Skip to content
2000
image of Electroacupuncture Serum Protects Blood-brain Barrier Damage after Ischemic Stroke BY Regulating the Pericytes in vitro

Abstract

Background

Electroacupuncture (EA) exerts a protective role in Blood-Brain Barrier (BBB) damage after ischemic stroke, but whether this effect involves the regulation of the pericytes is unclear.

Methods

The BBB models were established with brain microvascular endothelial cells (BMECs) and pericytes, and the co-cultured cells were randomly divided into three groups: the control group, oxygen-glucose deprivation/reoxygenation (OGD/R) group and EA group. OGD/R was performed to simulate cerebral ischemia-reperfusion . EA serum was prepared by EA treatment at the “Renzhong” (GV26) and “Baihui” (GV20) acupoints in middle cerebral artery occlusion/reperfusion rats. Furthermore, the characteristics of BMECs and pericytes were identified with immunohistochemistry staining. The cell morphology of the BBB model was observed using an inverted microscope. The function of BBB was measured with transendothelial electrical resistance (TEER) and sodium fluorescein, and the viability, apoptosis, and migration of pericytes were detected by cell counting kit-8, flow cytometry, and Transwell migration assay.

Results

BMECs were positive staining for Factor-VIII, and pericytes were positive staining for the α-SMA and NG2. EA serum improved cell morphology of the BBB model increased TEER, and decreased sodium fluorescein in OGD/R condition. Besides, EA serum alleviated pericytes” apoptosis rate and migration number, and enhanced pericytes' viability rate in OGD/R condition.

Conclusion

EA serum protects against BBB damage induced by OGD/R , and this protection might be achieved by attenuating pericytes apoptosis and migration, as well as enhancing pericytes viability. The findings provided new evidence for EA as a medical therapy for ischemic stroke.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026361204241115112340
2024-11-25
2025-01-23
Loading full text...

Full text loading...

References

  1. Peng S. Liu X. Cao W. Liu Y. Liu Y. Wang W. Zhang T. Guan X. Tang J. Zhang Q. Global, regional, and national time trends in mortality for stroke, 1990–2019: An age-period-cohort analysis for the global burden of disease 2019 study and implications for stroke prevention. Int. J. Cardiol. 2023 383 117 131 10.1016/j.ijcard.2023.05.001 37150213
    [Google Scholar]
  2. Feigin V.L. Stark B.A. Johnson C.O. Roth G.A. Bisignano C. Abady G.G. Abbasifard M. Abbasi-Kangevari M. Abd-Allah F. Abedi V. Abualhasan A. Abu-Rmeileh N.M.E. Abushouk A.I. Adebayo O.M. Agarwal G. Agasthi P. Ahinkorah B.O. Ahmad S. Ahmadi S. Ahmed Salih Y. Aji B. Akbarpour S. Akinyemi R.O. Al Hamad H. Alahdab F. Alif S.M. Alipour V. Aljunid S.M. Almustanyir S. Al-Raddadi R.M. Al-Shahi Salman R. Alvis-Guzman N. Ancuceanu R. Anderlini D. Anderson J.A. Ansar A. Antonazzo I.C. Arabloo J. Ärnlöv J. Artanti K.D. Aryan Z. Asgari S. Ashraf T. Athar M. Atreya A. Ausloos M. Baig A.A. Baltatu O.C. Banach M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Barone M.T.U. Basu S. Bazmandegan G. Beghi E. Beheshti M. Béjot Y. Bell A.W. Bennett D.A. Bensenor I.M. Bezabhe W.M. Bezabih Y.M. Bhagavathula A.S. Bhardwaj P. Bhattacharyya K. Bijani A. Bikbov B. Birhanu M.M. Boloor A. Bonny A. Brauer M. Brenner H. Bryazka D. Butt Z.A. Caetano dos Santos F.L. Campos-Nonato I.R. Cantu-Brito C. Carrero J.J. Castañeda-Orjuela C.A. Catapano A.L. Chakraborty P.A. Charan J. Choudhari S.G. Chowdhury E.K. Chu D-T. Chung S-C. Colozza D. Costa V.M. Costanzo S. Criqui M.H. Dadras O. Dagnew B. Dai X. Dalal K. Damasceno A.A.M. D’Amico E. Dandona L. Dandona R. Darega Gela J. Davletov K. De la Cruz-Góngora V. Desai R. Dhamnetiya D. Dharmaratne S.D. Dhimal M.L. Dhimal M. Diaz D. Dichgans M. Dokova K. Doshi R. Douiri A. Duncan B.B. Eftekharzadeh S. Ekholuenetale M. El Nahas N. Elgendy I.Y. Elhadi M. El-Jaafary S.I. Endres M. Endries A.Y. Erku D.A. Faraon E.J.A. Farooque U. Farzadfar F. Feroze A.H. Filip I. Fischer F. Flood D. Gad M.M. Gaidhane S. Ghanei Gheshlagh R. Ghashghaee A. Ghith N. Ghozali G. Ghozy S. Gialluisi A. Giampaoli S. Gilani S.A. Gill P.S. Gnedovskaya E.V. Golechha M. Goulart A.C. Guo Y. Gupta R. Gupta V.B. Gupta V.K. Gyanwali P. Hafezi-Nejad N. Hamidi S. Hanif A. Hankey G.J. Hargono A. Hashi A. Hassan T.S. Hassen H.Y. Havmoeller R.J. Hay S.I. Hayat K. Hegazy M.I. Herteliu C. Holla R. Hostiuc S. Househ M. Huang J. Humayun A. Hwang B-F. Iacoviello L. Iavicoli I. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Iqbal U. Irvani S.S.N. Islam S.M.S. Ismail N.E. Iso H. Isola G. Iwagami M. Jacob L. Jain V. Jang S-I. Jayapal S.K. Jayaram S. Jayawardena R. Jeemon P. Jha R.P. Johnson W.D. Jonas J.B. Joseph N. Jozwiak J.J. Jürisson M. Kalani R. Kalhor R. Kalkonde Y. Kamath A. Kamiab Z. Kanchan T. Kandel H. Karch A. Katoto P.D.M.C. Kayode G.A. Keshavarz P. Khader Y.S. Khan E.A. Khan I.A. Khan M. Khan M.A.B. Khatib M.N. Khubchandani J. Kim G.R. Kim M.S. Kim Y.J. Kisa A. Kisa S. Kivimäki M. Kolte D. Koolivand A. Koulmane Laxminarayana S.L. Koyanagi A. Krishan K. Krishnamoorthy V. Krishnamurthi R.V. Kumar G.A. Kusuma D. La Vecchia C. Lacey B. Lak H.M. Lallukka T. Lasrado S. Lavados P.M. Leonardi M. Li B. Li S. Lin H. Lin R-T. Liu X. Lo W.D. Lorkowski S. Lucchetti G. Lutzky Saute R. Magdy Abd El Razek H. Magnani F.G. Mahajan P.B. Majeed A. Makki A. Malekzadeh R. Malik A.A. Manafi N. Mansournia M.A. Mantovani L.G. Martini S. Mazzaglia G. Mehndiratta M.M. Menezes R.G. Meretoja A. Mersha A.G. Miao Jonasson J. Miazgowski B. Miazgowski T. Michalek I.M. Mirrakhimov E.M. Mohammad Y. Mohammadian-Hafshejani A. Mohammed S. Mokdad A.H. Mokhayeri Y. Molokhia M. Moni M.A. Montasir A.A. Moradzadeh R. Morawska L. Morze J. Muruet W. Musa K.I. Nagarajan A.J. Naghavi M. Narasimha Swamy S. Nascimento B.R. Negoi R.I. Neupane Kandel S. Nguyen T.H. Norrving B. Noubiap J.J. Nwatah V.E. Oancea B. Odukoya O.O. Olagunju A.T. Orru H. Owolabi M.O. Padubidri J.R. Pana A. Parekh T. Park E-C. Pashazadeh Kan F. Pathak M. Peres M.F.P. Perianayagam A. Pham T-M. Piradov M.A. Podder V. Polinder S. Postma M.J. Pourshams A. Radfar A. Rafiei A. Raggi A. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.A. Rahmani A.M. Rajai N. Ranasinghe P. Rao C.R. Rao S.J. Rathi P. Rawaf D.L. Rawaf S. Reitsma M.B. Renjith V. Renzaho A.M.N. Rezapour A. Rodriguez J.A.B. Roever L. Romoli M. Rynkiewicz A. Sacco S. Sadeghi M. Saeedi Moghaddam S. Sahebkar A. Saif-Ur-Rahman K.M. Salah R. Samaei M. Samy A.M. Santos I.S. Santric-Milicevic M.M. Sarrafzadegan N. Sathian B. Sattin D. Schiavolin S. Schlaich M.P. Schmidt M.I. Schutte A.E. Sepanlou S.G. Seylani A. Sha F. Shahabi S. Shaikh M.A. Shannawaz M. Shawon M.S.R. Sheikh A. Sheikhbahaei S. Shibuya K. Siabani S. Silva D.A.S. Singh J.A. Singh J.K. Skryabin V.Y. Skryabina A.A. Sobaih B.H. Stortecky S. Stranges S. Tadesse E.G. Tarigan I.U. Temsah M-H. Teuschl Y. Thrift A.G. Tonelli M. Tovani-Palone M.R. Tran B.X. Tripathi M. Tsegaye G.W. Ullah A. Unim B. Unnikrishnan B. Vakilian A. Valadan Tahbaz S. Vasankari T.J. Venketasubramanian N. Vervoort D. Vo B. Volovici V. Vosoughi K. Vu G.T. Vu L.G. Wafa H.A. Waheed Y. Wang Y. Wijeratne T. Winkler A.S. Wolfe C.D.A. Woodward M. Wu J.H. Wulf Hanson S. Xu X. Yadav L. Yadollahpour A. Yahyazadeh Jabbari S.H. Yamagishi K. Yatsuya H. Yonemoto N. Yu C. Yunusa I. Zaman M.S. Zaman S.B. Zamanian M. Zand R. Zandifar A. Zastrozhin M.S. Zastrozhina A. Zhang Y. Zhang Z-J. Zhong C. Zuniga Y.M.H. Murray C.J.L. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 20 10 795 820 10.1016/S1474‑4422(21)00252‑0 34487721
    [Google Scholar]
  3. Tuo Q. Zhang S. Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 2022 42 1 259 305 10.1002/med.21817 33957000
    [Google Scholar]
  4. Whitehead B. Karelina K. Weil Z.M. Pericyte dysfunction is a key mediator of the risk of cerebral ischemia. J. Neurosci. Res. 2023 101 12 1840 1848 10.1002/jnr.25245 37724604
    [Google Scholar]
  5. Bhowmick S. D’Mello V. Caruso D. Wallerstein A. Abdul-Muneer P.M. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp. Neurol. 2019 317 260 270 10.1016/j.expneurol.2019.03.014 30926390
    [Google Scholar]
  6. Zhao Y. Gan L. Ren L. Lin Y. Ma C. Lin X. Factors influencing the blood-brain barrier permeability Brain Res 2022 1788 147937 10.1016/j.brainres.2022.147937
    [Google Scholar]
  7. Patabendige A. Janigro D. The role of the blood–brain barrier during neurological disease and infection. Biochem. Soc. Trans. 2023 51 2 613 626 10.1042/BST20220830 36929707
    [Google Scholar]
  8. Guo X. Liu R. Jia M. Wang Q. Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem. Res. 2023 48 8 2320 2334 10.1007/s11064‑023‑03923‑x 37017889
    [Google Scholar]
  9. Peng Y. Wang H. Sun J. Chen L. Xu M. Chu J. Electroacupuncture reduces injury to the blood-brain barrier following cerebral ischemia/ reperfusion injury. Neural Regen. Res. 2012 7 36 2901 2906 10.3969/j.issn.1673‑5374.2012.36.007 25317142
    [Google Scholar]
  10. Jung Y.S. Lee S.W. Park J.H. Seo H.B. Choi B.T. Shin H.K. Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke. J. Biomed. Sci. 2016 23 1 32 10.1186/s12929‑016‑0249‑0 26952102
    [Google Scholar]
  11. Zou R. Wu Z. Cui S. Electroacupuncture pretreatment attenuates blood-brain barrier disruption following cerebral ischemia/reperfusion. Mol. Med. Rep. 2015 12 2 2027 2034 10.3892/mmr.2015.3672 25936438
    [Google Scholar]
  12. Nakamura K. Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J. Atheroscler. Thromb. 2023 30 9 1085 1094 10.5551/jat.RV22007 37394570
    [Google Scholar]
  13. Hu S. Yang B. Shu S. He X. Sang H. Fan X. Zhang H. Targeting Pericytes for Functional Recovery in Ischemic Stroke. Neuromolecular Med. 2023 25 4 457 470 10.1007/s12017‑023‑08748‑z 37166748
    [Google Scholar]
  14. Buizza C. Enström A. Carlsson R. Paul G. The Transcriptional Landscape of Pericytes in Acute Ischemic Stroke. Transl. Stroke Res. 2023 10.1007/s12975‑023‑01169‑x 37378751
    [Google Scholar]
  15. Tsao C.C. Baumann J. Huang S.F. Kindler D. Schroeter A. Kachappilly N. Gassmann M. Rudin M. Ogunshola O.O. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 2021 24 4 823 842 10.1007/s10456‑021‑09796‑4 34046769
    [Google Scholar]
  16. Dalkara T. Alarcon-Martinez L. Yemisci M. Pericytes in Ischemic Stroke. Adv. Exp. Med. Biol. 2019 1147 189 213 10.1007/978‑3‑030‑16908‑4_9 31147879
    [Google Scholar]
  17. Cheng F-F. Bai W-Z. Zhang S. Liao X-J. Wang J. Shen Y. Shi H-F. Zou Y. Ma C-Y. Wang X.Q. Wang Q-G. Wang X. Xu M-Y. Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain. Neural Regen. Res. 2022 17 10 2247 2252 10.4103/1673‑5374.336876 35259845
    [Google Scholar]
  18. Machida T. Takata F. Matsumoto J. Miyamura T. Hirata R. Kimura I. Kataoka Y. Dohgu S. Yamauchi A. Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model. PLoS One 2017 12 5 e0177447 10.1371/journal.pone.0177447 28489922
    [Google Scholar]
  19. Nakagawa S. Deli M.A. Nakao S. Honda M. Hayashi K. Nakaoke R. Kataoka Y. Niwa M. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell. Mol. Neurobiol. 2007 27 6 687 694 10.1007/s10571‑007‑9195‑4 17823866
    [Google Scholar]
  20. Zhang H.R. Ma G.Q. Lv H.Q. Feng Y.T. Peng Y.J. Electroacupuncture Alleviates Cerebral Ischemia-reperfusion Injury by Regulating the S1PR2/TLR4/NLRP3 Signaling Pathway via m6A Methylation of lncRNA H19. Curr. Neurovasc. Res. 2024 21 1 64 73 10.2174/0115672026294183240207115956 38409728
    [Google Scholar]
  21. Wu G. Fan H. Huang Y. Zheng C. Ye J. Liu X. Duhuo Jisheng Decoction-containing serum promotes proliferation of interleukin-1β-induced chondrocytes through the p16-cyclin D1/CDK4-Rb pathway. Mol. Med. Rep. 2014 10 5 2525 2534 10.3892/mmr.2014.2527 25189115
    [Google Scholar]
  22. Chen H. Shao X. Li L. Zheng C. Xu X. Hong X. Li X. Wu M. Electroacupuncture serum inhibits TNF-α-mediated chondrocyte inflammation via the Ras-Raf-MEK1/2-ERK1/2 signaling pathway. Mol. Med. Rep. 2017 16 5 5807 5814 10.3892/mmr.2017.7366 28849229
    [Google Scholar]
  23. Wu Y. Fan X. Chen S. Deng L. Jiang L. Yang S. Dong Z. Geraniol-Mediated Suppression of Endoplasmic Reticulum Stress Protects against Cerebral Ischemia–Reperfusion Injury via the PERK-ATF4-CHOP Pathway. Int. J. Mol. Sci. 2022 24 1 544 10.3390/ijms24010544 36613992
    [Google Scholar]
  24. Xu S.Y. Sheng Y. Peng Y.J. Yang S. Li W.Q. Protective mechanism of electroacupuncture serum on neurons after cerebral ischemia based on H4K16AC-mediated autophagy. Journal of Beijing University of Traditional Chinese Medicine 2021 44 366 373
    [Google Scholar]
  25. Li X.X. Li S.J. Dong J.J. Han Y.S. Effect of Electroacupuncture Serum in Alleviating Oxygen-Glucose Deprivation/Reoxygenation Injury of Neural Cells from Neonatal Mice in vitro in a Rat Model of Middle Cerebral Artery Occlusion. Journal of Anhui Traditional Chinese Medical College 2022 41 43 49
    [Google Scholar]
  26. Lizano P. Pong S. Santarriaga S. Bannai D. Karmacharya R. Brain microvascular endothelial cells and blood-brain barrier dysfunction in psychotic disorders. Mol. Psychiatry 2023 28 9 3698 3708 10.1038/s41380‑023‑02255‑0 37730841
    [Google Scholar]
  27. Wang L. Chi X. Lyu J. Xu Z. Fu G. Liu Y. Liu S. Qiu W. Liu H. Liang X. Zhang Y. An overview of the evidence to guide decision-making in acupuncture therapies for early recovery after acute ischemic stroke. Front. Neurol. 2022 13 1005819 10.3389/fneur.2022.1005819 36313493
    [Google Scholar]
  28. Liu A.J. Li J.H. Li H.Q. Fu D.L. Lu L. Bian Z.X. Zheng G.Q. Electroacupuncture for Acute Ischemic Stroke: A Meta-Analysis of Randomized Controlled Trials. Am. J. Chin. Med. 2015 43 8 1541 1566 10.1142/S0192415X15500883 26621442
    [Google Scholar]
  29. Zhu W. Ye Y. Liu Y. Wang X.R. Shi G.X. Zhang S. Liu C.Z. Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J. Neuroimmune Pharmacol. 2017 12 4 575 592 10.1007/s11481‑017‑9747‑4 28527041
    [Google Scholar]
  30. Xing Y. Zhang M. Li W.B. Dong F. Zhang F. Mechanisms Involved in the Neuroprotection of Electroacupuncture Therapy for Ischemic Stroke. Front. Neurosci. 2018 12 929 10.3389/fnins.2018.00929 30618558
    [Google Scholar]
  31. Zhang H. Yang F. Long X.P. Wu X. Liu Z.B. Chen H. Wu S.B. Ang W.P. [Effect of acupuncture serum on expression of microtubule associated protein-2 and nerve growth associated protein-43 in Mg2+-free-cultured hippocampal neurons of neonatal rats]. Zhen Ci Yan Jiu 2021 46 12 1029 1035 [Effect of acupuncture serum on expression of microtubule associated protein-2 and nerve growth associated protein-43 in Mg(2+)-free-cultured hippocampal neurons of neonatal rats]. 10.13702/j.1000‑0607.200883 34970880
    [Google Scholar]
  32. Yudong X. Leimiao Y. Gyoung-Hee P. Yu W. Wenqian W. Yanyan L. Yongqing Y. Serum from asthmatic rat treated with acupuncture inhibits acetylcholine-induced contractile responses of airway smooth muscle cells. J. Tradit. Chin. Med. 2017 37 1 101 107 10.1016/S0254‑6272(17)30033‑X 29957918
    [Google Scholar]
  33. Liu T. Yu J.N. Liu Y. Kuang W.C. Wang X.Y. Wen X. Jiang Y. Qiu X.J. Zeng Y. Zou H.H. Effect of electroacupuncture serum for autophagy of muscle satellite cells based on PI3K/Akt signalling pathway. Basic Clin. Pharmacol. Toxicol. 2020 127 11 11
    [Google Scholar]
  34. Zhang Z. Lu T. Li S. Zhao R. Li H. Zhang X. Li Y. Xia Y. Ni G. Acupuncture Extended the Thrombolysis Window by Suppressing Blood–Brain Barrier Disruption and Regulating Autophagy–Apoptosis Balance after Ischemic Stroke. Brain Sci. 2024 14 4 399 10.3390/brainsci14040399 38672048
    [Google Scholar]
  35. Meng L. Wu B. OuYang L. Peng R. Chen Y. Tang Z. Zhang M. Xu T. Wang Y. Lu S. Jing X. Fu S. Electroacupuncture regulates histone acetylation of Bcl-2 and Caspase-3 genes to improve ischemic stroke injury. Heliyon 2024 10 6 e27045 10.1016/j.heliyon.2024.e27045 38500994
    [Google Scholar]
  36. He J. Yu J.C. Zhongguo Zhenjiu 2014 34 1042 1046 [Research progress on the effects of acupuncture-moxibustion serum].
    [Google Scholar]
  37. Zhang J.L. Guo Y. Li R.W. Li C.H. Luo M.F. Zhongguo Zhenjiu 2009 29 45 47 [Protecting action of acupuncture serum on calcium over-loaded neurons of the hippocampus in rats of ischemia-reperfusion].
    [Google Scholar]
  38. Zhu S. Chen M. Ying Y. Wu Q. Huang Z. Ni W. Wang X. Xu H. Bennett S. Xiao J. Xu J. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res. 2022 10 1 30 10.1038/s41413‑022‑00203‑2 35296645
    [Google Scholar]
  39. Naranjo O. Osborne O. Torices S. Toborek M. In vivo Targeting of the Neurovascular Unit: Challenges and Advancements. Cell. Mol. Neurobiol. 2022 42 7 2131 2146 10.1007/s10571‑021‑01113‑3 34086179
    [Google Scholar]
  40. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr. Pharm. Des. 2008 14 16 1581 1593 10.2174/138161208784705469 18673199
    [Google Scholar]
  41. Bandopadhyay R. Orte C. Lawrenson J.G. Reid A.R. De Silva S. Allt G. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J. Neurocytol. 2001 30 1 35 44 10.1023/A:1011965307612 11577244
    [Google Scholar]
  42. Nakano M. Atobe Y. Goris R.C. Yazama F. Ono M. Sawada H. Kadota T. Funakoshi K. Kishida R. Ultrastructure of the capillary pericytes and the expression of smooth muscle α-actin and desmin in the snake infrared sensory organs. Anat. Rec. 2000 260 3 299 307 10.1002/1097‑0185(20001101)260:3<299::AID‑AR67>3.0.CO;2‑V 11066040
    [Google Scholar]
  43. Yemisci M. Gursoy-Ozdemir Y. Vural A. Can A. Topalkara K. Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 2009 15 9 1031 1037 10.1038/nm.2022 19718040
    [Google Scholar]
  44. Chen T. Dai S.H. Li X. Luo P. Zhu J. Wang Y.H. Fei Z. Jiang X.F. Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biol. 2018 14 229 236 10.1016/j.redox.2017.09.016 28965081
    [Google Scholar]
  45. Wu X.D. Du L.N. Wu G.C. Cao X.D. Effects of electroacupuncture on blood-brain barrier after cerebral ischemia-reperfusion in rat. Acupunct. Electrother. Res. 2001 26 1 1 9 10.3727/036012901816356063 11394489
    [Google Scholar]
  46. Peng Y.J. Zhou F. Gu J. Yang R. Yang Y.Q. Cheng J.S. Guo J.C. Regulative effect of electroacupuncture on aquaporin-4 in rats with focal cerebral ischemia/reperfusion Zhen Ci Yan Jiu 2007 32 2 83 87
    [Google Scholar]
  47. Yuan Q. Wang J.X. Li R.L. Jia Z.Z. Wang S.X. Guo H. Chai L.J. Hu L.M. Effects of salvianolate lyophilized injection combined with Xueshuantong injection in regulation of BBB function in a co-culture model of endothelial cells and pericytes Brain Res 2021 1751 147185 10.1016/j.brainres.2020.147185
    [Google Scholar]
  48. Langen U.H. Ayloo S. Gu C. Development and Cell Biology of the Blood-Brain Barrier. Annu. Rev. Cell Dev. Biol. 2019 35 1 591 613 10.1146/annurev‑cellbio‑100617‑062608 31299172
    [Google Scholar]
  49. Kurmann L. Okoniewski M. Dubey R.K. Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells 2021 10 9 2314 10.3390/cells10092314 34571963
    [Google Scholar]
  50. Lochhead J.J. Williams E.I. Reddell E.S. Dorn E. Ronaldson P.T. Davis T.P. High resolution multiplex confocal imaging of the neurovascular unit in health and experimental ischemic stroke Cells 2023 12 4 645 10.3390/cells12040645
    [Google Scholar]
  51. Bai Y. Zhu X. Chao J. Zhang Y. Qian C. Li P. Liu D. Han B. Zhao L. Zhang J. Buch S. Teng G. Hu G. Yao H. Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 2015 10 4 e0124362 10.1371/journal.pone.0124362 25884837
    [Google Scholar]
  52. Wan Y. Jin H.J. Zhu Y.Y. Fang Z. Mao L. He Q. Xia Y.P. Li M. Li Y. Chen X. Hu B. I MicroRNA‐149–5p regulates blood–brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes. FASEB J. 2018 32 6 3133 3148 10.1096/fj.201701121R 29401609
    [Google Scholar]
  53. Heyba M. Al-Abdullah L. Henkel A.W. Sayed Z. Malatiali S.A. Redzic Z.B. Viability and Contractility of Rat Brain Pericytes in Conditions That Mimic Stroke; an in vitro Study. Front. Neurosci. 2019 13 1306 10.3389/fnins.2019.01306 31866815
    [Google Scholar]
  54. Zhang T. Liu W. Yang J. Xu H. Cao Y. Guo L. Sun J. Liang B. Du X. Chai L. Yuan Q. Hu L. Components of Salvia miltiorrhiza and Panax notoginseng protect Pericytes against OGD/R-induced injury via regulating the PI3K/AKT/mTOR and JNK/ERK/P38 signaling pathways J Mol Neurosci 2022 72 12 2377 2388 10.1007/s12031‑022‑02082‑y
    [Google Scholar]
  55. Iwao T. Takata F. Matsumoto J. Goto Y. Aridome H. Yasunaga M. Yokoya M. Kataoka Y. Dohgu S. Senescence in brain pericytes attenuates blood-brain barrier function in vitro: A comparison of serially passaged and isolated pericytes from aged rat brains. Biochem. Biophys. Res. Commun. 2023 645 154 163 10.1016/j.bbrc.2023.01.037 36689812
    [Google Scholar]
  56. Kurmann L. Okoniewski M. Dubey R. Transcriptomic Analysis of Human Brain -Microvascular Endothelial Cell Driven Changes in -Vascular Pericytes. Cells 2021 10 7 1784 10.3390/cells10071784 34359953
    [Google Scholar]
  57. Cui Q. Zhang Y. Tian N. Yang J. Ya D. Xiang W. Zhou Z. Jiang Y. Deng J. Yang B. Lin X. Li Q. Liao R. Leptin Promotes Angiogenesis via Pericyte STAT3 Pathway upon Intracerebral Hemorrhage. Cells 2022 11 17 2755 10.3390/cells11172755 36078162
    [Google Scholar]
  58. Dohgu S. Takata F. Matsumoto J. Kimura I. Yamauchi A. Kataoka Y. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc. Res. 2019 124 61 66 10.1016/j.mvr.2019.03.005 30885616
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026361204241115112340
Loading
/content/journals/cnr/10.2174/0115672026361204241115112340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test