Skip to content
2000
Volume 8, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Processing of information by the central nervous system (CNS) depends on the dendritic morphology of postsynaptic neurons. The patterning of dendrites is determined by extrinsic and intrinsic factors that promote the activation of cellular signaling pathways. These factors and signaling cascades may lead to the transcriptional activation of regulators of neuronal morphology. Interestingly, when there is an abnormal decrease in the number of dendrite branches and disruption of proper networks, neurodegenerative diseases, including Rett Syndrome, autism, and mental retardation, may result. In this review, we evaluate the potential of regulators of dendrite patterning as targets for drug design for the treatment of neurodegenerative diseases and altered neuronal growth in the CNS. Particular attention is directed towards a specific regulator of dendrite branching reported by our group, cypin (cytosolic PSD-95 interactor). We discuss this novel intrinsic regulator of dendrite branching as an innovative pharmacological target for the use of computer-aided rational drug design to control guanine levels, microtubule assembly, and neuronal differentiation during CNS development and in disease states.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/187152408784533923
2008-06-01
2025-07-15
Loading full text...

Full text loading...

/content/journals/cnsamc/10.2174/187152408784533923
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test