Skip to content
2000
Volume 24, Issue 1
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

Although electroconvulsive therapy (ECT) has immediate and profound effects on severe psychiatric disorders compared to pharmacotherapy, the mechanisms underlying its therapeutic effects remain elusive. Increasing evidence indicates that glial activation is a common pathogenetic factor in both major depression and schizophrenia, raising the question of whether ECT can inhibit glial activation. This article summarizes the findings from both clinical and experimental studies addressing this key question. Based on the findings, it is proposed that the suppression of glial activation associated with neuroinflammation may be involved in the mechanism by which ECT restores brain homeostasis and exerts its therapeutic effects.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273319405240707164638
2024-07-12
2024-11-22
Loading full text...

Full text loading...

References

  1. RushA.J. TrivediM.H. WisniewskiS.R. NierenbergA.A. StewartJ.W. WardenD. NiedereheG. ThaseM.E. LavoriP.W. LebowitzB.D. McGrathP.J. RosenbaumJ.F. SackeimH.A. KupferD.J. LutherJ. FavaM. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report.Am. J. Psychiatry2006163111905191710.1176/ajp.2006.163.11.190517074942
    [Google Scholar]
  2. SiskindD. OrrS. SinhaS. YuO. BrijballB. WarrenN. MacCabeJ.H. SmartS.E. KiselyS. Rates of treatment-resistant schizophrenia from first-episode cohorts: Systematic review and meta-analysis.Br. J. Psychiatry2022220311512010.1192/bjp.2021.6135049446
    [Google Scholar]
  3. Castaneda-RamirezS. BeckerT.D. Bruges-BoudeA. KellnerC. RiceT.R. Systematic review: Electroconvulsive therapy for treatment-resistant mood disorders in children and adolescents.Eur. Child Adolesc. Psychiatry20223291529156034999973
    [Google Scholar]
  4. SinclairD.J. ZhaoS. QiF. NyakyomaK. KwongJ.S. AdamsC.E. Electroconvulsive therapy for treatment-resistant schizophrenia.Cochrane Database Syst. Rev.201933CD01184730888709
    [Google Scholar]
  5. Mental Health AmericaElectroconvulsive Therapy (ECT).2024Available From: https://www.mhanational.org/ect
  6. FreireT.F.V. de Almeida FleckM.P. da RochaN.S. Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor (BDNF).Brain Res. Bull.201612126326910.1016/j.brainresbull.2016.02.01326892396
    [Google Scholar]
  7. MinelliA. ZanardiniR. AbateM. BortolomasiM. GennarelliM. Bocchio-ChiavettoL. Vascular Endothelial Growth Factor (VEGF) serum concentration during electroconvulsive therapy (ECT) in treatment resistant depressed patients.Prog. Neuropsychopharmacol. Biol. Psychiatry20113551322132510.1016/j.pnpbp.2011.04.01321570438
    [Google Scholar]
  8. DukartJ. RegenF. KherifF. CollaM. BajboujM. HeuserI. FrackowiakR.S. DraganskiB. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders.Proc. Natl. Acad. Sci. USA201411131156116110.1073/pnas.132139911124379394
    [Google Scholar]
  9. JoshiS.H. EspinozaR.T. PirniaT. ShiJ. WangY. AyersB. LeaverA. WoodsR.P. NarrK.L. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression.Biol. Psychiatry201679428229210.1016/j.biopsych.2015.02.02925842202
    [Google Scholar]
  10. HestadK.A. TønsethS. StøenC.D. UelandT. AukrustP. Raised plasma levels of tumor necrosis factor alpha in patients with depression: Normalization during electroconvulsive therapy.J. ECT200319418318810.1097/00124509‑200312000‑0000214657769
    [Google Scholar]
  11. JärventaustaK. SorriA. KampmanO. BjörkqvistM. TuohimaaK. HämäläinenM. MoilanenE. LeinonenE. PeltolaJ. LehtimäkiK. Changes in interleukin‐6 levels during electroconvulsive therapy may reflect the therapeutic response in major depression.Acta Psychiatr. Scand.20171351879210.1111/acps.1266527858966
    [Google Scholar]
  12. CarlierA. RhebergenD. SchilderF. BouckaertF. SienaertP. VeerhuisR. HoogendoornA.W. EikelenboomP. StekM.L. DolsA. van ExelE. The pattern of inflammatory markers during electroconvulsive therapy in older depressed patients.World J. Biol. Psychiatry2021221077077710.1080/15622975.2021.190771833821774
    [Google Scholar]
  13. MindtS. NeumaierM. HoyerC. SartoriusA. KranasterL. Cytokine-mediated cellular immune activation in electroconvulsive therapy: A CSF study in patients with treatment-resistant depression.World J. Biol. Psychiatry202021213914710.1080/15622975.2019.161849431081432
    [Google Scholar]
  14. MeyerJ.H. CervenkaS. KimM.J. KreislW.C. HenterI.D. InnisR.B. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets.Lancet Psychiatry20207121064107410.1016/S2215‑0366(20)30255‑833098761
    [Google Scholar]
  15. NajjarS. PearlmanD.M. AlperK. NajjarA. DevinskyO. Neuroinflammation and psychiatric illness.J. Neuroinflammation201310181610.1186/1742‑2094‑10‑4323547920
    [Google Scholar]
  16. BayerT.A. BusleiR. HavasL. FalkaiP. Evidence for activation of microglia in patients with psychiatric illnesses.Neurosci. Lett.1999271212612810.1016/S0304‑3940(99)00545‑510477118
    [Google Scholar]
  17. RadewiczK. GareyL.J. GentlemanS.M. ReynoldsR. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics.J. Neuropathol. Exp. Neurol.200059213715010.1093/jnen/59.2.13710749103
    [Google Scholar]
  18. Torres-PlatasS.G. CruceanuC. ChenG.G. TureckiG. MechawarN. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides.Brain Behav. Immun.201442505910.1016/j.bbi.2014.05.00724858659
    [Google Scholar]
  19. StockmeierC.A. MahajanG.J. KonickL.C. OverholserJ.C. JurjusG.J. MeltzerH.Y. UylingsH.B.M. FriedmanL. RajkowskaG. Cellular changes in the postmortem hippocampus in major depression.Biol. Psychiatry200456964065010.1016/j.biopsych.2004.08.02215522247
    [Google Scholar]
  20. Torres-PlatasS.G. HercherC. DavoliM.A. MaussionG. LabontéB. TureckiG. MechawarN. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides.Neuropsychopharmacology201136132650265810.1038/npp.2011.15421814185
    [Google Scholar]
  21. CotterD. MackayD. LandauS. KerwinR. EverallI. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder.Arch. Gen. Psychiatry200158654555310.1001/archpsyc.58.6.54511386983
    [Google Scholar]
  22. RajkowskaG. Miguel-HidalgoJ.J. WeiJ. DilleyG. PittmanS.D. MeltzerH.Y. OverholserJ.C. RothB.L. StockmeierC.A. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.Biol. Psychiatry19994591085109810.1016/S0006‑3223(99)00041‑410331101
    [Google Scholar]
  23. HolmesS.E. HinzR. ConenS. GregoryC.J. MatthewsJ.C. Anton-RodriguezJ.M. GerhardA. TalbotP.S. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: A positron emission tomography study.Biol. Psychiatry2018831616910.1016/j.biopsych.2017.08.00528939116
    [Google Scholar]
  24. LiH. SagarA.P. KériS. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder.J. Affect. Disord.201824130531010.1016/j.jad.2018.08.02130142589
    [Google Scholar]
  25. SetiawanE. WilsonA.A. MizrahiR. RusjanP.M. MilerL. RajkowskaG. SuridjanI. KennedyJ.L. RekkasP.V. HouleS. MeyerJ.H. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes.JAMA Psychiatry201572326827510.1001/jamapsychiatry.2014.242725629589
    [Google Scholar]
  26. BloomfieldP.S. SelvarajS. VeroneseM. RizzoG. BertoldoA. OwenD.R. BloomfieldM.A.P. BonoldiI. KalkN. TurkheimerF. McGuireP. de PaolaV. HowesO.D. Microglial activity in people at ultra high risk of psychosis and in Schizophrenia: An [ 11 C]PBR28 PET brain imaging study.Am. J. Psychiatry20161731445210.1176/appi.ajp.2015.1410135826472628
    [Google Scholar]
  27. EkblomJ. JossanS.S. BergstrümM. OrelandL. WalumE. AquiloniusS.M. Monoamine oxidase‐B in astrocytes.Glia19938212213210.1002/glia.4400802088406673
    [Google Scholar]
  28. MoriguchiS. WilsonA.A. MilerL. RusjanP.M. VasdevN. KishS.J. RajkowskaG. WangJ. BagbyM. MizrahiR. VarugheseB. HouleS. MeyerJ.H. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder.JAMA Psychiatry201976663464110.1001/jamapsychiatry.2019.004430840042
    [Google Scholar]
  29. LingE. NemeshJ. GoldmanM. KamitakiN. ReedN. HandsakerR.E. GenoveseG. VogelgsangJ.S. GergesS. KashinS. GhoshS. EspositoJ.M. MorrisK. MeyerD. LutservitzA. MullallyC.D. WysokerA. SpinaL. NeumannA. HoganM. IchiharaK. BerrettaS. McCarrollS.A. A concerted neuron–astrocyte program declines in ageing and schizophrenia.Nature2024627800460461110.1038/s41586‑024‑07109‑538448582
    [Google Scholar]
  30. HashiokaS. HanY.H. FujiiS. KatoT. MonjiA. UtsumiH. SawadaM. NakanishiH. KanbaS. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid β and interferon-γ-induced microglial activation.Free Radic. Biol. Med.200742794595410.1016/j.freeradbiomed.2006.12.00317349923
    [Google Scholar]
  31. VennetiS. LoprestiB.J. WileyC.A. Molecular imaging of microglia/macrophages in the brain.Glia2013611102310.1002/glia.2235722615180
    [Google Scholar]
  32. MonjeM.L. TodaH. PalmerT.D. Inflammatory blockade restores adult hippocampal neurogenesis.Science200330256511760176510.1126/science.108841714615545
    [Google Scholar]
  33. Kopschina FeltesP. DoorduinJ. KleinH.C. Juárez-OrozcoL.E. DierckxR.A.J.O. Moriguchi-JeckelC.M. de VriesE.F.J. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy.J. Psychopharmacol.20173191149116510.1177/026988111771170828653857
    [Google Scholar]
  34. LiuM. LiJ. DaiP. ZhaoF. ZhengG. JingJ. WangJ. LuoW. ChenJ. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction.Stress20151819610610.3109/10253890.2014.99508525472821
    [Google Scholar]
  35. NjauS. JoshiS.H. LeaverA.M. VasavadaM. Van FleetJ. EspinozaR. NarrK.L. Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression.J. Psychiatr. Res.201680455110.1016/j.jpsychires.2016.05.01227285661
    [Google Scholar]
  36. XuS. XieX. YaoL. WangW. ZhangH. ChenM. SunS. NieZ. NagyC. LiuZ. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment‐resistant depression following electroconvulsive therapy.Psychiatry Clin. Neurosci.2023771265366410.1111/pcn.1359637675893
    [Google Scholar]
  37. JinnoS. KosakaT. Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock.Exp. Neurol.2008212244044710.1016/j.expneurol.2008.04.02818538764
    [Google Scholar]
  38. JanssonL. WennströmM. JohansonA. TingströmA. Glial cell activation in response to electroconvulsive seizures.Prog. Neuropsychopharmacol. Biol. Psychiatry20093371119112810.1016/j.pnpbp.2009.06.00719540297
    [Google Scholar]
  39. CeresérK.M. FreyB.N. BernardesF.B. CostaS.C. AndreazzaA.C. FeierG. SouzaD. TramontinaF. GonçalvesC.A. KapczinskiF. QuevedoJ. Glial fibrillary acidic protein expression after electroconvulsive shocks in rat brain.Prog. Neuropsychopharmacol. Biol. Psychiatry200630466366710.1016/j.pnpbp.2005.11.03816451815
    [Google Scholar]
  40. ArauchiR. HashiokaS. TsuchieK. MiyaokaT. TsumoriT. LimoaE. AzisI.A. Oh-NishiA. MiuraS. OtsukiK. KanayamaM. IzuharaM. NagahamaM. KawanoK. ArakiT. LiauryK. AbdullahR.A. WakeR. HayashidaM. InoueK. HoriguchiJ. Gunn rats with glial activation in the hippocampus show prolonged immobility time in the forced swimming test and tail suspension test.Brain Behav.201888e0102810.1002/brb3.102829953737
    [Google Scholar]
  41. LimoaE. HashiokaS. MiyaokaT. TsuchieK. ArauchiR. AzisI.A. WakeR. HayashidaM. ArakiT. FuruyaM. LiauryK. TanraA.J. HoriguchiJ. Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat.J. Neuroinflammation201613123010.1186/s12974‑016‑0688‑227590010
    [Google Scholar]
  42. AzisI.A. HashiokaS. TsuchieK. MiyaokaT. AbdullahR.A. LimoaE. ArauchiR. InoueK. MiuraS. IzuharaM. KanayamaM. OtsukiK. NagahamaM. KawanoK. ArakiT. HayashidaM. WakeR. Oh-NishiA. TanraA.J. HoriguchiJ. InagakiM. Electroconvulsive shock restores the decreased coverage of brain blood vessels by astrocytic endfeet and ameliorates depressive-like behavior.J. Affect. Disord.201925733133910.1016/j.jad.2019.07.00831302522
    [Google Scholar]
  43. GoldfarbS. FainsteinN. Ben-HurT. Electroconvulsive stimulation attenuates chronic neuroinflammation.JCI Insight2020517e13702810.1172/jci.insight.13702832780728
    [Google Scholar]
  44. GoldfarbS. FainsteinN. GanzT. VershkovD. LachishM. Ben-HurT. Electric neurostimulation regulates microglial activation via retinoic acid receptor α signaling.Brain Behav. Immun.202196405310.1016/j.bbi.2021.05.00733989746
    [Google Scholar]
  45. ChenL. LvF. MinS. YangY. LiuD. Roles of prokineticin 2 in electroconvulsive shock-induced memory impairment via regulation of phenotype polarization in astrocytes.Behav. Brain Res.202344611435010.1016/j.bbr.2023.11435036804440
    [Google Scholar]
  46. SvenssonM. OlssonG. YangY. BachillerS. EkemohnM. EkstrandJ. DeierborgT. The effect of electroconvulsive therapy on neuroinflammation, behavior and amyloid plaques in the 5xFAD mouse model of Alzheimer’s disease.Sci. Rep.2021111491010.1038/s41598‑021‑83998‑033649346
    [Google Scholar]
  47. ZhuX. LiP. HaoX. WeiK. MinS. LuoJ. XieF. JinJ. Ketamine-mediated alleviation of electroconvulsive shock-induced memory impairment is associated with the regulation of neuroinflammation and soluble amyloid-beta peptide in depressive-like rats.Neurosci. Lett.2015599323710.1016/j.neulet.2015.05.02225980993
    [Google Scholar]
  48. RimmermanN. VerdigerH. GoldenbergH. NagganL. RobinsonE. KozelaE. GelbS. ReshefR. RyanK.M. AyounL. RefaeliR. AshkenaziE. SchottlenderN. Ben Hemo-CohenL. PienicaC. AharonianM. DinurE. LazarK. McLoughlinD.M. ZviA.B. YirmiyaR. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation.Mol. Psychiatry20222721120113510.1038/s41380‑021‑01338‑034650207
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273319405240707164638
Loading
/content/journals/cnsnddt/10.2174/0118715273319405240707164638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test