Skip to content
2000
image of Role of Liposomes in the Treatment of Neurodegenerative Disorders: A Comprehensive Review

Abstract

The complex etiology and limited therapy options of neurodegenerative illnesses pose daunting challenges to modern medicine. Nonetheless, novel treatment approaches have exciting new possibilities because of developments in nanotechnology. Liposomes have garnered a lot of interest as a potential treatment for neurological illnesses due to the fact that they are able to adapt to their role as nanocarriers. This review article discusses various uses of liposomes, including their ability to help treat neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease, as well as their diagnostic and neuroprotective uses. Liposomes allow for the targeted delivery of medicines to specific brain areas with minimal systemic side effects since they encapsulate and carry therapeutic molecules across the blood-brain barrier. Due to the fact that they are biocompatible, have surface features that can be adjusted, and have the ability to co-deliver many drugs, liposomes are excellent candidates for combination therapy and personalized medicine procedures. In spite of this, there is a growing body of research that suggests liposomes could serve as a versatile platform for the improvement of neurodegenerative disease treatment. This is a positive sign for the future results of patients and their quality of life.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249342585241230065557
2025-01-29
2025-04-05
Loading full text...

Full text loading...

References

  1. Bongioanni P. Del Carratore R. Corbianco S. Diana A. Cavallini G. Masciandaro S.M. Dini M. Buizza R. Climate change and neurodegenerative diseases. Environ. Res. 2021 201 111511 10.1016/j.envres.2021.111511 34126048
    [Google Scholar]
  2. Behl T. Kaur G. Sehgal A. Bhardwaj S. Singh S. Buhas C. Judea-Pusta C. Uivarosan D. Munteanu M.A. Bungau S. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives. Int. J. Mol. Sci. 2021 22 3 1413 10.3390/ijms22031413 33573368
    [Google Scholar]
  3. Hou Y. Dan X. Babbar M. Wei Y. Hasselbalch S.G. Croteau D.L. Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019 15 10 565 581 10.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  4. Bhattacharya T. Soares G.A.B. Chopra H. Rahman M.M. Hasan Z. Swain S.S. Cavalu S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022 15 3 804 10.3390/ma15030804 35160749
    [Google Scholar]
  5. Poddar M.K. Chakraborty A. Banerjee S. Neurodegeneration: Diagnosis, prevention, and therapy. UK IntechOpen London 2021
    [Google Scholar]
  6. Kciuk M. Garg N. Dhankhar S. Saini M. Mujwar S. Devi S. Chauhan S. Singh T.G. Singh R. Marciniak B. Gielecińska A. Kontek R. Exploring the comprehensive neuroprotective and anticancer potential of afzelin. Pharmaceuticals 2024 17 6 701 10.3390/ph17060701 38931368
    [Google Scholar]
  7. Gitler A.D. Dhillon P. Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech. 2017 10 5 499 502 10.1242/dmm.030205 28468935
    [Google Scholar]
  8. Buckley C. Alcock L. McArdle R. Rehman R. Del Din S. Mazzà C. Yarnall A. Rochester L. The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control. Brain Sci. 2019 9 2 34 10.3390/brainsci9020034 30736374
    [Google Scholar]
  9. Garbayo E. Ansorena E. Blanco-Prieto M.J. Brain drug delivery systems for neurodegenerative disorders. Curr. Pharm. Biotechnol. 2012 13 12 2388 2402 10.2174/138920112803341761 23016644
    [Google Scholar]
  10. Cunnane S.C. Trushina E. Morland C. Prigione A. Casadesus G. Andrews Z.B. Beal M.F. Bergersen L.H. Brinton R.D. de la Monte S. Eckert A. Harvey J. Jeggo R. Jhamandas J.H. Kann O. la Cour C.M. Martin W.F. Mithieux G. Moreira P.I. Murphy M.P. Nave K.A. Nuriel T. Oliet S.H.R. Saudou F. Mattson M.P. Swerdlow R.H. Millan M.J. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020 19 9 609 633 10.1038/s41573‑020‑0072‑x 32709961
    [Google Scholar]
  11. Zylberberg C. Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016 23 9 3319 3329 10.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  12. Cohen-Pfeffer J.L. Gururangan S. Lester T. Lim D.A. Shaywitz A.J. Westphal M. Slavc I. Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr. Neurol. 2017 67 23 35 10.1016/j.pediatrneurol.2016.10.022 28089765
    [Google Scholar]
  13. Wyse R. Dunbar G. Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 2014 15 2 1719 1745 10.3390/ijms15021719 24463293
    [Google Scholar]
  14. Tiwari C. Khan H. Grewal A.K. Dhankhar S. Chauhan S. Dua K. Gupta G. Singh T.G. Opiorphin: An endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024 32 5 3037 3056 10.1007/s10787‑024‑01526‑8 39164607
    [Google Scholar]
  15. Vieira D. Gamarra L. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier. Int. J. Nanomedicine 2016 11 5381 5414 10.2147/IJN.S117210 27799765
    [Google Scholar]
  16. Monteiro N. Martins A. Reis R.L. Neves N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 2014 11 101 20140459 10.1098/rsif.2014.0459 25401172
    [Google Scholar]
  17. Islam Shishir M.R. Karim N. Gowd V. Zheng X. Chen W. Liposomal delivery of natural product: A promising approach in health research. Trends Food Sci. Technol. 2019 85 177 200 10.1016/j.tifs.2019.01.013
    [Google Scholar]
  18. Pasarin D. Ghizdareanu A.I. Enascuta C.E. Matei C.B. Bilbie C. Paraschiv-Palada L. Veres P.A. Coating materials to increase the stability of liposomes. Polymers 2023 15 3 782 10.3390/polym15030782 36772080
    [Google Scholar]
  19. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  20. McClements D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 2018 253 1 22 10.1016/j.cis.2018.02.002 29478671
    [Google Scholar]
  21. Joy R. George J. John F. Brief outlook on polymeric nanoparticles, micelles, niosomes, hydrogels and liposomes: Preparative methods and action. ChemistrySelect 2022 7 6 e202104045 10.1002/slct.202104045
    [Google Scholar]
  22. Li M. Du C. Guo N. Teng Y. Meng X. Sun H. Li S. Yu P. Galons H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  23. Yusaf R. Structural components of liposomes and characterization tools. American Journal of Pharm Research 2014 4 08
    [Google Scholar]
  24. Hatziantonioy S. Demetzos C. Lipids of membranes: Chemistry, biological role and applications as drug carriers. Studies in natural products chemistry 2008 134 173 202 10.1016/S1572‑5995(08)80027‑0
    [Google Scholar]
  25. van Hoogevest P. Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 2014 116 9 1088 1107 10.1002/ejlt.201400219 25400504
    [Google Scholar]
  26. Sood R. Tomar D. Kaushik P. Sharma P. Rani N. Guarve K. Dhankhar S. Garg N. Enhanced solubility and increased bioavailability with engineered nanocrystals. Curr. Drug Ther. 2024 19 6 638 647 10.2174/0115748855269071231113070552
    [Google Scholar]
  27. Drescher S. van Hoogevest P. The phospholipid research center: Current research in phospholipids and their use in drug delivery. Pharmaceutics 2020 12 12 1235 10.3390/pharmaceutics12121235 33353254
    [Google Scholar]
  28. Roberts J.R. The nutritional and physiological functions of egg yolk components Yasumi Horimoto, University of Guelph, Canada and Hajime Hatta, Kyoto Women’s University, Japan Achieving sustainable production of eggs Volume 1 1st 2017 Burleigh Dodds Science Publishing 69 116 10.19103/AS.2016.0012.03
    [Google Scholar]
  29. Kalra J. Bally M.B. Liposomes. Fundamentals of pharmaceutical nanoscience. 2013 Springer New York New York, NY 27 63
    [Google Scholar]
  30. Nakhaei P. Margiana R. Bokov D.O. Abdelbasset W.K. Jadidi Kouhbanani M.A. Varma R.S. Marofi F. Jarahian M. Beheshtkhoo N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021 9 705886 10.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  31. Liu R.R. Cannon J.B. Paspal S.Y. Liposomes in solubilization. Water-Insoluble Drug Formulation. CRC Press 2018 405 449
    [Google Scholar]
  32. Mollinedo F. Gajate C. Mitochondrial targeting involving cholesterol-rich lipid rafts in the mechanism of action of the antitumor ether lipid and alkylphospholipid analog edelfosine. Pharmaceutics 2021 13 5 763 10.3390/pharmaceutics13050763 34065546
    [Google Scholar]
  33. Mo L. Hou L. Guo D. Xiao X. Mao P. Yang X. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. Int. J. Pharm. 2012 436 1-2 815 824 10.1016/j.ijpharm.2012.07.050 22846410
    [Google Scholar]
  34. Holsæter A.M. Wizgird K. Karlsen I. Hemmingsen J.F. Brandl M. Škalko-Basnet N. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition–A formulation screening study. Eur. J. Pharm. Sci. 2022 177 106267 10.1016/j.ejps.2022.106267 35872073
    [Google Scholar]
  35. Mittal P. Sharma H. Kapoor R. Gautam R.K. Garg N. Dhankhar S. Biobased Nanomaterials in Biomedical Applications. Biobased Nanomaterials: Applications in Biomedicine, Food Industry, Agriculture, and Environmental Sustainability 2024 Springer Nature Singapore Singapore 141 171 10.1007/978‑981‑97‑0542‑9_6
    [Google Scholar]
  36. Rathod S. Arya S. Shukla R. Ray D. Aswal V.K. Bahadur P. Tiwari S. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids Surf. A Physicochem. Eng. Asp. 2021 627 127246 10.1016/j.colsurfa.2021.127246
    [Google Scholar]
  37. Mudgil M. Pawar P.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci. Pharm. 2013 81 2 591 606 10.3797/scipharm.1204‑16 23833723
    [Google Scholar]
  38. Welderfael T. Yadav O.P. Taddesse A.M. Kaushal J. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red. Bull. Chem. Soc. Ethiop. 2013 27 2 221 232 10.4314/bcse.v27i2.7
    [Google Scholar]
  39. Kumar A. Behl T. Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int. J. Biol. Macromol. 2020 149 1262 1274 10.1016/j.ijbiomac.2020.02.048 32044364
    [Google Scholar]
  40. Lai F. Fadda A.M. Sinico C. Liposomes for brain delivery. Expert Opin. Drug Deliv. 2013 10 7 1003 1022 10.1517/17425247.2013.766714 23373728
    [Google Scholar]
  41. Sharma S. Kumari N. Garg D. Chauhan S. A Compendium of Bioavailability Enhancement via Niosome Technology. Pharm. Nanotechnol. 2023 11 4 324 338 10.2174/2211738511666230309104323 36892113
    [Google Scholar]
  42. Naahidi S. Jafari M. Edalat F. Raymond K. Khademhosseini A. Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013 166 2 182 194 10.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  43. Silindir M. Erdoğan S. Özer A.Y. Maia S. Liposomes and their applications in molecular imaging. J. Drug Target. 2012 20 5 401 415 10.3109/1061186X.2012.685477 22553977
    [Google Scholar]
  44. Agrawal M. Ajazuddin Tripathi D.K. Saraf S. Saraf S. Antimisiaris S.G. Mourtas S. Hammarlund-Udenaes M. Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release 2017 260 61 77 10.1016/j.jconrel.2017.05.019 28549949
    [Google Scholar]
  45. Formicola B. Cox A. dal Magro R. Masserini M. Re F. Nanomedicine for the Treatment of Alzheimer’s Disease. J. Biomed. Nanotechnol. 2019 15 10 1997 2024 10.1166/jbn.2019.2837 31462368
    [Google Scholar]
  46. Naziris N. Demetzos C. Production methods and application in Alzheimer’s disease. Genet. Neurodegen. Dise. 2021 1339 385 394 10.1007/978‑3‑030‑78787‑5_48
    [Google Scholar]
  47. Taliyan R. Kakoty V. Sarathlal K.C. Kharavtekar S.S. Karennanavar C.R. Choudhary Y.K. Singhvi G. Riadi Y. Dubey S.K. Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J. Control. Release 2022 343 528 550 10.1016/j.jconrel.2022.01.044 35114208
    [Google Scholar]
  48. Agrawal M. Singh S. Alexander A. Antimisiaris S.G. Liposomes for drug delivery to the brain. Liposomes in Drug Delivery. Elsevier 2024 243 262 10.1016/B978‑0‑443‑15491‑1.00006‑7
    [Google Scholar]
  49. Tosi G. Pederzoli F. Belletti D. Vandelli M.A. Forni F. Duskey J.T. Ruozi B. Nanomedicine in Alzheimer’s disease: Amyloid beta targeting strategy. Prog. Brain Res. 2019 245 1 32 10.1016/bs.pbr.2019.03.001 30961872
    [Google Scholar]
  50. Mourtas S. Canovi M. Zona C. Aurilia D. Niarakis A. La Ferla B. Salmona M. Nicotra F. Gobbi M. Antimisiaris S.G. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011 32 6 1635 1645 10.1016/j.biomaterials.2010.10.027 21131044
    [Google Scholar]
  51. Nunes D.S.S. The use of natural compounds loaded into solid lipid nanoparticles for the alzheimer´ s disease therapy: A new therapeutic approach. University of Porto 2020
    [Google Scholar]
  52. Canovi M. Markoutsa E. Lazar A.N. Pampalakis G. Clemente C. Re F. Sesana S. Masserini M. Salmona M. Duyckaerts C. Flores O. Gobbi M. Antimisiaris S.G. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 2011 32 23 5489 5497 10.1016/j.biomaterials.2011.04.020 21529932
    [Google Scholar]
  53. Moradi-Sardareh H. Moradi M. Bordbar E. Malekpour M. Bagheri S. Nakhodazadeh N. Rahbar S. Farhadian Asgarabadi J. The use of monoclonal antibodies in the treatment of alzheimer disease. Asian Pacific Journal of Cancer Biology 2016 1 3 59 66 10.31557/apjcb.2016.1.3.59‑66
    [Google Scholar]
  54. Andrade S. Loureiro J.A. Pereira M.C. The role of amyloid β‐biomembrane interactions in the pathogenesis of alzheimer’s disease: Insights from liposomes as membrane models. ChemPhysChem 2021 22 15 1547 1565 10.1002/cphc.202100124 34086399
    [Google Scholar]
  55. Vlamos P. Kotsireas I.S. Tarnanas I. Applications of nanotechnology in alzheimer’s disease. Front Bioeng. Biotechnol. 2022 10 1042986 10.3389/fbioe.2022.1042986 36466349
    [Google Scholar]
  56. Pathak K. Mishra S.K. Porwal A. Bahadur S. Nanocarriers for Alzheimer’s disease: Research and patent update. Journal of Applied Pharmaceutical Science 2021 11 3 001 21
    [Google Scholar]
  57. Bhatt T. Patel B.M. Patel M.M. Parkinson’s disease. Drug Delivery Devices and Therapeutic Systems. Elsevier 2021 491 513 10.1016/B978‑0‑12‑819838‑4.00028‑6
    [Google Scholar]
  58. Mittal P. Dhankhar S. Chauhan S. Garg N. Bhattacharya T. Ali M. Chaudhary A.A. Rudayni H.A. Al-Zharani M. Ahmad W. Khan S.U.D. Singh T.G. Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease. Pharmaceuticals 2023 16 7 908 10.3390/ph16070908 37513820
    [Google Scholar]
  59. Narwal S. Dhanda T. Sharma P. Sharma V. Dhankhar S. Garg N. Ghosh N.S. Rani N. Current therapeutic strategies for chagas disease. Anti-infect. Agents 2024 22 2 e230823220256 10.2174/2211352521666230823122601
    [Google Scholar]
  60. Singh A. Maharana S.K. Shukla R. Kesharwani P. Nanotherapeutics approaches for targeting alpha synuclien protein in the management of Parkinson disease. Process Biochem. 2021 110 181 194 10.1016/j.procbio.2021.08.008
    [Google Scholar]
  61. Kahana M. Weizman A. Gabay M. Loboda Y. Segal-Gavish H. Gavish A. Barhum Y. Offen D. Finberg J. Allon N. Gavish M. Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease. Mol. Psychiatry 2021 26 6 2626 2632 10.1038/s41380‑020‑0742‑4 32372010
    [Google Scholar]
  62. Shankar J. Geetha K. Wilson B. Potential applications of nanomedicine for treating Parkinson’s disease. J. Drug Deliv. Sci. Technol. 2021 66 102793 10.1016/j.jddst.2021.102793
    [Google Scholar]
  63. Ahmed M.S. Khan I.J. Aman S. Chauhan S. Kaur N. Shriwastav S. Goel K. Saini M. Dhankar S. Singh T.G. Dev J. Mujwar S. Phytochemical investigations Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. J. Exp. Biol. Agric. Sci. 2023 11 2 380 393 10.18006/2023.11(2).380.393
    [Google Scholar]
  64. Bhosale A. Paul G. Mazahir F. Yadav A.K. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson’s diseases. OpenNano 2023 9 100111 10.1016/j.onano.2022.100111
    [Google Scholar]
  65. Karthivashan G. Ganesan P. Park S.Y. Lee H.W. Choi D.K. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson’s disease: From preclinical to translational studies. Biomaterials 2020 232 119704 10.1016/j.biomaterials.2019.119704 31901690
    [Google Scholar]
  66. Pandian S.R.K. Vijayakumar K.K. Murugesan S. Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer’s and Parkinson’s diseases. Heliyon 2022 8 6 e09575 10.1016/j.heliyon.2022.e09575 35706935
    [Google Scholar]
  67. Soni V. Design and fabrication of brain-targeted drug delivery. Basic Fundamentals of Drug Delivery. Elsevier 2019 539 593 10.1016/B978‑0‑12‑817909‑3.00014‑5
    [Google Scholar]
  68. Dhankhar S. Chauhan S. Mehta D.K. Nitika Saini K. Saini M. Das R. Gupta S. Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol. Metab. Syndr. 2023 15 1 17 10.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  69. Dhankhar S. Garg N. Chauhan S. Saini M. Role of artificial intelligence in diabetic wound screening and early detection. Curr. Biotechnol. 2024 13 2 93 106 10.2174/0122115501303253240408072559
    [Google Scholar]
  70. Rohilla M. Rishabh Bansal S. Garg A. Dhiman S. Dhankhar S. Saini M. Chauhan S. Alsubaie N. Batiha G.E.S. Albezrah N.K.A. Singh T.G. Discussing pathologic mechanisms of diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of diabetic retinopathy. Biomed. Pharmacother. 2023 169 115881 10.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  71. Rohilla S. Sharma P. Kamboj S. Dhankhar S. Garg N. Chauhan S. Rani N. Anabolic androgenic steroids: A review. Emir. Med. J. 2024 5 e02506882253706 10.2174/0102506882253706240104073440
    [Google Scholar]
  72. Smeyne M. Smeyne R.J. Glutathione metabolism and Parkinson’s disease. Free Radic. Biol. Med. 2013 62 13 25 10.1016/j.freeradbiomed.2013.05.001 23665395
    [Google Scholar]
  73. Chauhan S. Gupta S. Yasmin S. Saini M. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max. Int. J. Nutr. Pharmacol. Neurol. Dis. 2021 11 3 225 233 10.4103/ijnpnd.ijnpnd_13_21
    [Google Scholar]
  74. Nguyen A. Böttger R. Li S.D. Recent trends in bioresponsive linker technologies of prodrug-based self-assembling nanomaterials. Biomaterials 2021 275 120955 10.1016/j.biomaterials.2021.120955 34130143
    [Google Scholar]
  75. Dhankar S. Garg N. Chauhan S. Saini M. A bird view on the role of graphene oxide nanosystems in therapeutic delivery. Curr. Nanosci. 2024 20 1 11 10.2174/0115734137299120240312044808
    [Google Scholar]
  76. Bondarenko O. Saarma M. Neurotrophic factors in Parkinson’s disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain. Front. Cell. Neurosci. 2021 15 682597 10.3389/fncel.2021.682597 34149364
    [Google Scholar]
  77. Dhankhar S. Cognitive rehabilitation for early-stage dementia: A review. Curr. Psychiatry Res. Rev. 2024 20 1 14
    [Google Scholar]
  78. Lalit K. Phyto-pharmacological review of Coccinia indica. World J. Pharm. Pharm. Sci. 2014 3 2 1734 1745
    [Google Scholar]
  79. Kumar B. Pandey M. Pottoo F.H. Fayaz F. Sharma A. Sahoo P.K. Liposomes: Novel drug delivery approach for targeting Parkinson’s disease. Curr. Pharm. Des. 2020 26 37 4721 4737 10.2174/1381612826666200128145124 32003666
    [Google Scholar]
  80. Dhankhar S. Mujwar S. Garg N. Chauhan S. Saini M. Sharma P. Kumar S. Kumar Sharma S. Kamal M.A. Rani N. Artificial intelligence in the management of neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2024 23 8 931 940 10.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  81. Tabrizi S.J. Flower M.D. Ross C.A. Wild E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020 16 10 529 546 10.1038/s41582‑020‑0389‑4 32796930
    [Google Scholar]
  82. Mustafa G. Hassan D. Zeeshan M. Ruiz-Pulido G. Ebrahimi N. Mobashar A. Pourmadadi M. Rahdar A. Sargazi S. Fathi-karkan S. Medina D.I. Díez-Pascual A.M. Advances in nanotechnology versus stem cell therapy for the theranostics of huntington’s disease. J. Drug Deliv. Sci. Technol. 2023 87 104774 10.1016/j.jddst.2023.104774
    [Google Scholar]
  83. Lata J.M.G. The role of nanotechnology to overcome the natural compounds limitations in the treatment of Alzheimer's and Huntington's diseases. Laboratory for Process Engineering, Environment, Biotechnology and Energy 2020 1 32
    [Google Scholar]
  84. Panchal M. Rana P. Garg N. Dhankhar S. Sharma H. Chauhan S. A Comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy. Emir. Med. J. 2024 5 e02506882282929 10.2174/0102506882282929231212074538
    [Google Scholar]
  85. Saharan R. Kaur J. Dhankhar S. Garg N. Chauhan S. Beniwal S. Sharma H. Hydrogel-based drug delivery system in diabetes management. Pharm. Nanotechnol. 2024 12 4 289 299 10.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  86. Chauhan S. Kishore L. Kaur N. Singh R. Potential anti-arthritic agents from indian medicinal plants. Res. Rev. J. Pharm. Pharm. Sci. 2015 4 3 10 22
    [Google Scholar]
  87. Birolini G. Valenza M. Ottonelli I. Talpo F. Minoli L. Cappelleri A. Bombaci M. Caccia C. Canevari C. Trucco A. Leoni V. Passoni A. Favagrossa M. Nucera M.R. Colombo L. Paltrinieri S. Bagnati R. Duskey J.T. Caraffi R. Vandelli M.A. Taroni F. Salmona M. Scanziani E. Biella G. Ruozi B. Tosi G. Cattaneo E. Chronic cholesterol administration to the brain supports complete and long-lasting cognitive and motor amelioration in Huntington’s disease. Pharmacol. Res. 2023 194 106823 10.1016/j.phrs.2023.106823 37336430
    [Google Scholar]
  88. Passoni A. Favagrossa M. Colombo L. Bagnati R. Gobbi M. Diomede L. Birolini G. Di Paolo E. Valenza M. Cattaneo E. Salmona M. Efficacy of cholesterol nose-to-brain delivery for brain targeting in Huntington’s disease. ACS Chem. Neurosci. 2020 11 3 367 372 10.1021/acschemneuro.9b00581 31860272
    [Google Scholar]
  89. Sharma H. Garg N. Dhankhar S. MIttal P. Chauhan S. Saini M. Biobased nanomaterials: Pioneering innovations for biomedical advancements. Pharm. Nanotechnol. 2024 12 1 15 10.2174/0122117385291530240305044703 38504570
    [Google Scholar]
  90. Marino A. Battaglini M. Desii A. Lavarello C. Genchi G. Petretto A. Ciofani G. Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based in vitro model of Parkinson’s disease. Biomater. Sci. 2021 9 24 8171 8188 10.1039/D1BM01202A 34617936
    [Google Scholar]
  91. Sharma P. Kaushik P. Kumar Sharma S. Dhankhar S. Garg N. Rani N. Exploring microsponges in dermatology: Opportunities and hurdles ahead. Micro Nanosyst. 2024 16 2 65 74 10.2174/0118764029295903240328054858
    [Google Scholar]
  92. Dhasmana S. Dhasmana A. Narula A.S. Jaggi M. Yallapu M.M. Chauhan S.C. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci. 2022 288 120156 10.1016/j.lfs.2021.120156 34801512
    [Google Scholar]
  93. Ashok A. Andrabi S.S. Mansoor S. Kuang Y. Kwon B.K. Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022 11 2 408 10.3390/antiox11020408 35204290
    [Google Scholar]
  94. Wang Z.Y. Sreenivasmurthy S.G. Song J.X. Liu J.Y. Li M. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases. Drug Discov. Today 2019 24 2 595 605 10.1016/j.drudis.2018.11.001 30414950
    [Google Scholar]
  95. Wiley N.J. Madhankumar A.B. Mitchell R.M. Neely E.B. Rizk E. Douds G.L. Simmons Z. Connor J.R. Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: Efficacy in SOD1 mouse model. Advances in Nanoparticles 2012 1 03 44 53 10.4236/anp.2012.13007
    [Google Scholar]
  96. Lee J.C. Seong J. Kim S.H. Lee S.J. Cho Y.J. An J. Nam D.H. Joo K.M. Cha C.I. Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 2012 418 2 359 365 10.1016/j.bbrc.2012.01.026 22269142
    [Google Scholar]
  97. Yang T. Ferrill L. Gallant L. McGillicuddy S. Fernandes T. Schields N. Bai S. Verapamil and riluzole cocktail liposomes overcome pharmacoresistance by inhibiting P-glycoprotein in brain endothelial and astrocyte cells: A potent approach to treat amyotrophic lateral sclerosis. Eur. J. Pharm. Sci. 2018 120 30 39 10.1016/j.ejps.2018.04.026 29704642
    [Google Scholar]
  98. Pinzón-Daza M. Campia I. Kopecka J. Garzón R. Ghigo D. Rigant C. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier. Curr. Drug Metab. 2013 14 6 625 640 10.2174/1389200211314060001 23869808
    [Google Scholar]
  99. Soni D. Khan H. Chauhan S. Kaur A. Dhankhar S. Garg N. Singh T.G. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases. Int. Immunopharmacol. 2024 142 Pt B 113142 10.1016/j.intimp.2024.113142 39298812
    [Google Scholar]
  100. Yang X. Liu K. P-gp inhibition-based strategies for modulating pharmacokinetics of anticancer drugs: An update. Curr. Drug Metab. 2016 17 8 806 826 10.2174/1389200217666160629112717 27364832
    [Google Scholar]
  101. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  102. Yadav K. Commercial aspects and market potential of novel delivery systems for bioactives and biological agents. Advances and avenues in the development of novel carriers for bioactives and biological agents. Elsevier 2020 595 620 10.1016/B978‑0‑12‑819666‑3.00020‑1
    [Google Scholar]
  103. Patel M.M. Patel B.M. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS Drugs 2017 31 2 109 133 10.1007/s40263‑016‑0405‑9 28101766
    [Google Scholar]
  104. Schnyder A. Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx 2005 2 1 99 107 10.1602/neurorx.2.1.99 15717061
    [Google Scholar]
  105. Liu H.J. Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv. Drug Deliv. Rev. 2022 191 114619 10.1016/j.addr.2022.114619 36372301
    [Google Scholar]
  106. Ding S. Khan A.I. Cai X. Song Y. Lyu Z. Du D. Dutta P. Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  107. Lammers T. Kiessling F. Hennink W.E. Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release 2012 161 2 175 187 10.1016/j.jconrel.2011.09.063 21945285
    [Google Scholar]
  108. Miyazaki I. Asanuma M. Therapeutic strategy of targeting astrocytes for neuroprotection in Parkinson’s disease. Curr. Pharm. Des. 2017 23 33 4936 4947 28699520
    [Google Scholar]
  109. Gregoriadis G. Liposome research in drug delivery: The early days. J. Drug Target. 2008 16 7-8 520 524 10.1080/10611860802228350 18686120
    [Google Scholar]
  110. Fieblinger T. Graves S.M. Sebel L.E. Alcacer C. Plotkin J.L. Gertler T.S. Chan C.S. Heiman M. Greengard P. Cenci M.A. Surmeier D.J. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat. Commun. 2014 5 1 5316 10.1038/ncomms6316 25360704
    [Google Scholar]
  111. Mendes M. Sousa J.J. Pais A. Vitorino C. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 2018 10 4 181 10.3390/pharmaceutics10040181 30304861
    [Google Scholar]
  112. Borges A. de Freitas V. Mateus N. Fernandes I. Oliveira J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants 2020 9 10 998 10.3390/antiox9100998 33076501
    [Google Scholar]
  113. Gregori M. Taylor M. Salvati E. Re F. Mancini S. Balducci C. Forloni G. Zambelli V. Sesana S. Michael M. Michail C. Tinker-Mill C. Kolosov O. Sherer M. Harris S. Fullwood N.J. Masserini M. Allsop D. Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer’s Aβ peptide. Nanomedicine 2017 13 2 723 732 10.1016/j.nano.2016.10.006 27769888
    [Google Scholar]
  114. Huang M. Hu M. Song Q. Song H. Huang J. Gu X. Wang X. Chen J. Kang T. Feng X. Jiang D. Zheng G. Chen H. Gao X. GM1-modified lipoprotein-like nanoparticle: Multifunctional nanoplatform for the combination therapy of Alzheimer’s disease. ACS Nano 2015 9 11 10801 10816 10.1021/acsnano.5b03124 26440073
    [Google Scholar]
  115. Rebas E. Rzajew J. Radzik T. Zylinska L. Neuroprotective polyphenols: A modulatory action on neurotransmitter pathways. Curr. Neuropharmacol. 2020 18 5 431 445 10.2174/1570159X18666200106155127 31903883
    [Google Scholar]
  116. Di Battista V. Hey-Hawkins E. Development of prodrugs for treatment of parkinson’s disease: New inorganic scaffolds for blood–brain barrier permeation. J. Pharm. Sci. 2022 111 5 1262 1279 10.1016/j.xphs.2022.02.005 35182542
    [Google Scholar]
  117. Hernando S. Santos-Vizcaíno E. Igartua M. Hernandez R.M. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles—Focus on Alzheimer’s and Parkinson’s disease. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 5 e1898 10.1002/wnan.1898 37157144
    [Google Scholar]
  118. Pahuja R. Seth K. Shukla A. Shukla R.K. Bhatnagar P. Chauhan L.K.S. Saxena P.N. Arun J. Chaudhari B.P. Patel D.K. Singh S.P. Shukla R. Khanna V.K. Kumar P. Chaturvedi R.K. Gupta K.C. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015 9 5 4850 4871 10.1021/nn506408v 25825926
    [Google Scholar]
  119. Lopalco A. Cutrignelli A. Denora N. Lopedota A. Franco M. Laquintana V. Transferrin functionalized liposomes loading dopamine HCl: Development and permeability studies across an in vitro model of human blood–brain barrier. Nanomaterials 2018 8 3 178 10.3390/nano8030178 29558440
    [Google Scholar]
  120. Huey R. Hawthorne S. McCarron P. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: A mini review. J. Drug Target. 2017 25 5 379 385 10.1080/1061186X.2016.1223676 27581650
    [Google Scholar]
  121. Qu M. Lin Q. He S. Wang L. Fu Y. Zhang Z. Zhang L. A brain targeting functionalized liposomes of the dopamine derivative N -3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J. Control. Release 2018 277 173 182 10.1016/j.jconrel.2018.03.019 29588159
    [Google Scholar]
  122. Emre M. Aarsland D. Albanese A. Byrne E.J. Deuschl G. De Deyn P.P. Durif F. Kulisevsky J. van Laar T. Lees A. Poewe W. Robillard A. Rosa M.M. Wolters E. Quarg P. Tekin S. Lane R. Rivastigmine for dementia associated with Parkinson’s disease. N. Engl. J. Med. 2004 351 24 2509 2518 10.1056/NEJMoa041470 15590953
    [Google Scholar]
  123. Nageeb El-Helaly S. Abd Elbary A. Kassem M.A. El-Nabarawi M.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv. 2017 24 1 692 700 10.1080/10717544.2017.1309476 28415883
    [Google Scholar]
  124. McEneny-King A. Metabolism, transport, and physiologically based pharmacokinetic modelling of novel tacrine derivatives. University of Waterloo 2015 1 6
    [Google Scholar]
  125. Corace G. Angeloni C. Malaguti M. Hrelia S. Stein P.C. Brandl M. Gotti R. Luppi B. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J. Liposome Res. 2014 24 4 323 335 10.3109/08982104.2014.899369 24807822
    [Google Scholar]
  126. Colović M.B. Krstić D.Z. Lazarević-Pašti T.D. Bondžić A.M. Vasić V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013 11 3 315 335 10.2174/1570159X11311030006 24179466
    [Google Scholar]
  127. Al Asmari A.K. Ullah Z. Tariq M. Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther. 2016 10 205 215 26834457
    [Google Scholar]
  128. Kocaadam B. Şanlier N. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017 57 13 2889 2895 10.1080/10408398.2015.1077195 26528921
    [Google Scholar]
  129. Small G.W. Siddarth P. Li Z. Miller K.J. Ercoli L. Emerson N.D. Martinez J. Wong K.P. Liu J. Merrill D.A. Chen S.T. Henning S.M. Satyamurthy N. Huang S.C. Heber D. Barrio J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 2018 26 3 266 277 10.1016/j.jagp.2017.10.010 29246725
    [Google Scholar]
  130. Singh S. Kumar P. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats. Inflammopharmacology 2017 25 1 69 79 10.1007/s10787‑016‑0297‑9 27853890
    [Google Scholar]
  131. du Preez R. Pahl J. Arora M. Ravi Kumar M.N.V. Brown L. Panchal S.K. Low-dose curcumin nanoparticles normalise blood pressure in male wistar rats with diet-induced metabolic syndrome. Nutrients 2019 11 7 1542 10.3390/nu11071542 31288419
    [Google Scholar]
  132. Liu W. Zhai Y. Heng X. Che F.Y. Chen W. Sun D. Zhai G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target. 2016 24 8 694 702 10.3109/1061186X.2016.1157883 26942997
    [Google Scholar]
  133. Kuo Y.C. Ng I.W. Rajesh R. Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease. Mater. Sci. Eng. C 2021 127 112233 10.1016/j.msec.2021.112233 34225874
    [Google Scholar]
  134. Sokolik V. Shulga S. Effect of curcumin on accumulation in mononuclear cells and secretion in incubation medium of Aβ40 and cytokines under local excess of Aβ42-homoaggregates. Ukr Biochem. J. 2016 88 3 83 91 10.15407/ubj88.03.083 29235333
    [Google Scholar]
  135. Cascione M. De Matteis V. Leporatti S. Rinaldi R. The new frontiers in neurodegenerative diseases treatment: Liposomal-based strategies. Front. Bioeng. Biotechnol. 2020 8 566767 10.3389/fbioe.2020.566767 33195128
    [Google Scholar]
  136. Mourtas S. Lazar A.N. Markoutsa E. Duyckaerts C. Antimisiaris S.G. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem. 2014 80 175 183 10.1016/j.ejmech.2014.04.050 24780594
    [Google Scholar]
  137. Batiha G.E.S. Beshbishy A.M. Ikram M. Mulla Z.S. El-Hack M.E.A. Taha A.E. Algammal A.M. Elewa Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 2020 9 3 374 10.3390/foods9030374 32210182
    [Google Scholar]
  138. Magalingam K.B. Radhakrishnan A. Ramdas P. Haleagrahara N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J. Mol. Neurosci. 2015 55 3 609 617 10.1007/s12031‑014‑0400‑x 25129099
    [Google Scholar]
  139. Bonechi C. Donati A. Tamasi G. Leone G. Consumi M. Rossi C. Lamponi S. Magnani A. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophys. Chem. 2018 233 55 63 10.1016/j.bpc.2017.11.003 29174505
    [Google Scholar]
  140. Dubey S.K. Ram M.S. Krishna K.V. Saha R.N. Singhvi G. Agrawal M. Ajazuddin Saraf S. Saraf S. Alexander A. Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer’s disease. Cell. Mol. Neurobiol. 2019 39 2 181 209 10.1007/s10571‑019‑00653‑z 30671696
    [Google Scholar]
  141. Mignet N. Seguin J. Chabot G. Bioavailability of polyphenol liposomes: A challenge ahead. Pharmaceutics 2013 5 3 457 471 10.3390/pharmaceutics5030457 24300518
    [Google Scholar]
  142. Zafar M.N. Abuwatfa W.H. Husseini G.A. Acoustically-activated liposomal nanocarriers to mitigate the side effects of conventional chemotherapy with a focus on emulsion-liposomes. Pharmaceutics 2023 15 2 421 10.3390/pharmaceutics15020421 36839744
    [Google Scholar]
  143. Qian J. Guo Y. Xu Y. Wang X. Chen J. Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv. Transl. Res. 2023 13 11 2767 2789 10.1007/s13346‑023‑01368‑x 37278964
    [Google Scholar]
  144. Pande S. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif. Cells Nanomed. Biotechnol. 2023 51 1 428 440 10.1080/21691401.2023.2247036 37594208
    [Google Scholar]
  145. Maja L. Željko K. Mateja P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020 165 104984 10.1016/j.supflu.2020.104984
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249342585241230065557
Loading
/content/journals/cnsamc/10.2174/0118715249342585241230065557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test