Skip to content
2000
Volume 6, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Oxidative stress-induced cerebral endothelial cell dysfunction is associated with cerebral microvascular complication of primary diabetic encephaolopathy, a neurodegenerative disorder of long-standing diabetes, but the injury mechanisms are poorly understood. This study sought to determine the contribution of carbonyl (methylglyoxal, MG) stress to human brain endothelial cell (IHEC) apoptosis, the relationship to cellular redox status and mitochondrial membrane potential, and the protection by thiol antioxidant and insulin sensitizers. MG exposure induced IHEC apoptosis in association with perturbed cellular glutathione (GSH) redox status, decreased mitochondrial membrane potential (Δψm), activation of caspase-9 and -3, and cleavage of polyADP-ribose polymerase. Insulin sensitizers such as biguanides or AMP-activated protein kinase activator, but not glitazones, afforded cytoprotection through preventing Δψm collapse and activation of caspase-9 that was independent of cellular GSH. Similarly, cyclosporine A prevented Δψm collapse, while Nacetylcysteine (NAC) mediated the recovery of cellular GSH redox balance that secondarily preserved Δψm. Collectively, these results provide mechanistic insights into the role of GSH redox status and mitochondrial potential in carbonyl stressinduced apoptosis of brain endothelial cells, with implications for cerebral microvascular complications associated with primary diabetic encephalopathy. The findings that thiol antioxidant and insulin sensitizers afforded cytoprotection suggest potential therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/156720209789630348
2009-11-01
2025-05-06
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/156720209789630348
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test