Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

The low effectiveness of existing pharmacotherapy strategies for Alzheimer's disease (AD) makes it necessary to develop a new concept for the treatment of this type of dementia. This search is promising to be carried out within the framework of the paradigm of targeting intracellular signaling pathways in Regenerative-competent Cells (RCCs).

Objectives

The purpose of the research is to study the impact of adenylate cyclase (AC) inhibitor on disorders of the psychoemotional status in aged male C57BL/6 mice, as well as on the dynamics of the content and functioning of RCCs nervous tissue.

Methods

We examined the effect of the AC inhibitor (2ʹ,5ʹ-Dideoxyadenosine) on conditioned reflex activity, behavioral and emotional profile in a mouse AD model (16-month-old (aged) male C57BL/6 mice), as well as the functioning of neural stem cells (NSCs), neuronal-committed progenitors (NCPs), and neuroglial cells in the subventricular zone of the cerebral hemispheres (SVZ).

Results

In aged C57BL/6 mice, we found impairments in exploratory behavior, emotional reactivity, and memory, which are the characteristics of senile dementia. Therapy based on AC inhibition led to an increase in the number of NSCs and NPCs in the SVZ due to an increase in their proliferative activity. These changes were more pronounced in NCPs. At the same time, a decrease in the specialization intensity was recorded in NSCs. These phenomena developed against the background of increased secretion of neurotrophic growth factors by oligodendrocytes and microglial cells. The neuroregenerative effects of 2ʹ,5ʹ-dideoxyadenosine correlated with the correction of age-related disorders of the psychoemotional status in aged mice.

Conclusion

The results provide the basis for the development of targeted drugs based on AC inhibitors to stimulate neurogenesis as an approach for the effective treatment of AD.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249302264240715060630
2024-07-29
2025-04-11
Loading full text...

Full text loading...

References

  1. MiculasD.C. NegruP.A. BungauS.G. BehlT. HassanS.S. TitD.M. Pharmacotherapy evolution in alzheimer’s disease: Surrent framework and relevant directions.Cells202212113110.3390/cells1201013136611925
    [Google Scholar]
  2. TatulianS.A. Challenges and hopes for Alzheimer’s disease.Drug Discov. Today20222741027104310.1016/j.drudis.2022.01.01635121174
    [Google Scholar]
  3. RostagnoA.A. Pathogenesis of Alzheimer’s Disease.Int. J. Mol. Sci.202224110710.3390/ijms2401010736613544
    [Google Scholar]
  4. MonteiroA.R. BarbosaD.J. RemiãoF. SilvaR. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs.Biochem. Pharmacol.202321111552210.1016/j.bcp.2023.11552236996971
    [Google Scholar]
  5. JuckerM. WalkerL.C. Alzheimer’s disease: From immunotherapy to immunoprevention.Cell2023186204260427010.1016/j.cell.2023.08.02137729908
    [Google Scholar]
  6. Zyuz’kovG.N. Targeted regulation of intracellular signal transduction in regeneration-competent cells: A new direction for therapy in regenerative medicine.Biointerface Res. Appl. Chem.2021114122381225110.33263/BRIAC114.1223812251
    [Google Scholar]
  7. Zyuz’kovG. Targeted regulation of intracellular signal transduction: A new paradigm for stimulation of neurogenesis in alzheimer’s disease.Curr. Drug Targets2023241077778010.2174/138945012466623071910480837469153
    [Google Scholar]
  8. MaC. HongF. YangS. Amyloidosis in Alzheimer’s Disease: Pathogeny, etiology, and related therapeutic directions.Molecules2022274121010.3390/molecules2704121035209007
    [Google Scholar]
  9. OgbodoJ.O. AgboC.P. NjokuU.O. OgugoforM.O. EgbaS.I. IhimS.A. EchezonaA.C. BrendanK.C. UpaganlawarA.B. UpasaniC.D. Alzheimer’s disease: Pathogenesis and therapeutic interventions.Curr. Aging Sci.202215122510.2174/187460981466621030208523233653258
    [Google Scholar]
  10. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑535643092
    [Google Scholar]
  11. GiacobiniE. CuelloA.C. FisherA. Reimagining cholinergic therapy for Alzheimer’s disease.Brain202214572250227510.1093/brain/awac09635289363
    [Google Scholar]
  12. DowneyJ. LamJ.C.K. LiV.O.K. GozesI. Somatic mutations and alzheimer’s disease.J. Alzheimers Dis.202290247549310.3233/JAD‑22064336155518
    [Google Scholar]
  13. Zyuz’kovG.N. MiroshnichenkoL.A. PolyakovaT.Y. SimaninaE.V. Neuroprotective and neuroregenerative effects of shikonin-mediated inhibition of NF-κB/Stat3 in alcoholic encephalopathy.Lett. Drug Des. Discov.202320122045205410.2174/1570180820666221107112141
    [Google Scholar]
  14. WangZ.B. WangZ.T. SunY. TanL. YuJ.T. The future of stem cell therapies of Alzheimer’s disease.Ageing Res. Rev.20228010165510.1016/j.arr.2022.10165535660003
    [Google Scholar]
  15. Zyuz’kovG.N. MiroshnichenkoL.A. ChayikovskyiA.V. KotlovskayaL.Y. NF-кB: A target for synchronizing the functioning nervous tissue progenitors of different types in Alzheimer’s disease.Curr. Mol. Pharmacol.202316223424110.2174/187446721566622060114472735652396
    [Google Scholar]
  16. Zyuz’kovG.N. MiroshnichenkoL.A. KotlovskayaL.Yu. ChayikovskyiA.V. Inhibitors of intracellular signaling molecules: New horizons in drug discovery for the treatment of alzheimer’s disease.Biointerface Res. Appl. Chem.20231311110.33263/BRIAC135.401
    [Google Scholar]
  17. Zyuz’kovG.N. MiroshnichenkoL.A. ChaikovskyA.V. KotlovskayaL.Y. The role of MARK ERK1/2 and p38 in regulation of functions of neural stem cells and neuroglia under conditions of β-amyloid-induced neurodegeneration.Bull. Exp. Biol. Med.2022173442442810.1007/s10517‑022‑05561‑936058962
    [Google Scholar]
  18. Zyuz’kovG. MiroshnichenkoL. PolyakovaT. SimaninaE. Potential of using JNK and p53 as novel drug targets for the treatment of alcoholic encephalopathy.Indian J. Physiol. Pharmacol.20226623324010.25259/IJPP_163_2022
    [Google Scholar]
  19. Zyuz’kovG.N. MiroshnichenkoL.A. PolyakovaT.Yu. StavrovaL.A. SimaninaE.V. JNK and p53 inhibition in regeneration-competent cells of nerve tissue: A novel approach for treatment of ethanol-induced neurodegeneration.Acta Pharm. Sci202361496310.23893/1307‑2080.APS6104
    [Google Scholar]
  20. Zyuz’kovG.N. MiroshnichenkoL.A. ChayikovskyiA.V. KotlovskayaL.Yu. Prospects for the therapeutic potential of inhibitors targeting JNK and p53 in alzheimer’s disease.Adv. Life Sci.202310298303
    [Google Scholar]
  21. Zyuz’kovG.N. MiroshnichenkoL.A. ChaikovskyA.V. KotlovskayaL.Y. Functional state of various types of regenerative-competent neural tissue cells in β-amyloid-induced neurodegeneration.Bull. Exp. Biol. Med.2022173670971310.1007/s10517‑022‑05617‑w36322306
    [Google Scholar]
  22. Al-GhraiybahN.F. WangJ. AlkhalifaA.E. RobertsA.B. RajR. YangE. KaddoumiA. Glial cell-mediated neuroinflammation in alzheimer’s disease.Int. J. Mol. Sci.202223181057210.3390/ijms23181057236142483
    [Google Scholar]
  23. SadickJ.S. O’DeaM.R. HaselP. DykstraT. FaustinA. LiddelowS.A. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease.Neuron20221101117881805.e1010.1016/j.neuron.2022.03.00835381189
    [Google Scholar]
  24. Zyuz’kovG.N. ZhdanovV.V. MiroshnichenkoL.A. PolyakovaT.Y. SimaninaE.V. DaniletsM.G. AgafonovV.I. StavrovaL.A. Participation of cAMP-mediated signaling transduction in the regulation of the secretory function of neuroglia during ethanol-induced neurodegeneration.Bull. Exp. Biol. Med.20231751121610.1007/s10517‑023‑05800‑737338762
    [Google Scholar]
  25. Zyuz’kovG.N. MiroshnichenkoL.A. KotlovskayaL.Yu. ChayikovskyiA.V. Prospect of using ERK1/2 and р38 in regeneration-competent cells of nervous tissue as a drug targets for treating alzheimer’s disease.Biointerface Res. Appl. Chem.202213216610.33263/BRIAC132.166
    [Google Scholar]
  26. Zyuz’kovG.N. MiroshnichenkoL.A. KotlovskayaL.Y. ChaikovskyA.V. The role of JAKs and STAT3 in regulation of regenerative-competent cells of the nervous tissue in β-amyloid-induced neurodegeneration.Bull. Exp. Biol. Med.2022173441942310.1007/s10517‑022‑05560‑w36058961
    [Google Scholar]
  27. Zyuz`kovG.N. MiroshnichenkoL.A. PolyakovaT.Yu. SimaninaE.V. ChayikovskyiA.V. KotlovskayaL.Yu. Insight into JNK Inhibition-based Strategy for the Treatment of Alzheimer's Disease.2023191210.2174/1573408019666230816143357
    [Google Scholar]
  28. SharmaV.K. SinghT.G. CREB: A multifaceted target for alzheimer’s disease.Curr. Alzheimer Res.202117141280129310.2174/156720501866621021815225333602089
    [Google Scholar]
  29. Zyuz’kovG.N. MiroshnichenkoL.A. KotlovskayaL.Y. ChaikovskiiA.V. The role of cAMP-dependent intracellular signaling pathways in the regulation of the functions of neural stem cells and neuroglial cells in Amyloid-β-induced neurodegeneration.Bull. Exp. Biol. Med.2023175443744110.1007/s10517‑023‑05881‑437770785
    [Google Scholar]
  30. AlanE. KerryZ. SevinG. Molecular mechanisms of Alzheimer’s disease: From therapeutic targets to promising drugs.Fundam. Clin. Pharmacol.202337339742710.1111/fcp.1286136576325
    [Google Scholar]
  31. AustadS.N. BallingerS. BufordT.W. CarterC.S. SmithD.L.Jr Darley-UsmarV. ZhangJ. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease.Acta Pharm. Sin. B202212251153110.1016/j.apsb.2021.06.01435256932
    [Google Scholar]
  32. ViñaD. SeoaneN. VasquezE.C. Campos-ToimilM. cAMP compartmentalization in cerebrovascular endothelial cells: New therapeutic opportunities in alzheimer’s disease.Cells2021108195110.3390/cells1008195134440720
    [Google Scholar]
  33. MangalmurtiA. LukensJ.R. How neurons die in Alzheimer’s disease: Implications for neuroinflammation.Curr. Opin. Neurobiol.20227510257510.1016/j.conb.2022.10257535691251
    [Google Scholar]
  34. TaiL.M. Maldonado WengJ. LaDuM.J. BradyS.T. Relevance of transgenic mouse models for Alzheimer’s disease.Prog. Mol. Biol. Transl. Sci.202117714810.1016/bs.pmbts.2020.07.00733453936
    [Google Scholar]
  35. ChenZ.Y. ZhangY. Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives.Zool. Res.20224361026104010.24272/j.issn.2095‑8137.2022.28936317468
    [Google Scholar]
  36. AhlemeyerB. HalupczokS. Rodenberg-FrankE. ValeriusK.P. Baumgart-VogtE. Endogenous murine amyloid-β peptide assembles into aggregates in the aged C57BL/6J mouse suggesting these animals as a model to study pathogenesis of amyloid-β plaque formation.J. Alzheimers Dis.20186141425145010.3233/JAD‑17092329376876
    [Google Scholar]
  37. KoselF. PelleyJ.M.S. FranklinT.B. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology.Neurosci. Biobehav. Rev.202011263464710.1016/j.neubiorev.2020.02.01232070692
    [Google Scholar]
  38. NakaiT. YamadaK. MizoguchiH. Alzheimer’s disease animal models: Elucidation of biomarkers and therapeutic approaches for cognitive impairment.Int. J. Mol. Sci.20212211554910.3390/ijms2211554934074018
    [Google Scholar]
  39. BlázquezG. CañeteT. TobeñaA. Giménez-LlortL. Fernández-TeruelA. Cognitive and emotional profiles of aged Alzheimer’s disease (3×TgAD) mice: Effects of environmental enrichment and sexual dimorphism.Behav. Brain Res.201426818520110.1016/j.bbr.2014.04.00824746486
    [Google Scholar]
  40. ItoN. SasakiK. TakemotoH. KobayashiY. IsodaH. OdaguchiH. Emotional impairments and neuroinflammation are induced in male mice invulnerable to repeated social defeat stress.Neuroscience202044314816310.1016/j.neuroscience.2020.07.02332707290
    [Google Scholar]
  41. CurtisM.J. BondR.A. SpinaD. AhluwaliaA. AlexanderS.P.A. GiembyczM.A. GilchristA. HoyerD. InselP.A. IzzoA.A. LawrenceA.J. MacEwanD.J. MoonL.D.F. WonnacottS. WestonA.H. McGrathJ.C. Experimental design and analysis and their reporting: New guidance for publication in BJP.Br. J. Pharmacol.2015172143461347110.1111/bph.1285626114403
    [Google Scholar]
  42. AlviT. KumarD. TabakB.A. Social anxiety and behavioral assessments of social cognition: A systematic review.J. Affect. Disord.2022311173010.1016/j.jad.2022.04.13035490878
    [Google Scholar]
  43. EsquivelN. GarcíaY. LoresB. GutiérrezM. RodríguezC. Characterization of aged male BALB/ccenp mice as a model of dementia.Lab. Anim. Res.2020361710.1186/s42826‑020‑00038‑032206613
    [Google Scholar]
  44. MenuetC. CazalsY. GestreauC. BorghgraefP. GielisL. DutschmannM. Van LeuvenF. HilaireG. Age-related impairment of ultrasonic vocalization in Tau.P301L mice: Possible implication for progressive language disorders.PLoS One2011610e2577010.1371/journal.pone.002577022022446
    [Google Scholar]
  45. PremoliM. PietropaoloS. WöhrM. SimolaN. BoniniS.A. Mouse and rat ultrasonic vocalizations in neuroscience and neuropharmacology: State of the art and future applications.Eur. J. Neurosci.202357122062209610.1111/ejn.1595736889803
    [Google Scholar]
  46. KumarA. FontanaI.C. NordbergA. Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer’s disease.J. Neurochem.2023164330932410.1111/jnc.1556534931315
    [Google Scholar]
  47. ZhangX. WangR. HuD. SunX. FujiokaH. LundbergK. ChanE.R. WangQ. XuR. FlanaganM.E. PieperA.A. QiX. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease.Sci. Adv.2020649eabb868010.1126/sciadv.abb868033277246
    [Google Scholar]
  48. CaiZ. XiaoM. Oligodendrocytes and Alzheimer’s disease.Int. J. Neurosci.201612629710410.3109/00207454.2015.102577826000818
    [Google Scholar]
  49. ZhaoM. JiangX.F. ZhangH.Q. SunJ.H. PeiH. MaL.N. CaoY. LiH. Interactions between glial cells and the blood-brain barrier and their role in Alzheimer’s disease.Ageing Res. Rev.20217210148310.1016/j.arr.2021.10148334610479
    [Google Scholar]
  50. CaiY. LiuJ. WangB. SunM. YangH. Microglia in the neuroinflammatory pathogenesis of alzheimer’s disease and related therapeutic targets.Front. Immunol.20221385637610.3389/fimmu.2022.85637635558075
    [Google Scholar]
  51. JorfiM. Maaser-HeckerA. TanziR.E. The neuroimmune axis of Alzheimer’s disease.Genome Med.2023151610.1186/s13073‑023‑01155‑w36703235
    [Google Scholar]
  52. PaciniE.S.A. SatoriN.A. JacksonE.K. GodinhoR.O. Extracellular cAMP-adenosine pathway signaling: A potential therapeutic target in chronic inflammatory airway diseases.Front. Immunol.20221386609710.3389/fimmu.2022.86609735479074
    [Google Scholar]
  53. KamatP.K. KalaniA. RaiS. SwarnkarS. TotaS. NathC. TyagiN. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of alzheimer’s disease: Understanding the therapeutics strategies.Mol. Neurobiol.201653164866110.1007/s12035‑014‑9053‑625511446
    [Google Scholar]
  54. GriffithsJ. GrantS.G.N. Synapse pathology in Alzheimer’s disease.Semin. Cell Dev. Biol.2023139132310.1016/j.semcdb.2022.05.02835690535
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249302264240715060630
Loading
/content/journals/cnsamc/10.2174/0118715249302264240715060630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test