJ.A. Microbes and Alzheimer’s Disease.J. Alzheimers Dis.201651497998410.3233/JAD‑16015226967229
    [Google Scholar]
  94. StojkovićD. KostićM. SmiljkovićM. AleksićM. VasiljevićP. NikolićM. SokovićM. Linking antimicrobial potential of natural products derived from aquatic organisms and microbes involved in alzheimer’s disease - A review.Curr. Med. Chem.202027264372439110.2174/092986732566618030910364529521212
    [Google Scholar]
  95. LimC. HammondC.J. HingleyS.T. BalinB.J. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease.J. Neuroinflammation201411121710.1186/s12974‑014‑0217‑025540075
    [Google Scholar]
  96. VogtN.M. RomanoK.A. DarstB.F. EngelmanC.D. JohnsonS.C. CarlssonC.M. AsthanaS. BlennowK. ZetterbergH. BendlinB.B. ReyF.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease.Alzheimers Res. Ther.201810112410.1186/s13195‑018‑0451‑230579367
    [Google Scholar]
  97. ZhangL. WangY. XiayuX. ShiC. ChenW. SongN. FuX. ZhouR. XuY.F. HuangL. ZhuH. HanY. QinC. Altered gut microbiota in a mouse model of alzheimer’s disease.J. Alzheimers Dis.20176041241125710.3233/JAD‑17002029036812
    [Google Scholar]
  98. CaiZ. HussainM.D. YanL.J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease.Int. J. Neurosci.2014124530732110.3109/00207454.2013.83351023930978
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273302508240613114103
Loading
/content/journals/cnsnddt/10.2174/0118715273302508240613114103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test