Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1871-5273
  • E-ISSN:

Abstract

In defiance of the vast amount of information regarding Alzheimer's disease (AD) that has been learned over the past thirty years, progress toward developing an effective therapy has been difficult. A neurological ailment that progresses and cannot be reversed is Alzheimer's disease, which shows neurofibrillary tangles, beta-amyloid plaque, and a lack of cognitive processes that is created by tau protein clumps with hyperphosphorylation that finally advances to neuronal damage without a recognized treatment, which has stimulated research into new therapeutic strategies. The protein CAS9 is linked to CRISPR, which is a clustered Regularly Interspaced Short Palindromic Repeat that inactivates or corrects a gene by recognizing a gene sequence that produces a double-stranded break has enchanted a whole amount of interest towards its potency to cure gene sequences in AD. The novel CRISPR-Cas9 applications for developing and models to the benefit of AD investigation and therapies are thoroughly analyzed in this work. The discussion will also touch on the creation of delivery methods, which is a significant obstacle to the therapeutic use of CRISPR/Cas9 technology. By concentrating on specific genes, such as those that are significant early-onset AD risk factors and late-onset AD risk factors, like the apolipoprotein E4 (APOE4) gene, this study aims to evaluate the potential application of CRISPR/Cas9 as a possible treatment for AD.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273283786240408034408
2024-12-01
2024-11-15
Loading full text...

Full text loading...

References

  1. KumarP. JhaN.K. JhaS.K. RamaniK. AmbastaR.K. Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: clinical relevance in Alzheimer’s disease.J. Alzheimers Dis.201443234136110.3233/JAD‑140933 25096626
    [Google Scholar]
  2. BarrangouR. HorvathP. A decade of discovery: CRISPR functions and applications.Nat. Microbiol.2017271709210.1038/nmicrobiol.2017.92 28581505
    [Google Scholar]
  3. KarchC.M. GoateA.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis.Biol. Psychiatry2015771435110.1016/j.biopsych.2014.05.006 24951455
    [Google Scholar]
  4. GauglerJ. JamesB. JohnsonT. MarinA. WeuveJ. 2019 Alzheimer’s disease facts and figures.Alzheimers Dement.201915332138710.1016/j.jalz.2019.01.010
    [Google Scholar]
  5. SheaY.F. ChuL.W. ChanA.O.K. HaJ. LiY. SongY.Q. A systematic review of familial Alzheimer’s disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences.J. Formos. Med. Assoc.20161152677510.1016/j.jfma.2015.08.004 26337232
    [Google Scholar]
  6. PandeyG. RamakrishnanV. Invasive and non-invasive therapies for Alzheimer’s disease and other amyloidosis.Biophys. Rev.20201251175118610.1007/s12551‑020‑00752‑y 32930962
    [Google Scholar]
  7. JonesE.L. KalariaR.N. SharpS.I. O’BrienJ.T. FrancisP.T. BallardC.G. Genetic associations of autopsy-confirmed vascular dementia subtypes.Dement. Geriatr. Cogn. Disord.201131424725310.1159/000327171 21474934
    [Google Scholar]
  8. Milà-AlomàM. SalvadóG. GispertJ.D. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum.Alzheimers Dement.202016101358137110.1002/alz.12131 32573951
    [Google Scholar]
  9. ZetterbergH. BendlinB.B. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies.Mol. Psychiatry202126129630810.1038/s41380‑020‑0721‑9 32251378
    [Google Scholar]
  10. CarrD.B. GoateA. PhilD. MorrisJ.C. Current concepts in the pathogenesis of Alzheimer’s disease.Am. J. Med.199710333S10S10.1016/S0002‑9343(97)00262‑3 9344401
    [Google Scholar]
  11. YanR. VassarR. Targeting the β secretase BACE1 for Alzheimer’s disease therapy.Lancet Neurol.201413331932910.1016/S1474‑4422(13)70276‑X 24556009
    [Google Scholar]
  12. FrisoniG.B. BoccardiM. BarkhofF. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers.Lancet Neurol.201716866167610.1016/S1474‑4422(17)30159‑X 28721928
    [Google Scholar]
  13. GiauV.V. LeeH. ShimK.H. BagyinszkyE. AnS.S.A. Genome-editing applications of CRISPR–Cas9 to promote in vitro studies of Alzheimer’s disease.Clin. Interv. Aging20181322123310.2147/CIA.S155145 29445268
    [Google Scholar]
  14. HanafyA.S. SchochS. LamprechtA. CRISPR/Cas9 delivery potentials in alzheimer’s disease management: A mini review.Pharmaceutics202012980110.3390/pharmaceutics12090801 32854251
    [Google Scholar]
  15. GetzGS ReardonCA Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall.J Lipid Res200950Suppl)(Suppl.S156S16110.1194/jlr.R800058‑JLR200 19018038
    [Google Scholar]
  16. KimJ. BasakJ.M. HoltzmanD.M. The role of apolipoprotein E in Alzheimer’s disease.Neuron200963328730310.1016/j.neuron.2009.06.026 19679070
    [Google Scholar]
  17. CastellanoJ.M. KimJ. StewartF.R. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance.Sci. Transl. Med.201138989ra5710.1126/scitranslmed.3002156 21715678
    [Google Scholar]
  18. AikawaT. HolmM.L. KanekiyoT. ABCA7 and pathogenic pathways of alzheimer’s disease.Brain Sci.2018822710.3390/brainsci8020027 29401741
    [Google Scholar]
  19. KimW.S. LiH. RuberuK. Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease.J. Neurosci.201333104387439410.1523/JNEUROSCI.4165‑12.2013 23467355
    [Google Scholar]
  20. TanakaN. Abe-DohmaeS. IwamotoN. FitzgeraldM.L. YokoyamaS. HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7.Atherosclerosis2011217240741410.1016/j.atherosclerosis.2011.06.031 21762915
    [Google Scholar]
  21. TanakaN. Abe-DohmaeS. IwamotoN. YokoyamaS. Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system.J. Atheroscler. Thromb.201118427428110.5551/jat.6726 21173549
    [Google Scholar]
  22. RizziF. ColettaM. BettuzziS. Clusterin (CLU).Adv. Cancer Res.200910492310.1016/S0065‑230X(09)04002‑0 19878770
    [Google Scholar]
  23. MayP.C. Lampert-EtchellsM. JohnsonS.A. PoirierJ. MastersJ.N. FinchC.E. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat.Neuron19905683183910.1016/0896‑6273(90)90342‑D 1702645
    [Google Scholar]
  24. CaleroM. RostagnoA. MatsubaraE. Apolipoprotein J (clusterin) and Alzheimer’s disease.Microsc. Res. Tech.200050430531510.1002/1097‑0029(20000815)50:4<305:AID‑JEMT10>3.0.CO;2‑L 10936885
    [Google Scholar]
  25. DeMattosR.B. O’dellM.A. ParsadanianM. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA20029916108431084810.1073/pnas.162228299 12145324
    [Google Scholar]
  26. OliveiraL.C. KretzschmarG.C. dos SantosA.C.M. Complement Receptor 1 (CR1, CD35) Polymorphisms and Soluble CR1: A Proposed Anti-inflammatory Role to Quench the Fire of “Fogo Selvagem” Pemphigus Foliaceus.Front. Immunol.201910258510.3389/fimmu.2019.02585 31824479
    [Google Scholar]
  27. BiffiA. AndersonC.D. DesikanR.S. Genetic variation and neuroimaging measures in Alzheimer disease.Arch. Neurol.201067667768510.1001/archneurol.2010.108 20558387
    [Google Scholar]
  28. ShulmanJ.M. ChenK. KeenanB.T. Genetic susceptibility for Alzheimer disease neuritic plaque pathology.JAMA Neurol.20137091150115710.1001/jamaneurol.2013.2815 23836404
    [Google Scholar]
  29. KenderianS.S. RuellaM. ShestovaO. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.Leukemia20152981637164710.1038/leu.2015.52 25721896
    [Google Scholar]
  30. GriciucA. Serrano-PozoA. ParradoA.R. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta.Neuron201378463164310.1016/j.neuron.2013.04.014 23623698
    [Google Scholar]
  31. LiR.Y. QinQ. YangH.C. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target.Mol. Neurodegener.20221714010.1186/s13024‑022‑00542‑y 35658903
    [Google Scholar]
  32. BaigS. JosephS.A. TaylerH. Distribution and expression of picalm in Alzheimer disease.J. Neuropathol. Exp. Neurol.201069101071107710.1097/NEN.0b013e3181f52e01 20838239
    [Google Scholar]
  33. TianY. ChangJ.C. FanE.Y. FlajoletM. GreengardP. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy.Proc. Natl. Acad. Sci. USA201311042170711707610.1073/pnas.1315110110 24067654
    [Google Scholar]
  34. LambertE. SahaO. Soares LandeiraB. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects.Acta Neuropathol. Commun.2022101410.1186/s40478‑021‑01285‑5 34998435
    [Google Scholar]
  35. MeunierB. QuarantaM. DavietL. HatzoglouA. LeprinceC. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170).Eur. J. Cell Biol.20098829110210.1016/j.ejcb.2008.08.006 19004523
    [Google Scholar]
  36. WangY.C. DaiY. XuG.L. YuW. QuanR.L. ZhaoY.J. Association between epha1 and tumor microenvironment in gastric carcinoma and its clinical significance.Med. Sci. Monit.202026e92340910.12659/MSM.923409 32218416
    [Google Scholar]
  37. MartínezA. OtalR. SieberB.A. IbáñezC. SorianoE. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus.Neuroscience2005135245146110.1016/j.neuroscience.2005.06.052 16112477
    [Google Scholar]
  38. LaiK.O. IpN.Y. Synapse development and plasticity: roles of ephrin/Eph receptor signaling.Curr. Opin. Neurobiol.200919327528310.1016/j.conb.2009.04.009 19497733
    [Google Scholar]
  39. RogaevaE. MengY. LeeJ.H. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease.Nat. Genet.200739216817710.1038/ng1943 17220890
    [Google Scholar]
  40. SpoelgenR. von ArnimC.A.F. ThomasA.V. Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme.J. Neurosci.200626241842810.1523/JNEUROSCI.3882‑05.2006 16407538
    [Google Scholar]
  41. OffeK. DodsonS.E. ShoemakerJ.T. The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments.J. Neurosci.20062651596160310.1523/JNEUROSCI.4946‑05.2006 16452683
    [Google Scholar]
  42. SchmidtV. SporbertA. RoheM. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1.J. Biol. Chem.200728245329563296410.1074/jbc.M705073200 17855360
    [Google Scholar]
  43. SmarujP. KieliszekM. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history.EXCLI J.2023227083 36814855
    [Google Scholar]
  44. ZhuX. YeK. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex.Nucleic Acids Res.20154321257126710.1093/nar/gku1355 25541196
    [Google Scholar]
  45. JansenR. EmbdenJ.D.A. GaastraW. SchoulsL.M. Identification of genes that are associated with DNA repeats in prokaryotes.Mol. Microbiol.20024361565157510.1046/j.1365‑2958.2002.02839.x 11952905
    [Google Scholar]
  46. NakataA. AmemuraM. MakinoK. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome.J. Bacteriol.198917163553355610.1128/jb.171.6.3553‑3556.1989 2656660
    [Google Scholar]
  47. HermansP.W. van SoolingenD. BikE.M. de HaasP.E. DaleJ.W. van EmbdenJ.D. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains.Infect. Immun.19915982695270510.1128/iai.59.8.2695‑2705.1991 1649798
    [Google Scholar]
  48. JeffreysA.J. MacLeodA. TamakiK. NeilD.L. MoncktonD.G. Minisatellite repeat coding as a digital approach to DNA typing.Nature1991354635020420910.1038/354204a0 1961248
    [Google Scholar]
  49. GroenenP.M.A. BunschotenA.E. SoolingenD. ErrtbdenJ.D.A. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method.Mol. Microbiol.19931051057106510.1111/j.1365‑2958.1993.tb00976.x 7934856
    [Google Scholar]
  50. MojicaF.J.M. JuezG. Rodríguez-ValeraF. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified Pst I sites.Mol. Microbiol.19939361362110.1111/j.1365‑2958.1993.tb01721.x 8412707
    [Google Scholar]
  51. MojicaF.J.M. Díez-VillaseñorC. SoriaE. JuezG. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria.Mol. Microbiol.200036124424610.1046/j.1365‑2958.2000.01838.x 10760181
    [Google Scholar]
  52. MojicaF.J. Díez-VillaseñorC. García-MartínezJ. SoriaE. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.J. Mol. Evol.200560217418210.1007/s00239‑004‑0046‑3 15791728
    [Google Scholar]
  53. GasiunasG. BarrangouR. HorvathP. SiksnysV. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc. Natl. Acad. Sci. USA201210939E2579E258610.1073/pnas.1208507109 22949671
    [Google Scholar]
  54. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012337609681682110.1126/science.1225829 22745249
    [Google Scholar]
  55. JiangW. BikardD. CoxD. ZhangF. MarraffiniL.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nat. Biotechnol.201331323323910.1038/nbt.2508 23360965
    [Google Scholar]
  56. CongL. RanF.A. CoxD. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.1231143 23287718
    [Google Scholar]
  57. MaliP. YangL. EsveltK.M. RNA-guided human genome engineering via Cas9.Science2013339612182382610.1126/science.1232033 23287722
    [Google Scholar]
  58. GuptaS.K. ShuklaP. Gene editing for cell engineering: trends and applications.Crit. Rev. Biotechnol.201737567268410.1080/07388551.2016.1214557 27535623
    [Google Scholar]
  59. KhademparS. FamilghadakchiS. MotlaghR.A. CRISPR–Cas9 in genome editing: Its function and medical applications.J. Cell. Physiol.201923455751576110.1002/jcp.27476 30362544
    [Google Scholar]
  60. BananM. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells.J. Biotechnol.20203081910.1016/j.jbiotec.2019.11.010 31751596
    [Google Scholar]
  61. Torres-RuizR. Rodriguez-PeralesS. CRISPR-Cas9 technology: applications and human disease modelling.Brief. Funct. Genomics201716141210.1093/bfgp/elw025 27345434
    [Google Scholar]
  62. WangJ.C. AlinaghiS. TafakhoriA. Genetic screening in two Iranian families with early-onset Alzheimer’s disease identified a novel PSEN1 mutation.Neurobiol. Aging201862244.e15244.e1710.1016/j.neurobiolaging.2017.10.011 29175279
    [Google Scholar]
  63. LiL. SongL. LiuX. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice.ACS Nano20171119511110.1021/acsnano.6b04261 28114767
    [Google Scholar]
  64. MakarovaK.S. HaftD.H. BarrangouR. Evolution and classification of the CRISPR–Cas systems.Nat. Rev. Microbiol.20119646747710.1038/nrmicro2577 21552286
    [Google Scholar]
  65. BarrangouR. FremauxC. DeveauH. CRISPR provides acquired resistance against viruses in prokaryotes.Science200731558191709171210.1126/science.1138140 17379808
    [Google Scholar]
  66. BarmanN.C. KhanN.M. IslamM. CRISPR-Cas9: A promising genome editing therapeutic tool for alzheimer’s disease—a narrative review.Neurol. Ther.20209241943410.1007/s40120‑020‑00218‑z 33089409
    [Google Scholar]
  67. TozzoP. ZulloS. CaenazzoL. Science runs and the debate brakes: Somatic gene-editing as a new tool for gender-specific medicine in alzheimer’s disease.Brain Sci.202010742110.3390/brainsci10070421 32630809
    [Google Scholar]
  68. GajT. EpsteinB.E. SchafferD.V. Genome engineering using adeno-associated virus: Basic and clinical research applications.Mol. Ther.201624345846410.1038/mt.2015.151 26373345
    [Google Scholar]
  69. RecchiaA. PeraniL. SartoriD. OlgiatiC. MavilioF. Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors.Mol. Ther.200410466067010.1016/j.ymthe.2004.07.003 15451450
    [Google Scholar]
  70. GrimmD. KayM. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy.Curr. Gene Ther.20033428130410.2174/1566523034578285 12871018
    [Google Scholar]
  71. DissenG.A. McBrideJ. LomnicziA. Using Lentiviral Vectors as Delivery Vehicles for Gene Therapy.Controlled Genetic Manipulations.Totowa, NJHumana Press2012699610.1007/978‑1‑61779‑533‑6_4
    [Google Scholar]
  72. PoonA. SchmidB. PiresC. Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer’s disease patient carrying a L150P mutation in presenilin 1.Stem Cell Res.201617346646910.1016/j.scr.2016.09.018 27789395
    [Google Scholar]
  73. PiresC. SchmidB. PetræusC. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1.Stem Cell Res.201617228528810.1016/j.scr.2016.08.002 27879212
    [Google Scholar]
  74. PaquetD. KwartD. ChenA. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.Nature2016533760112512910.1038/nature17664 27120160
    [Google Scholar]
  75. SunL. ZhouR. YangG. ShiY. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase.Proc. Natl. Acad. Sci. USA20171144E476E48510.1073/pnas.1618657114 27930341
    [Google Scholar]
  76. MauriceT. VolleJ.N. StrehaianoM. Neuroprotection in non-transgenic and transgenic mouse models of Alzheimer’s disease by positive modulation of σ1 receptors.Pharmacol. Res.201914431533010.1016/j.phrs.2019.04.026 31048034
    [Google Scholar]
  77. RyskampD.A. ZhemkovV. BezprozvannyI. Mutational Analysis of Sigma-1 Receptor’s Role in Synaptic Stability.Front. Neurosci.201913101210.3389/fnins.2019.01012 31607852
    [Google Scholar]
  78. HolmI.E. AlstrupA.K.O. LuoY. Genetically modified pig models for neurodegenerative disorders.J. Pathol.2016238226728710.1002/path.4654 26446984
    [Google Scholar]
  79. SasaguriH. NagataK. SekiguchiM. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID.Nat. Commun.201891289210.1038/s41467‑018‑05262‑w 30042426
    [Google Scholar]
  80. JiangB. BiM. LiJ. A pathogenic variant p.Phe177Val in PSEN1 causes early-onset alzheimer’s disease in a chinese family.Front. Genet.20201171310.3389/fgene.2020.00713 32754199
    [Google Scholar]
  81. ParkH. OhJ. ShimG. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease.Nat. Neurosci.201922452452810.1038/s41593‑019‑0352‑0 30858603
    [Google Scholar]
  82. LaFerlaF.M. OddoS. Alzheimer’s disease: Aβ, tau and synaptic dysfunction.Trends Mol. Med.200511417017610.1016/j.molmed.2005.02.009 15823755
    [Google Scholar]
  83. ParkS.A. JangY.J. KimM.K. LeeS.M. MoonS.Y. Promising blood biomarkers for clinical use in alzheimer’s disease: A focused update.J. Clin. Neurol.202218440140910.3988/jcn.2022.18.4.401 35796265
    [Google Scholar]
  84. QuerfurthH.W. LaFerlaF.M. Alzheimer’s Disease.N. Engl. J. Med.2010362432934410.1056/NEJMra0909142 20107219
    [Google Scholar]
  85. SchellenbergG.D. BirdT.D. WijsmanE.M. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14.Science1992258508266867110.1126/science.1411576 1411576
    [Google Scholar]
  86. GyörgyB. LöövC. ZaborowskiM.P. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-onset alzheimer’s disease.Mol. Ther. Nucleic Acids20181142944010.1016/j.omtn.2018.03.007 29858078
    [Google Scholar]
  87. Ortiz-VirumbralesM. MorenoC.L. KruglikovI. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2N141I neurons.Acta Neuropathol. Commun.2017517710.1186/s40478‑017‑0475‑z 29078805
    [Google Scholar]
  88. DabrowskaM. JuzwaW. KrzyzosiakW.J. OlejniczakM. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases.Front. Neurosci.2018127510.3389/fnins.2018.00075 29535594
    [Google Scholar]
  89. WeisgraberK.H. RallS.C.Jr MahleyR.W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms.J. Biol. Chem.1981256179077908310.1016/S0021‑9258(19)52510‑8 7263700
    [Google Scholar]
  90. FarrerL.A. CupplesL.A. HainesJ.L. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.JAMA1997278161349135610.1001/jama.1997.03550160069041 9343467
    [Google Scholar]
  91. SaundersA.M. StrittmatterW.J. SchmechelD. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease.Neurology19934381467147210.1212/WNL.43.8.1467 8350998
    [Google Scholar]
  92. KanekiyoT. XuH. BuG. ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners?Neuron201481474075410.1016/j.neuron.2014.01.045 24559670
    [Google Scholar]
  93. WangC. NajmR. XuQ. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector.Nat. Med.201824564765710.1038/s41591‑018‑0004‑z 29632371
    [Google Scholar]
  94. DongL.M. WeisgraberK.H. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins.J. Biol. Chem.199627132190531905710.1074/jbc.271.32.19053 8702576
    [Google Scholar]
  95. NagataK. TakahashiM. MatsubaY. Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology.Nat. Commun.201891180010.1038/s41467‑018‑04238‑0 29728560
    [Google Scholar]
  96. SunJ. Carlson-StevermerJ. DasU. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage.Nat. Commun.20191015310.1038/s41467‑018‑07971‑8 30604771
    [Google Scholar]
  97. HuangY.W.A. ZhouB. WernigM. SüdhofT.C. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion.Cell20171683427441.e2110.1016/j.cell.2016.12.044 28111074
    [Google Scholar]
  98. WadhwaniA.R. AffanehA. Van GuldenS. KesslerJ.A. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease.Ann. Neurol.201985572673910.1002/ana.25455 30840313
    [Google Scholar]
  99. LinY.T. SeoJ. GaoF. APOE4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human iPSC-derived brain cell types.Neuron2018986129410.1016/j.neuron.2018.06.011 29953873
    [Google Scholar]
  100. WongE. LiaoG.P. ChangJ.C. XuP. LiY.M. GreengardP. GSAP modulates γ-secretase specificity by inducing conformational change in PS1.Proc. Natl. Acad. Sci. USA2019116136385639010.1073/pnas.1820160116 30850537
    [Google Scholar]
  101. SweeneyM.D. MontagneA. SagareA.P. Vascular dysfunction—The disregarded partner of Alzheimer’s disease.Alzheimers Dement.201915115816710.1016/j.jalz.2018.07.222 30642436
    [Google Scholar]
  102. SerneelsL. T’Syen D, Perez-Benito L, Theys T, Holt MG, De Strooper B. Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer’s disease.Mol. Neurodegener.20201516010.1186/s13024‑020‑00399‑z 33076948
    [Google Scholar]
  103. KomorA.C. KimY.B. PackerM.S. ZurisJ.A. LiuD.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature2016533760342042410.1038/nature17946 27096365
    [Google Scholar]
  104. NiuY. ShenB. CuiY. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Cell2014156483684310.1016/j.cell.2014.01.027 24486104
    [Google Scholar]
  105. ChenY. CuiY. ShenB. Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys.Cell Res.201525226226510.1038/cr.2014.167 25533168
    [Google Scholar]
  106. ZuoE. CaiY.J. LiK. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs.Cell Res.201727793394510.1038/cr.2017.81 28585534
    [Google Scholar]
  107. WormanH.J. FongL.G. MuchirA. YoungS.G. Laminopathies and the long strange trip from basic cell biology to therapy.J. Clin. Invest.200911971825183610.1172/JCI37679 19587457
    [Google Scholar]
  108. GordonL.B. MassaroJ. D’AgostinoR.B.Sr Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome.Circulation20141301273410.1161/CIRCULATIONAHA.113.008285 24795390
    [Google Scholar]
  109. VidakS. FoisnerR. Molecular insights into the premature aging disease progeria.Histochem. Cell Biol.2016145440141710.1007/s00418‑016‑1411‑1 26847180
    [Google Scholar]
  110. De Sandre-GiovannoliA. BernardR. CauP. Lamin a truncation in Hutchinson-Gilford progeria.Science200330056282055510.1126/science.1084125 12702809
    [Google Scholar]
  111. ErikssonM. BrownW.T. GordonL.B. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome.Nature2003423693729329810.1038/nature01629 12714972
    [Google Scholar]
  112. BeyretE. LiaoH.K. YamamotoM. Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome.Nat. Med.201925341942210.1038/s41591‑019‑0343‑4 30778240
    [Google Scholar]
  113. XuC.L. RuanM.Z.C. MahajanV.B. TsangS.H. Viral delivery systems for CRISPR.Viruses20191112810.3390/v11010028 30621179
    [Google Scholar]
  114. RoseJ.A. HogganM.D. ShatkinA.J. Nucleic acid from an adeno-associated virus: chemical and physical studies.Proc. Natl. Acad. Sci. USA1966561869210.1073/pnas.56.1.86 5229859
    [Google Scholar]
  115. WeinmannJ. WeisS. SippelJ. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants.Nat. Commun.2020111543210.1038/s41467‑020‑19230‑w 33116134
    [Google Scholar]
  116. RayaproluV. KruseS. KantR. Comparative analysis of adeno-associated virus capsid stability and dynamics.J. Virol.20138724131501316010.1128/JVI.01415‑13 24067976
    [Google Scholar]
  117. WrightJ.F. Manufacturing and characterizing AAV-based vectors for use in clinical studies.Gene Ther.2008151184084810.1038/gt.2008.65 18418418
    [Google Scholar]
  118. WoldW. TothK. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy.Curr. Gene Ther.201413642143310.2174/1566523213666131125095046 24279313
    [Google Scholar]
  119. AthanasopoulosT. MunyeM.M. Yáñez-MuñozR.J. Nonintegrating Gene Therapy Vectors.Hematol. Oncol. Clin. North Am.201731575377010.1016/j.hoc.2017.06.007 28895845
    [Google Scholar]
  120. EscorsD. BreckpotK. Lentiviral vectors in gene therapy: their current status and future potential.Arch. Immunol. Ther. Exp. (Warsz.)201058210711910.1007/s00005‑010‑0063‑4 20143172
    [Google Scholar]
  121. DelendaC. Lentiviral vectors: optimization of packaging, transduction and gene expression.J. Gene Med.20046S1Suppl. 1S125S13810.1002/jgm.501 14978756
    [Google Scholar]
  122. NaldiniL. BlömerU. GallayP. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science1996272525926326710.1126/science.272.5259.263 8602510
    [Google Scholar]
  123. MiloneM.C. O’DohertyU. Clinical use of lentiviral vectors.Leukemia20183271529154110.1038/s41375‑018‑0106‑0 29654266
    [Google Scholar]
  124. SunW. JiW. HallJ.M. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing.Angew. Chem. Int. Ed.20155441120291203310.1002/anie.201506030 26310292
    [Google Scholar]
  125. WangD. ZhangF. GaoG. CRISPR-based therapeutic genome editing: Strategies and In Vivo delivery by AAV vectors.Cell2020181113615010.1016/j.cell.2020.03.023 32243786
    [Google Scholar]
  126. AnzaloneA.V. RandolphP.B. DavisJ.R. Search-and-replace genome editing without double-strand breaks or donor DNA.Nature2019576778514915710.1038/s41586‑019‑1711‑4 31634902
    [Google Scholar]
  127. ShenF. FanY. SuH. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice.Gene Ther.2008151303910.1038/sj.gt.3303048 17960159
    [Google Scholar]
  128. HayesM.T. Parkinson’s disease and parkinsonism.Am. J. Med.2019132780280710.1016/j.amjmed.2019.03.001 30890425
    [Google Scholar]
  129. NuytemansK. TheunsJ. CrutsM. Van BroeckhovenC. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update.Hum. Mutat.201031776378010.1002/humu.21277 20506312
    [Google Scholar]
  130. ChaiC. LimK.L. Genetic insights into sporadic Parkinson’s disease pathogenesis.Curr. Genomics201414848650110.2174/1389202914666131210195808 24532982
    [Google Scholar]
  131. VermilyeaS.C. BabinskiA. TranN. In vitro CRISPR/Cas9-directed gene editing to model LRRK2 G2019S Parkinson’s disease in common marmosets.Sci. Rep.2020101344710.1038/s41598‑020‑60273‑2 32103062
    [Google Scholar]
  132. WulansariN DarsonoW H W WooH-J Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations.Sci Adv202178eabb154010.1126/sciadv.abb1540
    [Google Scholar]
  133. IshizuN. YuiD. HebisawaA. Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice.Hum. Mol. Genet.20162520ddw27910.1093/hmg/ddw279 28173004
    [Google Scholar]
  134. ChenZ.Z. WangJ.Y. KangY. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys.Zool. Res.202142446947710.24272/j.issn.2095‑8137.2021.023 34213093
    [Google Scholar]
  135. GuhathakurtaS. KimJ. AdamsL. Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson’s disease.EMBO Mol. Med.2021132e1218810.15252/emmm.202012188 33428332
    [Google Scholar]
  136. MarcouxJ. MangioneP.P. PorcariR. A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis.EMBO Mol. Med.20157101337134910.15252/emmm.201505357 26286619
    [Google Scholar]
  137. GertzM.A. BensonM.D. DyckP.J. Diagnosis, prognosis, and therapy of transthyretin amyloidosis.J. Am. Coll. Cardiol.201566212451246610.1016/j.jacc.2015.09.075 26610878
    [Google Scholar]
  138. MaurerM.S. SchwartzJ.H. GundapaneniB. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy.N. Engl. J. Med.2018379111007101610.1056/NEJMoa1805689 30145929
    [Google Scholar]
  139. BerkJ.L. SuhrO.B. ObiciL. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial.JAMA2013310242658266710.1001/jama.2013.283815 24368466
    [Google Scholar]
  140. AdamsD. Gonzalez-DuarteA. O’RiordanW.D. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N. Engl. J. Med.20183791112110.1056/NEJMoa1716153 29972753
    [Google Scholar]
  141. SolomonS.D. AdamsD. KristenA. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis: analysis of the APOLLO study.Circulation2019139443144310.1161/CIRCULATIONAHA.118.035831 30586695
    [Google Scholar]
  142. GillmoreJ.D. GaneE. TaubelJ. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis.N. Engl. J. Med.2021385649350210.1056/NEJMoa2107454 34215024
    [Google Scholar]
  143. FinnJ.D. SmithA.R. PatelM.C. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing.Cell Rep.20182292227223510.1016/j.celrep.2018.02.014 29490262
    [Google Scholar]
  144. WoodK. PinkM. SeitzerJ. Development of NTLA-2001, a CRISPR/Cas9 genome editing therapeutic for the treatment of ATTR.Liver2019171924
    [Google Scholar]
  145. SabnisS. KumarasingheE.S. SalernoT. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates.Mol. Ther.20182661509151910.1016/j.ymthe.2018.03.010 29653760
    [Google Scholar]
  146. AkincA. MaierM.A. ManoharanM. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs.Nat. Nanotechnol.201914121084108710.1038/s41565‑019‑0591‑y 31802031
    [Google Scholar]
  147. FerriC.P. PrinceM. BrayneC. Global prevalence of dementia: a Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  148. PlassmanB.L. LangaK.M. FisherG.G. Prevalence of dementia in the United States: the aging, demographics, and memory study.Neuroepidemiology2007291-212513210.1159/000109998 17975326
    [Google Scholar]
  149. QiuC. KivipeltoM. von StraussE. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention.Dialogues Clin. Neurosci.200911211112810.31887/DCNS.2009.11.2/cqiu 19585947
    [Google Scholar]
  150. ReitzC. BrayneC. MayeuxR. Epidemiology of Alzheimer disease.Nat. Rev. Neurol.20117313715210.1038/nrneurol.2011.2 21304480
    [Google Scholar]
  151. JonssonT. AtwalJ.K. SteinbergS. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline.Nature20124887409969910.1038/nature11283 22801501
    [Google Scholar]
  152. GiauV.V. LeeH. ShimK.H. BagyinszkyE. AnS.S.A. Genome-editing applications of CRISPR&ndash;Cas9 to promote in vitro studies of Alzheimer&rsquo;s disease.Clin. Interv. Aging20181322123310.2147/CIA.S155145 29445268
    [Google Scholar]
  153. LiuC. ZhangL. LiuH. ChengK. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.J. Control. Release2017266172610.1016/j.jconrel.2017.09.012 28911805
    [Google Scholar]
  154. JinekM. EastA. ChengA. LinS. MaE. DoudnaJ. RNA-programmed genome editing in human cells.eLife20132e0047110.7554/eLife.00471 23386978
    [Google Scholar]
  155. KaulichM. LeeY.J. LönnP. SpringerA.D. MeadeB.R. DowdyS.F. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.Nucleic Acids Res.2015437e45e510.1093/nar/gku1403 25586224
    [Google Scholar]
  156. HsuP.D. ScottD.A. WeinsteinJ.A. DNA targeting specificity of RNA-guided Cas9 nucleases.Nat. Biotechnol.201331982783210.1038/nbt.2647 23873081
    [Google Scholar]
  157. FuY. SanderJ.D. ReyonD. CascioV.M. JoungJ.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.Nat. Biotechnol.201432327928410.1038/nbt.2808 24463574
    [Google Scholar]
  158. KuscuC. ArslanS. SinghR. ThorpeJ. AdliM. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.Nat. Biotechnol.201432767768310.1038/nbt.2916 24837660
    [Google Scholar]
  159. MurovecJ. PircŽ. YangB. New variants of CRISPR RNA‐guided genome editing enzymes.Plant Biotechnol. J.201715891792610.1111/pbi.12736 28371222
    [Google Scholar]
  160. GuilingerJ.P. ThompsonD.B. LiuD.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat. Biotechnol.201432657758210.1038/nbt.2909 24770324
    [Google Scholar]
  161. RanF.A. HsuP.D. LinC.Y. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.Cell201315461380138910.1016/j.cell.2013.08.021 23992846
    [Google Scholar]
  162. LiangX. PotterJ. KumarS. RavinderN. ChesnutJ.D. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.J. Biotechnol.201724113614610.1016/j.jbiotec.2016.11.011 27845164
    [Google Scholar]
  163. DoenchJ.G. HartenianE. GrahamD.B. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation.Nat. Biotechnol.201432121262126710.1038/nbt.3026 25184501
    [Google Scholar]
  164. SwiechL. HeidenreichM. BanerjeeA. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9.Nat. Biotechnol.201533110210610.1038/nbt.3055 25326897
    [Google Scholar]
  165. DowL.E. FisherJ. O’RourkeK.P. Inducible in vivo genome editing with CRISPR-Cas9.Nat. Biotechnol.201533439039410.1038/nbt.3155 25690852
    [Google Scholar]
  166. ChoS.W. KimS. KimJ.M. KimJ.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.Nat. Biotechnol.201331323023210.1038/nbt.2507 23360966
    [Google Scholar]
  167. DevermanB.E. RavinaB.M. BankiewiczK.S. PaulS.M. SahD.W.Y. Gene therapy for neurological disorders: progress and prospects.Nat. Rev. Drug Discov.201817964165910.1038/nrd.2018.110 30093643
    [Google Scholar]
  168. SuzukiK. TsunekawaY. Hernandez-BenitezR. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration.Nature2016540763114414910.1038/nature20565 27851729
    [Google Scholar]
  169. NaidooJ. StanekL.M. OhnoK. Extensive transduction and enhanced spread of a modified AAV2 capsid in the non-human primate CNS.Mol. Ther.201826102418243010.1016/j.ymthe.2018.07.008 30057240
    [Google Scholar]
  170. RobertsonK.D. DNA methylation and human disease.Nat. Rev. Genet.20056859761010.1038/nrg1655 16136652
    [Google Scholar]
  171. LyubartsevaG. SmithJ.L. MarkesberyW.R. LovellM.A. Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer’s disease brain.Brain Pathol.201020234335010.1111/j.1750‑3639.2009.00283.x 19371353
    [Google Scholar]
  172. LashleyT. GamiP. ValizadehN. LiA. ReveszT. BalazsR. Alterations in global DNA methylation and hydroxymethylation are not detected in A lzheimer’s disease.Neuropathol. Appl. Neurobiol.201541449750610.1111/nan.12183 25201696
    [Google Scholar]
  173. LaFerlaF.M. GreenK.N. OddoS. Intracellular amyloid-β in Alzheimer’s disease.Nat. Rev. Neurosci.20078749950910.1038/nrn2168 17551515
    [Google Scholar]
  174. SuzukiY. OnumaH. SatoR. Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition.J. Control. Release2021330617110.1016/j.jconrel.2020.12.013 33333121
    [Google Scholar]
  175. DengH.X. ZhaiH. ShiY. Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS.Commun. Biol.20214139610.1038/s42003‑021‑01942‑4 33767386
    [Google Scholar]
  176. FuY. FodenJ.A. KhayterC. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.Nat. Biotechnol.201331982282610.1038/nbt.2623 23792628
    [Google Scholar]
  177. ShinH.Y. WangC. LeeH.K. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome.Nat. Commun.2017811546410.1038/ncomms15464 28561021
    [Google Scholar]
  178. KosickiM. TombergK. BradleyA. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements.Nat. Biotechnol.201836876577110.1038/nbt.4192 30010673
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273283786240408034408
Loading
/content/journals/cnsnddt/10.2174/0118715273283786240408034408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test