Skip to content
2000
image of Nadolol Attenuates Brain Cell Ferroptosis in Ischemic Stroke Rats by Targeting the HOIL-1/IRP2 Pathway

Abstract

Introduction

Heme-oxidized iron regulatory protein 2 (IRP2) ubiquitin ligase-1 (HOIL-1) is believed to contribute to the ubiquitination of IRP2, which facilitates the transcription of transferrin receptor 1 (TfR1) while preventing the transcription of ferroportin-1 (FPN-1). Bioinformatics analysis predicts that nadolol (a β-blocker) interacts with the HOIL-1.

Method

The present study is intended to explore whether nadolol suppresses ferroptosis in the brains of rats suffering from ischemic stroke via targeting the HOIL-1/IRP2 pathway. A rat model of ischemic stroke was established by blocking the middle cerebral artery for 2 h plus 24 h reperfusion, and nadolol (2.5 or 5 mg/kg) was given at 1h after reperfusion. HT22 cells were subjected to 12 h of hypoxia, followed by 24 h of reoxygenation for simulating ischemic stroke, and nadolol (0.1 or 0.25 μM) was administered to the culture medium before reoxygenation.

Results

The stroke rats showed evident brain injury (increases in neurological deficit score and infarct volume) and ferroptosis, along with up-regulation of IRP2 and TfR1 while downregulation of HOIL-1 and FPN-1; these phenomena were reversed in the presence of nadolol. In the cultured HT22 cells, hypoxia/reoxygenation-induced LDH release, ferroptosis, and changes in the levels of relevant proteins (IRP2, TfR1, HOIL-1, and FPN-1) were also reversed by nadolol.

Conclusion

In terms of these findings, it is concluded that nadolol can protect the ischemic rats’ brains against ferroptosis by targeting the HOIL-1/IRP2 pathway, thereby preventing intracellular iron overload. Thus, nadolol may be a novel indication for treating patients with ischemic stroke.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1386207323666200219122057
2024-09-02
2024-10-11
Loading full text...

Full text loading...

References

  1. Feng H. Schorpp K. Jin J. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020 30 10 3411 3423.e7 10.1016/j.celrep.2020.02.049 32160546
    [Google Scholar]
  2. Zhang Y.Y. Yang X.Y. Liu H.Q. The weakened interaction between hectd4 and glun2b in ischemic stroke promotes calcium overload and brain injury through a mechanism involving the decrease of GluN2B and MALT1 ubiquitination. Mol. Neurobiol. 2023 60 3 1563 1579 10.1007/s12035‑022‑03169‑8 36527595
    [Google Scholar]
  3. Ou M. Jiang Y. Ji Y. Role and mechanism of ferroptosis in neurological diseases. Mol. Metab. 2022 61 101502 10.1016/j.molmet.2022.101502 35447365
    [Google Scholar]
  4. Ju J. Song Y. Wang K. Mechanism of ferroptosis: A potential target for cardiovascular diseases treatment. Aging Dis. 2021 12 1 261 276 10.14336/AD.2020.0323 33532140
    [Google Scholar]
  5. Tuo Q. Lei P. Jackman K.A. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry 2017 22 11 1520 1530 10.1038/mp.2017.171 28886009
    [Google Scholar]
  6. Bai T. Li M. Liu Y. Qiao Z. Wang Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med. 2020 160 92 102 10.1016/j.freeradbiomed.2020.07.026 32768568
    [Google Scholar]
  7. Cui Y. Zhang Y. Zhao X. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav. Immun. 2021 93 312 321 10.1016/j.bbi.2021.01.003 33444733
    [Google Scholar]
  8. Tian J. Zhang Y.Y. Peng Y.W. Polymyxin B reduces brain injury in ischemic stroke rat through a mechanism involving targeting ESCRT-III machinery and RIPK1/RIPK3/MLKL pathway. J. Cardiovasc. Transl. Res. 2022 15 5 1129 1142 10.1007/s12265‑022‑10224‑1 35239171
    [Google Scholar]
  9. Yu X. Wang S. Wang X. Li Y. Dai Z. Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1. Exp. Neurol. 2024 379 114868 10.1016/j.expneurol.2024.114868 38901754
    [Google Scholar]
  10. Hurd M.D. Goel I. Sakai Y. Teramura Y. Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine. Regen. Ther. 2021 18 408 417 10.1016/j.reth.2021.09.009 34722837
    [Google Scholar]
  11. Guo J. Tuo Q. Lei P. Iron, ferroptosis, and ischemic stroke. J. Neurochem. 2023 165 4 487 520 10.1111/jnc.15807 36908209
    [Google Scholar]
  12. Li Y. Yu P. Chang S.Y. Hypobaric hypoxia regulates brain iron homeostasis in rats. J. Cell. Biochem. 2017 118 6 1596 1605 10.1002/jcb.25822 27925282
    [Google Scholar]
  13. Zhang Y.Y. Li X.S. Ren K.D. Peng J. Luo X.J. Restoration of metal homeostasis: A potential strategy against neurodegenerative diseases. Ageing Res. Rev. 2023 87 101931 10.1016/j.arr.2023.101931 37031723
    [Google Scholar]
  14. Guo H. Zhu L. Tang P. Carthamin yellow improves cerebral ischemia reperfusion injury by attenuating inflammation and ferroptosis in rats. Int. J. Mol. Med. 2021 47 4 52 10.3892/ijmm.2021.4885 33576458
    [Google Scholar]
  15. Zhao Y. Xin Z. Li N. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic. Biol. Med. 2018 124 1 11 10.1016/j.freeradbiomed.2018.05.082 29807160
    [Google Scholar]
  16. Sangkhae V. Fisher A.L. Wong S. Effects of maternal iron status on placental and fetal iron homeostasis. J. Clin. Invest. 2019 130 2 625 640 10.1172/JCI127341 31661462
    [Google Scholar]
  17. Meyron-Holtz E.G. Ghosh M.C. Iwai K. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004 23 2 386 395 10.1038/sj.emboj.7600041 14726953
    [Google Scholar]
  18. Ishikawa H. Kato M. Hori H. Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2. Mol. Cell 2005 19 2 171 181 10.1016/j.molcel.2005.05.027 16039587
    [Google Scholar]
  19. Yamanaka K. Ishikawa H. Megumi Y. Identification of the ubiquitin–protein ligase that recognizes oxidized IRP2. Nat. Cell Biol. 2003 5 4 336 340 10.1038/ncb952 12629548
    [Google Scholar]
  20. Zhang Y.Y. Peng J.J. Chen D. Telaprevir improves memory and cognition in mice suffering ischemic stroke via targeting MALT1-mediated calcium overload and necroptosis. ACS Chem. Neurosci. 2023 14 17 3113 3124 10.1021/acschemneuro.3c00250 37559405
    [Google Scholar]
  21. Ren K.D. Liu W.N. Tian J. Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke. Eur. J. Pharmacol. 2019 861 172617 10.1016/j.ejphar.2019.172617 31430457
    [Google Scholar]
  22. Longa E.Z. Weinstein P.R. Carlson S. Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989 20 1 84 91 10.1161/01.STR.20.1.84 2643202
    [Google Scholar]
  23. Bederson J.B. Pitts L.H. Germano S.M. Nishimura M.C. Davis R.L. Bartkowski H.M. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986 17 6 1304 1308 10.1161/01.STR.17.6.1304 2433817
    [Google Scholar]
  24. Noble A.R. Hogg K. Suman R. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br. J. Cancer 2019 121 12 1016 1026 10.1038/s41416‑019‑0610‑7 31673104
    [Google Scholar]
  25. Yang X. Cheng X. Tang Y. Bacterial endotoxin activates the coagulation cascade through gasdermin d-dependent phosphatidylserine exposure. Immunity 2019 51 6 983 996.e6 10.1016/j.immuni.2019.11.005 31836429
    [Google Scholar]
  26. Tang L.J. Zhou Y.J. Xiong X.M. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic. Biol. Med. 2021 162 339 352 10.1016/j.freeradbiomed.2020.10.307 33157209
    [Google Scholar]
  27. Wang X. Shen T. Lian J. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol. Med. 2023 29 1 137 10.1186/s10020‑023‑00730‑6 37858064
    [Google Scholar]
  28. Peng Z.M. Zhang Y.Y. Wei D. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Arch. Biochem. Biophys. 2023 735 109502 10.1016/j.abb.2023.109502 36603698
    [Google Scholar]
  29. Vashisht A.A. Zumbrennen K.B. Huang X. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 2009 326 5953 718 721 10.1126/science.1176333 19762596
    [Google Scholar]
  30. Walter K. What is acute ischemic stroke? JAMA 2022 327 9 885 10.1001/jama.2022.1420 35230392
    [Google Scholar]
  31. Tuo Q. Zhang S. Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 2022 42 1 259 305 10.1002/med.21817 33957000
    [Google Scholar]
  32. Qin C. Yang S. Chu Y.H. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022 7 1 215 10.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  33. Van San E. Debruyne A.C. Veeckmans G. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ. 2023 30 9 2092 2103 10.1038/s41418‑023‑01195‑0 37542104
    [Google Scholar]
  34. Li F.J. Long H.Z. Zhou Z.W. Luo H.Y. Xu S.G. Gao L.C. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol. 2022 13 910292 10.3389/fphar.2022.910292 36105219
    [Google Scholar]
  35. Koppula P. Zhuang L. Gan B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021 12 8 599 620 10.1007/s13238‑020‑00789‑5 33000412
    [Google Scholar]
  36. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  37. Millán M. DeGregorio-Rocasolano N. Pérez de la Ossa N. Targeting pro-oxidant iron with deferoxamine as a treatment for ischemic stroke: Safety and optimal dose selection in a randomized clinical trial. Antioxidants 2021 10 8 1270 10.3390/antiox10081270 34439518
    [Google Scholar]
  38. Anderson G.J. Vulpe C.D. Mammalian iron transport. Cell. Mol. Life Sci. 2009 66 20 3241 3261 10.1007/s00018‑009‑0051‑1 19484405
    [Google Scholar]
  39. Cai W. Wang G. Wu H. Identifying traumatic brain injury (TBI) by ATR-FTIR spectroscopy in a mouse model. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 274 121099 10.1016/j.saa.2022.121099 35257986
    [Google Scholar]
  40. Arosio P. Elia L. Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017 69 6 414 422 10.1002/iub.1621 28349628
    [Google Scholar]
  41. Monai H. Wang X. Yahagi K. Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proc. Natl. Acad. Sci. USA 2019 116 22 11010 11019 10.1073/pnas.1817347116 31097598
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1386207323666200219122057
Loading
/content/journals/cnsnddt/10.2174/1386207323666200219122057
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: ferroptosis ; nadolol ; Ischemic stroke ; HOIL-1 ; IRP2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test