Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

The most critical issue impeding the development of innovative cerebrospinal medications is the blood-brain barrier (BBB). The BBB limits the ability of most medications to penetrate the brain to the CNS. The BBB structure and functions are summarized, with the physical barrier generated by endothelial tight junctions and the transport barrier formed by transporters within the membrane and vesicular processes. The functions of connected cells, particularly the end feet of astrocytic glial cells, microglia, and pericytes, are described. The drugs that cross the blood brain barrier are explained below along with their mechanisms. Some of the associated conditions and problems are given.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249297247240813104929
2024-08-28
2025-04-17
Loading full text...

Full text loading...

References

  1. PardridgeW.M. Blood–brain barrier delivery.Drug Discov. Today2007121-2546110.1016/j.drudis.2006.10.01317198973
    [Google Scholar]
  2. PardridgeW.M. The blood-brain barrier: Bottleneck in brain drug development.NeuroRx20052131410.1602/neurorx.2.1.315717053
    [Google Scholar]
  3. ObermeierB. VermaA. RansohoffR.M. The blood–brain barrier.Handb. Clin. Neurol.2016133395910.1016/B978‑0‑444‑63432‑0.00003‑727112670
    [Google Scholar]
  4. ZlokovicB.V. The blood-brain barrier in health and chronic neurodegenerative disorders.Neuron200857217820110.1016/j.neuron.2008.01.00318215617
    [Google Scholar]
  5. DanemanR. The blood–brain barrier in health and disease.Ann. Neurol.201272564867210.1002/ana.2364823280789
    [Google Scholar]
  6. LarsenJ. MartinD. ByrneM. Recent advances in delivery through the blood-brain barrier.Curr. Top. Med. Chem.20141491148116010.2174/156802661466614032923031124678707
    [Google Scholar]
  7. EngelhardtB. Development of the blood-brain barrier.Cell Tissue Res.2003314111912910.1007/s00441‑003‑0751‑z12955493
    [Google Scholar]
  8. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a02041225561720
    [Google Scholar]
  9. MathiisenT.M. LehreK.P. DanboltN.C. OttersenO.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction.Glia20105891094110310.1002/glia.2099020468051
    [Google Scholar]
  10. AbbottN.J. Anatomy and physiology of the blood–brain barriers.Drug delivery to the brain. Hammarlund-UdenaesM. de LangeE.C.M. ThorneR.G. New York, NYSpringer201432110.1007/978‑1‑4614‑9105‑7_1
    [Google Scholar]
  11. AbbottN.J. RönnbäckL. HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier.Nat. Rev. Neurosci.200671415310.1038/nrn182416371949
    [Google Scholar]
  12. HelmsH.C. AbbottN.J. BurekM. CecchelliR. CouraudP.O. DeliM.A. FörsterC. GallaH.J. RomeroI.A. ShustaE.V. StebbinsM.J. VandenhauteE. WekslerB. BrodinB. In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use.J. Cereb. Blood Flow Metab.201636586289010.1177/0271678X1663099126868179
    [Google Scholar]
  13. Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds.Circ Res2007100174190
    [Google Scholar]
  14. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.Circ Res2007100158173
    [Google Scholar]
  15. CoomberB.L. StewartP.A. Morphometric analysis of CNS microvascular endothelium.Microvasc. Res.19853019911510.1016/0026‑2862(85)90042‑14021842
    [Google Scholar]
  16. ReeseT.S. KarnovskyM.J. Fine structural localization of a blood-brain barrier to exogenous peroxidase.J. Cell Biol.196734120721710.1083/jcb.34.1.2076033532
    [Google Scholar]
  17. BrightmanM.W. ReeseT.S. Junctions between intimately apposed cell membranes in the vertebrate brain.J. Cell Biol.196940364867710.1083/jcb.40.3.6485765759
    [Google Scholar]
  18. WestergaardE. BrightmanM.W. Transport of proteins across normal cerebral arterioles.J. Comp. Neurol.19731521174410.1002/cne.9015201034765853
    [Google Scholar]
  19. LiebnerS. CzupallaC.J. WolburgH. Current concepts of blood-brain barrier development.Int. J. Dev. Biol.2011554-546747610.1387/ijdb.103224sl21769778
    [Google Scholar]
  20. LiebnerS. EngelhardtB. Development of the blood–brain barrier.The blood brain barrier and its microenvironment: Basic physiology to neurological disease.New YorkTaylor and Francis200512510.1201/b14290‑2
    [Google Scholar]
  21. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  22. PardridgeW.M. Blood–brain barrier endogenous transporters as therapeutic targets: A new model for small molecule CNS drug discovery.Expert Opin. Ther. Targets20151981059107210.1517/14728222.2015.104236425936389
    [Google Scholar]
  23. KadryHossam NooraniBehnam CuculloLuca A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS,20201716910.1186/s12987‑020‑00230‑3
    [Google Scholar]
  24. BottsS.R. FishJ.E. HoweK.L. Dysfunctional vascular endothelium as a driver of atherosclerosis: Emerging insights into pathogenesis and treatment.Front. Pharmacol.20211278754110.3389/fphar.2021.78754135002720
    [Google Scholar]
  25. TsukaharaT. TsukaharaR. HaniuH. MatsudaY. Murakami-MurofushiK. Cyclic phosphatidic acid inhibits the secretion of vascular endothelial growth factor from diabetic human coronary artery endothelial cells through peroxisome proliferator-activated receptor gamma.Mol. Cell. Endocrinol.201541232032910.1016/j.mce.2015.05.02126007326
    [Google Scholar]
  26. RajendranP. RengarajanT. ThangavelJ. NishigakiY. SakthisekaranD. SethiG. NishigakiI. The vascular endothelium and human diseases.Int. J. Biol. Sci.20139101057106910.7150/ijbs.750224250251
    [Google Scholar]
  27. Díaz-FloresL. GutiérrezR. MadridJ.F. VarelaH. ValladaresF. AcostaE. Martín-VasalloP. Díaz-FloresL.Jr Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche.Histol. Histopathol.200924790996919475537
    [Google Scholar]
  28. ArmulikA. GenovéG. BetsholtzC. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises.Dev. Cell201121219321510.1016/j.devcel.2011.07.00121839917
    [Google Scholar]
  29. SimsD.E. Diversity within pericytes.Clin. Exp. Pharmacol. Physiol.2000271084284610.1046/j.1440‑1681.2000.03343.x11022980
    [Google Scholar]
  30. FisherM. Pericyte signaling in the neurovascular unit.Stroke2009403Suppl.S13S1519064799
    [Google Scholar]
  31. del ZoppoG.J. MilnerR. Integrin-matrix interactions in the cerebral microvasculature.Arterioscler. Thromb. Vasc. Biol.20062691966197510.1161/01.ATV.0000232525.65682.a216778120
    [Google Scholar]
  32. KornJ. ChristB. KurzH. Neuroectodermal origin of brain pericytes and vascular smooth muscle cells.J. Comp. Neurol.20024421788810.1002/cne.142311754368
    [Google Scholar]
  33. EtcheversH.C. VincentC. Le DouarinN.M. CoulyG.F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain.Development200112871059106810.1242/dev.128.7.105911245571
    [Google Scholar]
  34. WinklerE.A. BellR.D. ZlokovicB.V. Central nervous system pericytes in health and disease.Nat. Neurosci.201114111398140510.1038/nn.294622030551
    [Google Scholar]
  35. Dore-DuffyP. ClearyK. Morphology and properties of pericytes.Methods Mol. Biol.2011686496810.1007/978‑1‑60761‑938‑3_221082366
    [Google Scholar]
  36. LindahlP. JohanssonB.R. LevéenP. BetsholtzC. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice.Science1997277532324224510.1126/science.277.5323.2429211853
    [Google Scholar]
  37. LiuS. AgalliuD. YuC. FisherM. The role of pericytes in blood-brain barrier function and stroke.Curr. Pharm. Des.201218253653366210.2174/13816121280200270622574979
    [Google Scholar]
  38. AnthonyD. BoltonS.J. FearnS. PerryV.H. Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats.Brain1997120343544410.1093/brain/120.3.4359126055
    [Google Scholar]
  39. DavisG.E. SengerD.R. Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization.Circ. Res.200597111093110710.1161/01.RES.0000191547.64391.e316306453
    [Google Scholar]
  40. DanemanR. ZhouL. KebedeA.A. BarresB.A. Pericytes are required for blood–brain barrier integrity during embryogenesis.Nature2010468732356256610.1038/nature0951320944625
    [Google Scholar]
  41. KimJ.H. KimJ.H. YuY.S. KimD.H. KimK.W. Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels.J. Neurosci. Res.200987365365910.1002/jnr.2188418816791
    [Google Scholar]
  42. PeppiattC.M. HowarthC. MobbsP. AttwellD. Bidirectional control of CNS capillary diameter by pericytes.Nature2006443711270070410.1038/nature0519317036005
    [Google Scholar]
  43. RuckerH.K. WynderH.J. ThomasW.E. Cellular mechanisms of CNS pericytes.Brain Res. Bull.200051536336910.1016/S0361‑9230(99)00260‑910715555
    [Google Scholar]
  44. BonkowskiD. KatyshevV. BalabanovR.D. BorisovA. Dore-DuffyP. The CNS microvascular pericyte: Pericyte-astrocyte crosstalk in the regulation of tissue survival.Fluids Barriers CNS201181810.1186/2045‑8118‑8‑821349156
    [Google Scholar]
  45. KondoT. KinouchiH. KawaseM. YoshimotoT. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation.Neurosci. Lett.1996208210110410.1016/0304‑3940(96)12555‑68859900
    [Google Scholar]
  46. HayashiK. NakaoS. NakaokeR. NakagawaS. KitagawaN. NiwaM. Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier.Regul. Pept.20041231-3778310.1016/j.regpep.2004.05.02315518896
    [Google Scholar]
  47. AhmadA.A. TaboadaC.B. GassmannM. OgunsholaO.O. Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult.J. Cereb. Blood Flow Metab.201131269370510.1038/jcbfm.2010.14820827262
    [Google Scholar]
  48. FuruseM. FujitaK. HiiragiT. FujimotoK. TsukitaS. Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.J. Cell Biol.199814171539155010.1083/jcb.141.7.15399647647
    [Google Scholar]
  49. Lal-NagM. MorinP.J. The claudins.Genome Biol.200910823510.1186/gb‑2009‑10‑8‑23519706201
    [Google Scholar]
  50. BlackmanB. RussellT. NordeenS.K. MedinaD. NevilleM.C. Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors.Breast Cancer Res.200572R248R25510.1186/bcr98815743505
    [Google Scholar]
  51. MorinP.J. Claudin proteins in human cancer: Promising new targets for diagnosis and therapy.Cancer Res.200565219603960610.1158/0008‑5472.CAN‑05‑278216266975
    [Google Scholar]
  52. GreeneC. HanleyN. CampbellM. Claudin-5: Gatekeeper of neurological function.Fluids Barriers CNS2019161310.1186/s12987‑019‑0123‑z30691500
    [Google Scholar]
  53. LouveauA. SmirnovI. KeyesT.J. EcclesJ.D. RouhaniS.J. PeskeJ.D. DereckiN.C. CastleD. MandellJ.W. LeeK.S. HarrisT.H. KipnisJ. Structural and functional features of central nervous system lymphatic vessels.Nature2015523756033734110.1038/nature1443226030524
    [Google Scholar]
  54. BalukP. FuxeJ. HashizumeH. RomanoT. LashnitsE. ButzS. VestweberD. CoradaM. MolendiniC. DejanaE. McDonaldD.M. Functionally specialized junctions between endothelial cells of lymphatic vessels.J. Exp. Med.2007204102349236210.1084/jem.2006259617846148
    [Google Scholar]
  55. DanemanR. ZhouL. AgalliuD. CahoyJ.D. KaushalA. BarresB.A. The mouse blood-brain barrier transcriptome: A new resource for understanding the development and function of brain endothelial cells.PLoS One2010510e1374110.1371/journal.pone.001374121060791
    [Google Scholar]
  56. AlvarezJ.I. Dodelet-DevillersA. KebirH. IferganI. FabreP.J. TerouzS. SabbaghM. WosikK. BourbonnièreL. BernardM. van HorssenJ. de VriesH.E. CharronF. PratA. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence.Science201133460631727173110.1126/science.120693622144466
    [Google Scholar]
  57. ArmulikA. GenovéG. MäeM. NisanciogluM.H. WallgardE. NiaudetC. HeL. NorlinJ. LindblomP. StrittmatterK. JohanssonB.R. BetsholtzC. Pericytes regulate the blood–brain barrier.Nature2010468732355756110.1038/nature0952220944627
    [Google Scholar]
  58. ChenJ. LuoY. HuiH. CaiT. HuangH. YangF. FengJ. ZhangJ. YanX. CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development.Proc. Natl. Acad. Sci. USA201711436E7622E763110.1073/pnas.171084811428827364
    [Google Scholar]
  59. HaseloffR.F. DithmerS. WinklerL. WolburgH. BlasigI.E. Transmembrane proteins of the tight junctions at the blood–brain barrier: Structural and functional aspects.Semin. Cell Dev. Biol.201538162510.1016/j.semcdb.2014.11.00425433243
    [Google Scholar]
  60. LiuW.Y. WangZ.B. ZhangL.C. WeiX. LiL. Tight junction in blood-brain barrier: An overview of structure, regulation, and regulator substances.CNS Neurosci. Ther.201218860961510.1111/j.1755‑5949.2012.00340.x22686334
    [Google Scholar]
  61. NittaT. HataM. GotohS. SeoY. SasakiH. HashimotoN. FuruseM. TsukitaS. Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice.J. Cell Biol.2003161365366010.1083/jcb.20030207012743111
    [Google Scholar]
  62. JiaW. LuR. MartinT.A. JiangW.G. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (Review).Mol. Med. Rep.20149377978510.3892/mmr.2013.187524366267
    [Google Scholar]
  63. FeldmanG. MullinJ. RyanM. Occludin: Structure, function and regulation.Adv. Drug Deliv. Rev.200557688391710.1016/j.addr.2005.01.00915820558
    [Google Scholar]
  64. HajalC. Le RoiB. KammR.D. MaozB.M. Biology and models of the blood–brain barrier.Annu. Rev. Biomed. Eng.202123135938410.1146/annurev‑bioeng‑082120‑04281434255993
    [Google Scholar]
  65. BEGLEYD. J. Hypothalamic neuropeptides and the blood—brain barrier.Handbook of biologically active peptides Academic Press200614491474
    [Google Scholar]
  66. Campos-BedollaP. WalterF.R. VeszelkaS. DeliM.A. Role of the blood-brain barrier in the nutrition of the central nervous system.Arch. Med. Res.201445861063810.1016/j.arcmed.2014.11.01825481827
    [Google Scholar]
  67. McKINLEYM. I. Circumventricular Organs.The Human Nervous System201216415
    [Google Scholar]
  68. LiuX. TuM. KellyR.S. ChenC. SmithB.J. Development of a computational approach to predict blood-brain barrier permeability.Drug Metab. Dispos.200432113213910.1124/dmd.32.1.13214709630
    [Google Scholar]
  69. ClarkD.E. In silico prediction of blood–brain barrier permeation.Drug Discov. Today200382092793310.1016/S1359‑6446(03)02827‑714554156
    [Google Scholar]
  70. FischerH. GottschlichR. SeeligA. Blood-brain barrier permeation: Molecular parameters governing passive diffusion.J. Membr. Biol.1998165320121110.1007/s0023299004349767674
    [Google Scholar]
  71. TräubleH. The movement of molecules across lipid membranes: A molecular theory.J. Membr. Biol.19714119320810.1007/BF0243197124174239
    [Google Scholar]
  72. MarrinkS.J. JähnigF. BerendsenH.J. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations.Biophys. J.199671263264710.1016/S0006‑3495(96)79264‑08842203
    [Google Scholar]
  73. PardridgeW.M. MietusL.J. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone.J. Clin. Invest.197964114515410.1172/JCI109433447850
    [Google Scholar]
  74. DiamondJ.M. WrightE.M. Molecular forces governing non-electrolyte permeation through cell membranes.Proc. R. Soc. Lond., B196917110282733164388931
    [Google Scholar]
  75. GleesonM.P. Generation of a set of simple, interpretable ADMET rules of thumb.J. Med. Chem.200851481783410.1021/jm701122q18232648
    [Google Scholar]
  76. EilersM. RoyU. MondalD. MRP (ABCC) transporters-mediated efflux of anti-HIV drugs, saquinavir and zidovudine, from human endothelial cells.Exp. Biol. Med. (Maywood)200823391149116010.3181/0802‑RM‑5918535159
    [Google Scholar]
  77. FörsterF. VolzA. FrickerG. Compound profiling for ABCC2 (MRP2) using a fluorescent microplate assay system.Eur. J. Pharm. Biopharm.200869139640310.1016/j.ejpb.2007.10.00318024096
    [Google Scholar]
  78. GhoseA.K. ViswanadhanV.N. WendoloskiJ.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.J. Comb. Chem.199911556810.1021/cc980007110746014
    [Google Scholar]
  79. MillerD.S. Regulation of ABC transporters blood-brain barrier: The good, the bad, and the ugly.Adv. Cancer Res.2015125437010.1016/bs.acr.2014.10.00225640266
    [Google Scholar]
  80. ZlokovicB.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders.Nat. Rev. Neurosci.2011121272373810.1038/nrn311422048062
    [Google Scholar]
  81. CirritoJ.R. DeaneR. FaganA.M. SpinnerM.L. ParsadanianM. FinnM.B. JiangH. PriorJ.L. SagareA. BalesK.R. PaulS.M. ZlokovicB.V. Piwnica-WormsD. HoltzmanD.M. P-glycoprotein deficiency at the blood-brain barrier increases amyloid- deposition in an Alzheimer disease mouse model.J. Clin. Invest.2005115113285329010.1172/JCI2524716239972
    [Google Scholar]
  82. AgarwalS. HartzA.M. ElmquistW.F. BauerB. Breast cancer resistance protein and P-glycoprotein in brain cancer: Two gatekeepers team up.Curr. Pharm. Des.201117262793280210.2174/13816121179744018621827403
    [Google Scholar]
  83. RobertsL.M. BlackD.S. RamanC. WoodfordK. ZhouM. HaggertyJ.E. YanA.T. CwirlaS.E. GrindstaffK.K. Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral-spinal fluid barrier by in vivo biotinylation.Neuroscience2008155242343810.1016/j.neuroscience.2008.06.01518619525
    [Google Scholar]
  84. LinL. YeeS.W. KimR.B. GiacominiK.M. SLC transporters as therapeutic targets: Emerging opportunities.Nat. Rev. Drug Discov.201514854356010.1038/nrd462626111766
    [Google Scholar]
  85. OhtsukiS. TerasakiT. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; Importance for CNS drug discovery and development.Pharm. Res.20072491745175810.1007/s11095‑007‑9374‑517619998
    [Google Scholar]
  86. BegleyD.J. BrightmanM.W. Structural and functional aspects of the blood-brain barrier.Prog. Drug Res.200361397810.1007/978‑3‑0348‑8049‑7_214674608
    [Google Scholar]
  87. GlezerI. SimardA.R. RivestS. Neuroprotective role of the innate immune system by microglia.Neuroscience2007147486788310.1016/j.neuroscience.2007.02.05517459594
    [Google Scholar]
  88. EngelhardtB. WolburgH. Mini‐review: Transendothelial migration of leukocytes: Through the front door or around the side of the house?Eur. J. Immunol.200434112955296310.1002/eji.20042532715376193
    [Google Scholar]
  89. DavoustN. VuaillatC. AndrodiasG. NatafS. From bone marrow to microglia: Barriers and avenues.Trends Immunol.200829522723410.1016/j.it.2008.01.01018396103
    [Google Scholar]
  90. CarmanC.V. MartinelliR. T lymphocyte-endothelial interactions: Emerging understanding of trafcking and antigen-specifc immunity.Front. Immunol.2015660310.3389/fimmu.2015.0060326635815
    [Google Scholar]
  91. LarochelleC. CayrolR. KebirH. AlvarezJ.I. LécuyerM.A. IferganI. VielÉ. BourbonnièreL. BeauseigleD. TerouzS. HachehoucheL. GendronS. PoirierJ. JobinC. DuquetteP. FlanaganK. YednockT. ArbourN. PratA. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system.Brain2012135102906292410.1093/brain/aws21222975388
    [Google Scholar]
  92. CayrolR. WosikK. BerardJ.L. Dodelet-DevillersA. IferganI. KebirH. HaqqaniA.S. KreymborgK. KrugS. MoumdjianR. BouthillierA. BecherB. ArbourN. DavidS. StanimirovicD. PratA. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system.Nat. Immunol.20089213714510.1038/ni155118157132
    [Google Scholar]
  93. LiebnerS. DijkhuizenR.M. ReissY. PlateK.H. AgalliuD. ConstantinG. Functional morphology of the blood–brain barrier in health and disease.Acta Neuropathol.2018135331133610.1007/s00401‑018‑1815‑129411111
    [Google Scholar]
  94. WingerR.C. HarpC.T. ChiangM.Y. SullivanD.P. WatsonR.L. WeberE.W. PodojilJ.R. MillerS.D. MullerW.A. Cutting edge: CD99 is a novel therapeutic target for control of T cell-mediated central nervous system autoimmune disease.J. Immunol.201619641443144810.4049/jimmunol.150163426773145
    [Google Scholar]
  95. GabathulerR. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases.Neurobiol. Dis.2010371485710.1016/j.nbd.2009.07.02819664710
    [Google Scholar]
  96. EgletonR.D. DavisT.P. Development of neuropeptide drugs that cross the blood-brain barrier.NeuroRx200521445310.1602/neurorx.2.1.4415717056
    [Google Scholar]
  97. Mangas-SanjuanV. González-AlvarezM. Gonzalez-AlvarezI. BermejoM. Drug penetration across the blood-brain barrier: An overview.Ther. Deliv.20101453556210.4155/tde.10.3722833966
    [Google Scholar]
  98. ZhouY. PengZ. SevenE.S. LeblancR.M. Crossing the blood-brain barrier with nanoparticles.J. Control. Release201827029030310.1016/j.jconrel.2017.12.01529269142
    [Google Scholar]
  99. KhawliL.A. PrabhuS. Drug delivery across the blood-brain barrier.Mol. Pharm.20131051471147210.1021/mp400170b23641922
    [Google Scholar]
  100. BanksW.A. Characteristics of compounds that cross the blood-brain barrier.BMC Neurol.20099Suppl 1Suppl. 1S310.1186/1471‑2377‑9‑S1‑S319534732
    [Google Scholar]
  101. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  102. ClaudioP. ReatulK. BrigitteE. GeraldineP. Drug-delivery nanocarriers to cross the blood–brain barrier.Nanobiomaterials in Drug Delivery.William Andrew Publishing201633337010.1016/B978‑0‑323‑42866‑8.00010‑1
    [Google Scholar]
  103. KimJ. AhnS.I. KimY. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system.J. Ind. Eng. Chem.20197381810.1016/j.jiec.2019.01.02131588177
    [Google Scholar]
  104. A barrier to progress: getting drugs to the brain.Available from: https://pharmaceutical-journal.com/article/feature/a-barrier-to-progress-getting-drugs-to-the-brain
  105. PolA.G. BernatG. MortezaM. MarkusM. FannyG. MeritxellT. ErnestG. Lipid Bilayer Crossing-The Gate of Symmetry.Water-Soluble Phenylproline-Based Blood-Brain Barrier Shuttles2015
    [Google Scholar]
  106. WongA.D. YeM. LevyA.F. RothsteinJ.D. BerglesD.E. SearsonP.C. The blood-brain barrier: An engineering perspective.Front. Neuroeng.20136710.3389/fneng.2013.0000724009582
    [Google Scholar]
  107. TajesM. The blood-brain barrier: Structure, function and therapeutic approaches to cross it.Mol Membr Biol2014315152167
    [Google Scholar]
  108. MikitshJ. L. ChackoA. M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier.Perspect Med Chem20146PMC-S13384
    [Google Scholar]
  109. PatelM.M. GoyalB.R. BhadadaS.V. BhattJ.S. AminA.F. Getting into the brain.CNS Drugs2009231355810.2165/0023210‑200923010‑0000319062774
    [Google Scholar]
  110. JonesE.M. PoltR. CNS active O-linked glycopeptides.Front Chem.201534010.3389/fchem.2015.0004026157795
    [Google Scholar]
  111. NeuhausW. MandikovaJ. PawlowitschR. LinzB. Bennani-BaitiB. LauerR. LachmannB. NoeC.R. Blood-brain barrier in vitro models as tools in drug discovery: Assessment of the transport ranking of antihistaminic drugs.Pharmazie201267543243922764578
    [Google Scholar]
  112. Structure and function of capillaries.Available from: https://www.verywellhealth.com/what-is-the-blood-brain-barrier-3980707
  113. SweeneyM.D. ZhaoZ. MontagneA. NelsonA.R. ZlokovicB.V. Blood-brain barrier: From physiology to disease and back.Physiol. Rev.2019991217810.1152/physrev.00050.201730280653
    [Google Scholar]
  114. NationD.A. SweeneyM.D. MontagneA. SagareA.P. D’OrazioL.M. PachicanoM. SepehrbandF. NelsonA.R. BuennagelD.P. HarringtonM.G. BenzingerT.L.S. FaganA.M. RingmanJ.M. SchneiderL.S. MorrisJ.C. ChuiH.C. LawM. TogaA.W. ZlokovicB.V. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction.Nat. Med.201925227027610.1038/s41591‑018‑0297‑y30643288
    [Google Scholar]
  115. TarkowskiE. RosengrenL. BlomstrandC. WikkelsöC. JensenC. EkholmS. TarkowskiA. Intrathecal release of pro- and anti-inflammatory cytokines during stroke.Clin. Exp. Immunol.2003110349249910.1046/j.1365‑2249.1997.4621483.x9409656
    [Google Scholar]
  116. ZhangW. SmithC. ShapiroA. MonetteR. HutchisonJ. StanimirovicD. Increased expression of bioactive chemokines in human cerebromicrovascular endothelial cells and astrocytes subjected to simulated ischemia in vitro.J. Neuroimmunol.1999101214816010.1016/S0165‑5728(99)00137‑X10580798
    [Google Scholar]
  117. ZhangW. SmithC. HowlettC. StanimirovicD. Inflammatory activation of human brain endothelial cells by hypoxic astrocytes in vitro is mediated by IL-1beta.J. Cereb. Blood Flow Metab.200020696797810.1097/00004647‑200006000‑0000910894180
    [Google Scholar]
  118. BoltonS.J. AnthonyD.C. PerryV.H. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo.Neuroscience19988641245125710.1016/S0306‑4522(98)00058‑X9697130
    [Google Scholar]
  119. GroothuisD.R. VriesendorpF.J. KupferB. WarnkeP.C. LapinG.D. KuruvillaA. VickN.A. MikhaelM.A. PatlakC.S. Quantitative measurements of capillary transport in human brain tumors by computed tomography.Ann. Neurol.199130458158810.1002/ana.4103004111789685
    [Google Scholar]
  120. LongD.M. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors.J. Neurosurg.197032212714410.3171/jns.1970.32.2.01275411991
    [Google Scholar]
  121. LiebnerS. FischmannA. RascherG. DuffnerF. GroteE.H. KalbacherH. WolburgH. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme.Acta Neuropathol.2000100332333110.1007/s00401000018010965803
    [Google Scholar]
  122. PapadopoulosM.C. SaadounS. WoodrowC.J. DaviesD.C. Costa-MartinsP. MossR.F. KrishnaS. BellB.A. Occludin expression in microvessels of neoplastic and non‐neoplastic human brain.Neuropathol. Appl. Neurobiol.200127538439510.1046/j.0305‑1846.2001.00341.x11679090
    [Google Scholar]
  123. de VriesH.E. Blom-RoosemalenM.C.M. OostenM. de BoerA.G. van BerkelT.J.C. BreimerD.D. KuiperJ. The influence of cytokines on the integrity of the blood-brain barrier in vitro.J. Neuroimmunol.1996641374310.1016/0165‑5728(95)00148‑48598388
    [Google Scholar]
  124. SaadounS. PapadopoulosM.C. DaviesD.C. KrishnaS. BellB.A. Aquaporin-4 expression is increased in oedematous human brain tumours.J. Neurol. Neurosurg. Psychiatry200272226226510.1136/jnnp.72.2.26211796780
    [Google Scholar]
  125. TaniguchiM. YamashitaT. KumuraE. TamataniM. KobayashiA. YokawaT. MarunoM. KatoA. OhnishiT. KohmuraE. TohyamaM. YoshimineT. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat.Brain Res. Mol. Brain Res.2000781-213113710.1016/S0169‑328X(00)00084‑X10891592
    [Google Scholar]
  126. VizueteM.L. VeneroJ.L. VargasC. IlundáinA.A. EchevarraM. MachadoA. CanoJ. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: Potential role in brain edema.Neurobiol. Dis.19996424525810.1006/nbdi.1999.024610448052
    [Google Scholar]
  127. SharerL.R. Pathology of HIV-1 infection of the central nervous system. A review.J. Neuropathol. Exp. Neurol.199251131110.1097/00005072‑199201000‑000021740672
    [Google Scholar]
  128. JohnsonR.T. McArthurJ.C. NarayanO. The neurobiology of human immunodeficiency virus infections.FASEB J.19882142970298110.1096/fasebj.2.14.28463952846395
    [Google Scholar]
  129. PetitoC.K. CashK.S. Blood‐brain barrier abnormalities in acquired immunodeficiency syndrome: Immunohistochemical localization of serum proteins in postmortem brain.Ann. Neurol.199232565866610.1002/ana.4103205091449246
    [Google Scholar]
  130. DallastaL.M. PisarovL.A. EsplenJ.E. WerleyJ.V. MosesA.V. NelsonJ.A. AchimC.L. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis.Am. J. Pathol.199915561915192710.1016/S0002‑9440(10)65511‑310595922
    [Google Scholar]
  131. ToneattoS. FincoO. van der PuttenH. AbrignaniS. AnnunziataP. Evidence of blood-brain barrier alteration and activation in HIV-1 gp120 transgenic mice.AIDS199913172343234810.1097/00002030‑199912030‑0000510597775
    [Google Scholar]
  132. CioniC. AnnunziataP. Circulating gp120 alters the blood–brain barrier permeability in HIV-1 gp120 transgenic mice.Neurosci. Lett.2002330329930110.1016/S0304‑3940(02)00814‑512270651
    [Google Scholar]
  133. HuangM.B. HunterM. BondV.C. Effect of extracellular human immunodeficiency virus type 1 glycoprotein 120 on primary human vascular endothelial cell cultures.AIDS Res. Hum. Retroviruses199915141265127710.1089/08892229931016010505675
    [Google Scholar]
  134. LouboutinJ.P. StrayerD.S. Blood-brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications.ScientificWorldJournal2012201211510.1100/2012/48257522448134
    [Google Scholar]
  135. GiulianD. HaverkampL.J. LiJ. KarshinW.L. YuJ. TomD. LiX. KirkpatrickJ.B. Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain.Neurochem. Int.199527111913710.1016/0197‑0186(95)00067‑I7655344
    [Google Scholar]
  136. KlegerisA. McGeerP.L. ? -Amyloid protein enhances macrophage production of oxygen free radicals and glutamate.J. Neurosci. Res.199749222923510.1002/(SICI)1097‑4547(19970715)49:2<229::AID‑JNR11>3.0.CO;2‑W9272645
    [Google Scholar]
  137. AkamaK.T. AlbaneseC. PestellR.G. Van EldikL.J. Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism.Proc. Natl. Acad. Sci. USA199895105795580010.1073/pnas.95.10.57959576964
    [Google Scholar]
  138. SivandzadeF. PrasadS. BhaleraoA. CuculloL. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches.Redox Biol.20192110105910.1016/j.redox.2018.11.01730576920
    [Google Scholar]
  139. ZhaoZ. SagareA.P. MaQ. HallidayM.R. KongP. KislerK. WinklerE.A. RamanathanA. KanekiyoT. BuG. OwensN.C. RegeS.V. SiG. AhujaA. ZhuD. MillerC.A. SchneiderJ.A. MaedaM. MaedaT. SugawaraT. IchidaJ.K. ZlokovicB.V. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance.Nat. Neurosci.201518797898710.1038/nn.402526005850
    [Google Scholar]
  140. LambertJ.C. HeathS. EvenG. CampionD. SleegersK. HiltunenM. CombarrosO. ZelenikaD. BullidoM.J. TavernierB. LetenneurL. BettensK. BerrC. PasquierF. FiévetN. Barberger-GateauP. EngelborghsS. De DeynP. MateoI. FranckA. HelisalmiS. PorcelliniE. HanonO. de PancorboM.M. LendonC. DufouilC. JaillardC. LeveillardT. AlvarezV. BoscoP. MancusoM. PanzaF. NacmiasB. BossùP. PiccardiP. AnnoniG. SeripaD. GalimbertiD. HannequinD. LicastroF. SoininenH. RitchieK. BlanchéH. DartiguesJ.F. TzourioC. GutI. Van BroeckhovenC. AlpérovitchA. LathropM. AmouyelP. European Alzheimer’s Disease Initiative Investigators Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease.Nat. Genet.200941101094109910.1038/ng.43919734903
    [Google Scholar]
  141. BellR.D. WinklerE.A. SinghI. SagareA.P. DeaneR. WuZ. HoltzmanD.M. BetsholtzC. ArmulikA. SallstromJ. BerkB.C. ZlokovicB.V. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A.Nature2012485739951251610.1038/nature1108722622580
    [Google Scholar]
  142. CorrealeJ. VillaA. The blood–brain-barrier in multiple sclerosis: Functional roles and therapeutic targeting.Autoimmunity200740214816010.1080/0891693060118352217453713
    [Google Scholar]
  143. KaurC. LingE. Blood brain barrier in hypoxic-ischemic conditions.Curr. Neurovasc. Res.200851718110.2174/15672020878356564518289024
    [Google Scholar]
  144. DesaiB.S. MonahanA.J. CarveyP.M. HendeyB. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: Implications for drug therapy.Cell Transplant.200716328529910.3727/00000000778346473117503739
    [Google Scholar]
  145. RemyS. BeckH. Molecular and cellular mechanisms of pharmacoresistance in epilepsy.Brain20061291183510.1093/brain/awh68216317026
    [Google Scholar]
  146. BrongerH. KönigJ. KopplowK. SteinerH.H. AhmadiR. Herold-MendeC. KepplerD. NiesA.T. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier.Cancer Res.20056524114191142810.1158/0008‑5472.CAN‑05‑127116357150
    [Google Scholar]
  147. GrieshaberM.C. FlammerJ. Does the blood-brain barrier play a role in Glaucoma?Surv. Ophthalmol.2007526Suppl. 2S115S12110.1016/j.survophthal.2007.08.00517998035
    [Google Scholar]
  148. BegleyD. PontikisC. ScarpaM. Lysosomal storage diseases and the blood-brain barrier.Curr. Pharm. Des.200814161566158010.2174/13816120878470550418673198
    [Google Scholar]
  149. MoyaM.L. TriplettM. SimonM. AlvaradoJ. BoothR. OsburnJ. SosciaD. QianF. FischerN.O. KulpK. WheelerE.K. A reconfgurable in vitro model for studying the blood–brain barrier.Ann. Biomed. Eng.202048278079310.1007/s10439‑019‑02405‑y31741228
    [Google Scholar]
  150. PersidskyY. RamirezS.H. HaorahJ. KanmogneG.D. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions.J. Neuroimmune Pharmacol.20061322323610.1007/s11481‑006‑9025‑318040800
    [Google Scholar]
  151. VishwakarmaS. SinghS. SinghT.G. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis.Mol. Biol. Rep.20224921437145210.1007/s11033‑021‑06896‑834751915
    [Google Scholar]
  152. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma1503080435160749
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249297247240813104929
Loading
/content/journals/cnsamc/10.2174/0118715249297247240813104929
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Blood brain barrier; CNS; glial cells; pericytes; tight junctions; transport
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test