Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202621999240621122700
2024-06-21
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/cnr/21/3/CNR-21-3-01.html?itemId=/content/journals/cnr/10.2174/1567202621999240621122700&mimeType=html&fmt=ahah

References

  1. ChenX. JiangL. ZhouZ. YangB. HeQ. ZhuC. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer.Front. Pharmacol.202213928794
    [Google Scholar]
  2. FoserS. MaieseK. DigumarthyS.R. Puig-ButilleJ.A. RebhanC. Looking to the Future of Early Detection in Cancer: Liquid Biopsies, Imaging, and Artificial Intelligence.Clin. Chem.20247012732
    [Google Scholar]
  3. HsuN.W. ChouK.C. WangY.T. HungC.L. KuoC.F. TsaiS.Y. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing.J. Transl. Med.2022201190
    [Google Scholar]
  4. SinghaM. PuL. SrivastavaG. NiX. StanfieldB.A. UcheI.K. Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer.Cancers20231516
    [Google Scholar]
  5. BerschneiderB. EllwangerD.C. BaarsmaH.A. ThielC. ShimboriC. WhiteE.S. miR-92a regulates TGF-beta1-induced WISP1 expression in pulmonary fibrosis.Int. J. Biochem. Cell Biol.201453432441
    [Google Scholar]
  6. EhtewishH. MeslehA. PonirakisG. De la FuenteA. ParrayA. BensmailI. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia.Int. J. Mol. Sci.2023249
    [Google Scholar]
  7. JainS. A Computational Model for Detection of Lung Diseases Due to Forkhead Transcription Factors. Emergent Converging Technologies and Biomedical Systems.Lecture Notes in Electrical Engineering, Springer Singapore20227181
    [Google Scholar]
  8. TianL. WuW. YuT. Graph Random Forest: A Graph Embedded Algorithm for Identifying Highly Connected Important Features.Biomolecules2023137
    [Google Scholar]
  9. MaieseK. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR.Neural Regen. Res.2016113372385
    [Google Scholar]
  10. MaieseK. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways.Expert Rev. Clin. Pharmacol.20201312334
    [Google Scholar]
  11. MaieseK. ChongZ.Z. ShangY.C. WangS. Targeting disease through novel pathways of apoptosis and autophagy.Expert Opin. Ther. Targets2012161212031214
    [Google Scholar]
  12. MaieseK. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk.Frontiers in immunology202314Nov 031273570
    [Google Scholar]
  13. MaieseK. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK.Cells202312222595
    [Google Scholar]
  14. YegerH. CCN proteins: opportunities for clinical studies-a personal perspective.J. Cell Commun. Signal.2023172333352
    [Google Scholar]
  15. LiY. WangF. LiuT. LvN. YuanX. LiP. WISP1 induces ovarian cancer via the IGF1/alphavbeta3/Wnt axis.J. Ovarian Res.202215194
    [Google Scholar]
  16. LiuD. ZhangM. TianJ. GaoM. LiuM. FuX. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway.J. Hypertens.202240916661681
    [Google Scholar]
  17. LiuL. XuS. LiP. LiL. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway.Obes. Res. Clin. Pract.2022162122129
    [Google Scholar]
  18. MaieseK. Wnt Signaling and WISP1 (CCN4): Critical Components in Neurovascular Disease, Blood Brain Barrier Regulation, and Cerebral Hemorrhage.Curr. Neurovasc. Res.2022194379382
    [Google Scholar]
  19. MaieseK. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease.Int. Rev. Neurobiol.2020155135
    [Google Scholar]
  20. MaieseK. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm.Front. Biosci. (Landmark edition).2021269614627
    [Google Scholar]
  21. MaieseK. LiF. ChongZ.Z. ShangY.C. The Wnt signaling pathway: aging gracefully as a protectionist?Pharmacol. Ther.200811815881
    [Google Scholar]
  22. WetzelA. LeiS.H. LiuT. HughesM.P. PengY. McKayT. Dysregulated Wnt and NFAT signaling in a Parkinson’s disease LRRK2 G2019S knock-in model.Sci. Rep.202414112393
    [Google Scholar]
  23. ZhangM. LiuQ. MengH. DuanH. LiuX. WuJ. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.20249112
    [Google Scholar]
  24. DongL. HouB. LiuC. MaoC. HuangX. ShangL. Association Between Wnt Target Genes and Cortical Volumes in Alzheimer’s Disease.J. Mol. Neurosci.20237311-1210101016
    [Google Scholar]
  25. GuoT. ChenM. LiuJ. WeiZ. YuanJ. WuW. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia.J. Transl. Med.2023211297
    [Google Scholar]
  26. MehraS. AhsanA.U. SharmaM. BudhwarM. ChopraM. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism.Mol. Neurobiol.2023
    [Google Scholar]
  27. Sierra-PaganJ.E. DsouzaN. DasS. LarsonT.A. SorensenJ.R. MaX. FOXK1 regulates Wnt signalling to promote cardiogenesis.Cardiovasc. Res.2023119817281739
    [Google Scholar]
  28. GaoJ. XuH. RongZ. ChenL. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries.Bioengineered20221351240912420
    [Google Scholar]
  29. ChenY. HuangC. ZhuS.Y. ZouH.C. XuC.Y. ChenY.X. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/beta-catenin through regulating miR-126/Klotho/SIRT1 axis.Mol. Cell. Biochem.20214761035513561
    [Google Scholar]
  30. MaieseK. The bright side of reactive oxygen species: lifespan extension without cellular demise.J. Transl. Sci.201623185187
    [Google Scholar]
  31. MaieseK. Disease onset and aging in the world of circular RNAs.J. Transl. Sci.201626327329
    [Google Scholar]
  32. MaieseK. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease.Curr. Neurovasc. Res.20171418288
    [Google Scholar]
  33. MaieseK. ChongZ.Z. WangS. ShangY.C. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade.Int. J. Mol. Sci.201213111383013866
    [Google Scholar]
  34. MaieseK. WISP1: Clinical insights for a proliferative and restorative member of the CCN family.Curr. Neurovasc. Res.2014114378389
    [Google Scholar]
  35. MaieseK. Stem cell guidance through the mechanistic target of rapamycin.World J. Stem Cells2015779991009
    [Google Scholar]
  36. Sanabria-de la TorreR. Garcia-FontanaC. Gonzalez-SalvatierraS. Andujar-VeraF. Martinez-HerediaL. Garcia-FontanaB. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus.Int. J. Mol. Sci.202223136995
    [Google Scholar]
  37. WrightL.H. HerrD.J. BrownS.S. KasiganesanH. MenickD.R. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling.JCI Insight201834
    [Google Scholar]
  38. MaieseK. Innovative therapeutic strategies for cardiovascular disease.EXCLI J.202322690715
    [Google Scholar]
  39. LiuY. QinW. ZhangF. WangJ. LiX. LiS. Association between WNT-1-inducible signaling pathway protein-1 (WISP1) genetic polymorphisms and the risk of gastric cancer in Guangxi Chinese.Cancer Cell Int.2021211405
    [Google Scholar]
  40. LiuY. YaoJ. Research progress of cystatin SN in cancer.OncoTargets and Ther.20191234113419
    [Google Scholar]
  41. MaD. HouL. XiaH. LiH. FanH. JiaX. PER2 inhibits proliferation and stemness of glioma stem cells via the Wnt/beta-catenin signaling pathway.Oncol. Rep.2020442533542
    [Google Scholar]
  42. MaieseK. Novel Stem Cell Strategies with mTOR. Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies.Academic Press, Elsevier2016322
    [Google Scholar]
  43. MaieseK. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.Curr. Neurovasc. Res.2017143299304
    [Google Scholar]
  44. MaieseK. Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus.Curr. Neurovasc. Res.2020173327331
    [Google Scholar]
  45. MaieseK. ChongZ.Z. ShangY.C. WangS. Novel directions for diabetes mellitus drug discovery.Expert Opin. Drug Discov.2013813548
    [Google Scholar]
  46. MaltsevaD. RaygorodskayaM. KnyazevE. ZgodaV. TikhonovaO. ZaidiS. Knockdown of the alpha5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy.Biochimie2020174107116
    [Google Scholar]
  47. OzalpO. CarkO. AzbazdarY. HaykirB. CucunG. KucukaylakI. Nradd Acts as a Negative Feedback Regulator of Wnt/beta-Catenin Signaling and Promotes Apoptosis.Biomolecules2021111
    [Google Scholar]
  48. WangY. YangS.H. HsuP.W. ChienS.Y. WangC.Q. SuC.M. Impact of WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of breast cancer.Medicine20199844e17854
    [Google Scholar]
  49. ZhangY. TianJ. QuC. PengY. LeiJ. SunL. A look into the link between centrosome amplification and breast cancer.Biomed. Pharmacother.2020132110924
    [Google Scholar]
  50. ZhengY. SukochevaO. TseE. NeganovaM. AleksandrovaY. ZhaoR. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies.Am. J. Cancer Res.2023131261476175
    [Google Scholar]
  51. ZhuY. LiW. YangY. LiY. ZhaoY. WISP1 indicates poor prognosis and regulates cell proliferation and apoptosis in gastric cancer via targeting AKT/mTOR signaling pathway.Am. J. Transl. Res.2020121172977311
    [Google Scholar]
  52. Gonzalez-FernandezC. GonzalezP. Gonzalez-PerezF. RodriguezF.J. Characterization of Ex Vivo and In Vitro Wnt Transcriptome Induced by Spinal Cord Injury in Rat Microglial Cells.Brain Sci.2022126708
    [Google Scholar]
  53. HanX.R. WenX. WangY.J. WangS. ShenM. ZhangZ.F. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/beta-catenin signalling pathway.J. Cell. Mol. Med.201822631673182
    [Google Scholar]
  54. HeW. LuQ. SherchanP. HuangL. HuX. ZhangJ.H. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/beta-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice.Fluids Barriers CNS202118144
    [Google Scholar]
  55. MaieseK. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia.J. Transl. Sci.201624241247
    [Google Scholar]
  56. MaieseK. Erythropoietin and mTOR: A “One-Two Punch” for Aging-Related Disorders Accompanied by Enhanced Life Expectancy.Curr. Neurovasc. Res.2016134329340
    [Google Scholar]
  57. PaulR. BapatP. DeogharkarA. KaziS. SinghS.K.V. GuptaT. MiR-592 activates the mTOR kinase, ERK1/ERK2 kinase signaling and imparts neuronal differentiation signature characteristic of Group 4 medulloblastoma.Hum. Mol. Genet.2021302424162428
    [Google Scholar]
  58. XuJ.X. FangK. GaoX.R. LiuS. GeJ.F. Resveratrol Protects SH-SY5Y Cells Against Oleic Acid-Induced Glucolipid Metabolic Dysfunction and Cell Injuries Via the Wnt/beta-Catenin Signalling Pathway.Neurochem. Res.2021461129362947
    [Google Scholar]
  59. MaieseK. Charting a course for erythropoietin in traumatic brain injury.J. Transl. Sci.201622140144
    [Google Scholar]
  60. TaniokaM. ParkW.K. ShimI. KimK. ChoiS. KimU.J. Neuroprotection from Excitotoxic Injury by Local Administration of Lipid Emulsion into the Brain of Rats.Int. J. Mol. Sci.2020218
    [Google Scholar]
  61. ValleeA. ValleeJ.N. LecarpentierY. Parkinson’s Disease: Potential Actions of Lithium by Targeting the WNT/beta-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway.Cells2021102
    [Google Scholar]
  62. KlimontovV.V. BulumbaevaD.M. FazullinaO.N. LykovA.P. BgatovaN.P. OrlovN.B. Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes.J. Cell Commun. Signal.2020141101109
    [Google Scholar]
  63. LiuJ.J. ShentuL.M. MaN. WangL.Y. ZhangG.M. SunY. Inhibition of NF-kappaB and Wnt/beta-catenin/GSK3beta Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats.Curr. Med. Sci.20204013547
    [Google Scholar]
  64. LiuL. HuJ. YangL. WangN. LiuY. WeiX. Association of WISP1/CCN4 with Risk of Overweight and Gestational Diabetes Mellitus in Chinese Pregnant Women.Dis. Markers202020204934206
    [Google Scholar]
  65. MaieseK. New Insights for Oxidative Stress and Diabetes Mellitus.Oxid Med Cell Longev.201520152015:875961875961
    [Google Scholar]
  66. MaieseK. Erythropoietin and diabetes mellitus.World J. Diabetes201561412591273
    [Google Scholar]
  67. MaieseK. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR.Frontiers in bioscience (Landmark edition)2020251119251973
    [Google Scholar]
  68. NieX. WeiX. MaH. FanL. ChenW.D. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications.J. Cell. Mol. Med.2021251464796495
    [Google Scholar]
  69. Sahin ErsoyG. Altun EnsariT. SubasS. GirayB. SimsekE.E. CevikO. WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus.J. Matern. Fetal Neonatal Med.2017308942946
    [Google Scholar]
  70. WangH. ZhangR. WuX. ChenY. JiW. WangJ. The Wnt Signaling Pathway in Diabetic Nephropathy.Front. Cell Dev. Biol.20219701547
    [Google Scholar]
  71. CascianoF. ZauliE. CeleghiniC. CarusoL. GonelliA. ZauliG. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease.Int. J. Mol. Sci.20242531689
    [Google Scholar]
  72. Fessel J. Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1.Int. J. Mol. Sci.2024257
    [Google Scholar]
  73. IbrahimW.W. SayedR.H. AbdelhameedM.F. OmaraE.A. NassarM.I. AbdelkaderN.F. Neuroprotective potential of Erigeron bonariensis ethanolic extract against ovariectomized/D-galactose-induced memory impairments in female rats in relation to its metabolite fingerprint as revealed using UPLC/MS.Inflammopharmacology202432210911112
    [Google Scholar]
  74. KwokI. LattieE.G. YangD. SummersA. CottenP. LeongC.A. Developing Social Enhancements for a Web-Based, Positive Emotion Intervention for Alzheimer Disease Caregivers: Qualitative Focus Group and Interview Study.JMIR Form. Res.20248e50234
    [Google Scholar]
  75. Trujillo-RangelW.A. Acuna-VacaS. Padilla-PonceD.J. Garcia-MercadoF.G. Torres-MendozaB.M. Pacheco-MoisesF.P. Modulation of the Circadian Rhythm and Oxidative Stress as Molecular Targets to Improve Vascular Dementia: A Pharmacological Perspective.Int. J. Mol. Sci.20242584401
    [Google Scholar]
  76. JahanR. YousafM. KhanH. ShahS.A. KhanA.A. BibiN. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice.Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology.2023181-2183194
    [Google Scholar]
  77. MaieseK. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System.Biomolecules2023135816
    [Google Scholar]
  78. MaieseK. Cognitive Impairment in Multiple Sclerosis.Bioengineering (Basel)2023107871
    [Google Scholar]
  79. MatysekA. SunL. KimmantudawageS.P. FengL. MaierA.B. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review.Ageing Res. Rev.202390102029
    [Google Scholar]
  80. MishraP. DaviesD.A. AlbensiB.C. The Interaction Between NF-kappaB and Estrogen in Alzheimer’s Disease.Mol. Neurobiol.202360315151526
    [Google Scholar]
  81. UllahH. HussainA. AsifM. NawazF. RasoolM. Natural Products as Bioactive Agents in the Prevention of Dementia.CNS Neurol. Disord. Drug Targets2023224466476
    [Google Scholar]
  82. WangQ. ZhengJ. PetterssonS. ReynoldsR. TanE.K. The link between neuroinflammation and the neurovascular unit in synucleinopathies.Sci. Adv.202397eabq1141
    [Google Scholar]
  83. XuY. WangY. JiangY. LiuM. ZhongW. GeZ. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease.Front. Aging Neurosci.2023151174541
    [Google Scholar]
  84. MaieseK. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders.Biochem. Soc. Trans.2018462351360
    [Google Scholar]
  85. MaieseK. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock.Neural Regen. Res.2019145773774
    [Google Scholar]
  86. MaieseK. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes.Curr. Neurovasc. Res.2020175765783
    [Google Scholar]
  87. MaieseK. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways.Biomolecules20211171002
    [Google Scholar]
  88. ChengX. SongC. DuY. GaurU. YangM. Pharmacological Treatment of Alzheimer’s Disease: Insights from Drosophila melanogaster.Int. J. Mol. Sci.202021134621
    [Google Scholar]
  89. FengH. XueM. DengH. ChengS. HuY. ZhouC. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment.Biomolecules20221291310
    [Google Scholar]
  90. Gonzalo-GobernadoR. PeruchoJ. Vallejo-MunozM. CasarejosM.J. ReimersD. Jimenez-EscrigA. Liver Growth Factor “LGF” as a Therapeutic Agent for Alzheimer’s Disease.Int. J. Mol. Sci.202021239201
    [Google Scholar]
  91. HsiehC.F. LiuC.K. LeeC.T. YuL.E. WangJ.Y. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation.Sci. Rep.201991840
    [Google Scholar]
  92. HuZ. JiaoR. WangP. ZhuY. ZhaoJ. De JagerP. Shared Causal Paths underlying Alzheimer’s dementia and Type 2 Diabetes.Sci. Rep.20201014107
    [Google Scholar]
  93. MovahedpourA. VakiliO. KhalifehM. MousaviP. MahmoodzadehA. Taheri-AnganehM. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy.Cell Biochem. Funct.2022403232247
    [Google Scholar]
  94. OjoJ.O. ReedJ.M. CrynenG. VallabhaneniP. EvansJ. ShackletonB. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer’s disease and age-matched non-demented brains.Mol. Brain2021141110
    [Google Scholar]
  95. SharmaV.K. SinghT.G. SinghS. GargN. DhimanS. Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic Potential.Neurochem. Res.2021461231033122
    [Google Scholar]
  96. TonioloS. ScarioniM. Di LorenzoF. HortJ. GeorgesJ. TomicS. Dementia and COVID-19, a Bidirectional Liaison: Risk Factors, Biomarkers, and Optimal Health Care.J. Alzheimers Dis.2021823883898
    [Google Scholar]
  97. CastellanoG. EspositoA. MirizioM. MontanaroG. VessioG. Detection of Dementia Through 3D Convolutional Neural Networks Based on Amyloid PET.2021 IEEE Symposium Series on Computational Intelligence (SSCI)Orlanso, FL, USA2021202116
    [Google Scholar]
  98. JoT. NhoK. RisacherS.L. SaykinA.J. Alzheimer’s Neuroimaging I. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification.BMC Bioinformatics202021Suppl. 21496
    [Google Scholar]
  99. MaieseK. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss.Curr. Neurovasc. Res.2017144415420
    [Google Scholar]
  100. MaieseK. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer’s Disease.Curr. Neurovasc. Res.2018154367371
    [Google Scholar]
  101. QuerfurthH. LeeH.K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration.Mol. Neurodegener.202116144
    [Google Scholar]
  102. SkillbackT. BlennowK. ZetterbergH. ShamsS. MachadoA. PereiraJ. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity.Alzheimers Dement. (Amst.)2021131e12141
    [Google Scholar]
  103. AhmadR. KhanA. RehmanI.U. LeeH.J. KhanI. KimM.O. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury.Int. J. Mol. Sci.202223116086
    [Google Scholar]
  104. DhakalS. KushairiN. PhanC.W. AdhikariB. SabaratnamV. MacreadieI. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer’s Disease.Int. J. Mol. Sci.201920205090
    [Google Scholar]
  105. EnginA.B. EnginA. Alzheimer’s Disease and Protein Kinases.Adv. Exp. Med. Biol.20211275285321
    [Google Scholar]
  106. MinA.Y. YooJ.M. SokD.E. KimM.R. Mulberry Fruit Prevents Diabetes and Diabetic Dementia by Regulation of Blood Glucose through Upregulation of Antioxidative Activities and CREB/BDNF Pathway in Alloxan-Induced Diabetic Mice.Oxid. Med. Cell. Longev.202020201298691
    [Google Scholar]
  107. PerluigiM. Di DomenicoF. BaroneE. ButterfieldD.A. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder.Free Radic. Biol. Med.2021169382396
    [Google Scholar]
  108. RehmanI.U. KhanA. AhmadR. ChoeK. ParkH.Y. LeeH.J. Neuroprotective Effects of Nicotinamide against MPTP-Induced Parkinson’s Disease in Mice: Impact on Oxidative Stress, Neuroinflammation, Nrf2/HO-1 and TLR4 Signaling Pathways.Biomedicines202210112929
    [Google Scholar]
  109. MaieseK. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease.Curr. Neurovasc. Res.2023203314333
    [Google Scholar]
  110. MaieseK. Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease.J. Transl. Sci.2016138385
    [Google Scholar]
  111. SunC. BaiS. LiangY. LiuD. LiaoJ. ChenY. The role of Sirtuin 1 and its activators in age-related lung disease.Biomed. Pharmacother.2023162114573
    [Google Scholar]
  112. DesaiS.C. MacrinA.D. SenthilvelanT. PandaR.C. Identification of genes associated with accelerated biological ageing through computational analysis: a systematic review.Biotechnol. Bioprocess Eng.; BBE2024
    [Google Scholar]
  113. DhillonV.S. ShahidM. DeoP. FenechM. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men.Int. J. Mol. Sci.2024252718
    [Google Scholar]
  114. EsmaeiliM Nasr-EsfahaniMH Shoaraye NejatiA SafaeinejadZ AtefiA T LM, et al. PPARgamma dependent PEX11beta counteracts the suppressive role of SIRT1 on neural differentiation of HESCs.PLoS One2024195e0298274
    [Google Scholar]
  115. FaridH.A. SayedR.H. El-ShamarkaM.E. Abdel-SalamO.M.E. El SayedN.S. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats.Inflammopharmacology202432214211437
    [Google Scholar]
  116. GolatkarV BhattLK Artesunate attenuates isoprenaline induced cardiac hypertrophy in rats via SIRT1 inhibiting NF-kappaB activation. Eur J Pharmacol.2024 (June 4)176709
  117. PandaramA. PaulJ. WankharW. ThakurA. VermaS. VasudevanK. Aspartame Causes Developmental Defects and Teratogenicity in Zebra Fish Embryo: Role of Impaired SIRT1/FOXO3a Axis in Neuron Cells.Biomedicines2024124855
    [Google Scholar]
  118. RamadhanA.Y. SoetiknoV. Molecular Adaptation of Cardiac Remodeling in Metabolic Syndrome: Focus on AMPK, SIRT1 and PGC-1a.Molecular and Cellular Biomedical Sciences.2024811522
    [Google Scholar]
  119. SedikAA ElgoharyR KhalifaE KhalilWKB H IS, M BS, et al. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats.Toxicol. Mech. Methods2024344454467
    [Google Scholar]
  120. MaieseK. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.Br. J. Clin. Pharmacol.201682512451266
    [Google Scholar]
  121. MaieseK. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1.Neural Regen. Res.2021163448455
    [Google Scholar]
  122. XiaoX. FengH. LiaoY. TangH. LiL. LiK. Identification of key circadian rhythm genes in skin aging based on bioinformatics and machine learning.Aging (Albany NY)202315201167211689
    [Google Scholar]
  123. BellantiF. IannelliG. BlondaM. TamborraR. VillaniR. RomanoA. Alterations of Clock Gene RNA Expression in Brain Regions of a Triple Transgenic Model of Alzheimer’s Disease.J. Alzheimers Dis.2017592615631
    [Google Scholar]
  124. BelletM.M. MasriS. AstaritaG. Sassone-CorsiP. Della FaziaM.A. ServilloG. Histone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice.J. Biol. Chem.2016291442331823329
    [Google Scholar]
  125. FangM. Ohman StricklandP.A. KangH.G. ZarblH. Uncoupling genotoxic stress responses from circadian control increases susceptibility to mammary carcinogenesis.Oncotarget20178203275232768
    [Google Scholar]
  126. LiuZ. GanL. ZhangT. RenQ. SunC. Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice.J. Pineal Res.201864112455
    [Google Scholar]
  127. MaieseK. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors.Curr. Neurovasc. Res.20181518191
    [Google Scholar]
  128. SanchezD.I. Gonzalez-FernandezB. CrespoI. San-MiguelB. AlvarezM. Gonzalez-GallegoJ. Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma.J. Pineal Res.2018653e12506
    [Google Scholar]
  129. SatoS. SolanasG. PeixotoF.O. BeeL. SymeonidiA. SchmidtM.S. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.Cell2017170466477 e11
    [Google Scholar]
/content/journals/cnr/10.2174/1567202621999240621122700
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test