Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

Electroacupuncture (EA) exerts a protective role in Blood-brain Barrier (BBB) damage after ischemic stroke, but whether this effect involves the regulation of the pericytes is unclear.

Methods

The BBB models were established with brain microvascular endothelial cells (BMECs) and pericytes, and the co-cultured cells were randomly divided into three groups: the control group, oxygen-glucose deprivation/reoxygenation (OGD/R) group and EA group. OGD/R was performed to simulate cerebral ischemia-reperfusion . EA serum was prepared by EA treatment at the “Renzhong” (GV26) and “Baihui” (GV20) acupoints in middle cerebral artery occlusion/reperfusion rats. Furthermore, the characteristics of BMECs and pericytes were identified with immunological staining. The cell morphology of the BBB model was observed using an inverted microscope. The function of BBB was measured with transendothelial electrical resistance (TEER) and sodium fluorescein, and the viability, apoptosis, and migration of pericytes were detected by cell counting kit-8, flow cytometry, and Transwell migration assay.

Results

BMECs were positive staining for Factor-VIII, and pericytes were positive staining for the α-SMA and NG2. EA serum improved cell morphology of the BBB model, increased TEER and decreased sodium fluorescein in OGD/R condition. Besides, EA serum alleviated pericytes apoptosis rate and migration number, and enhanced pericytes viability rate in OGD/R condition.

Conclusion

EA serum protects against BBB damage induced by OGD/R , and this protection might be achieved by attenuating pericytes apoptosis and migration, as well as enhancing pericytes viability. The findings provided new evidence for EA as a medical therapy for ischemic stroke.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026361204241115112340
2024-11-25
2025-04-06
Loading full text...

Full text loading...

References

  1. PengS. LiuX. CaoW. LiuY. LiuY. WangW. ZhangT. GuanX. TangJ. ZhangQ. Global, regional, and national time trends in mortality for stroke, 1990–2019: An age-period-cohort analysis for the global burden of disease 2019 study and implications for stroke prevention.Int. J. Cardiol.202338311713110.1016/j.ijcard.2023.05.00137150213
    [Google Scholar]
  2. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  3. TuoQ. ZhangS. LeiP. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications.Med. Res. Rev.202242125930510.1002/med.2181733957000
    [Google Scholar]
  4. WhiteheadB. KarelinaK. WeilZ.M. Pericyte dysfunction is a key mediator of the risk of cerebral ischemia.J. Neurosci. Res.2023101121840184810.1002/jnr.2524537724604
    [Google Scholar]
  5. BhowmickS. D’MelloV. CarusoD. WallersteinA. Abdul-MuneerP.M. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury.Exp. Neurol.201931726027010.1016/j.expneurol.2019.03.01430926390
    [Google Scholar]
  6. ZhaoY. GanL. RenL. LinY. MaC. LinX. Factors influencing the blood-brain barrier permeabilityBrain Res2022178814793710.1016/j.brainres.2022.147937
    [Google Scholar]
  7. PatabendigeA. JanigroD. The role of the blood–brain barrier during neurological disease and infection.Biochem. Soc. Trans.202351261362610.1042/BST2022083036929707
    [Google Scholar]
  8. GuoX. LiuR. JiaM. WangQ. WuJ. Ischemia reperfusion injury induced blood brain barrier dysfunction and the involved molecular mechanism.Neurochem. Res.20234882320233410.1007/s11064‑023‑03923‑x37017889
    [Google Scholar]
  9. PengY. WangH. SunJ. ChenL. XuM. ChuJ. Electroacupuncture reduces injury to the blood-brain barrier following cerebral ischemia/ reperfusion injury.Neural Regen. Res.20127362901290610.3969/j.issn.1673‑5374.2012.36.00725317142
    [Google Scholar]
  10. JungY.S. LeeS.W. ParkJ.H. SeoH.B. ChoiB.T. ShinH.K. Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke.J. Biomed. Sci.20162313210.1186/s12929‑016‑0249‑026952102
    [Google Scholar]
  11. ZouR. WuZ. CuiS. Electroacupuncture pretreatment attenuates blood-brain barrier disruption following cerebral ischemia/reperfusion.Mol. Med. Rep.20151222027203410.3892/mmr.2015.367225936438
    [Google Scholar]
  12. NakamuraK. AgoT. Pericyte-mediated molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke.J. Atheroscler. Thromb.20233091085109410.5551/jat.RV2200737394570
    [Google Scholar]
  13. HuS. YangB. ShuS. HeX. SangH. FanX. ZhangH. Targeting pericytes for functional recovery in ischemic stroke.Neuromolecular Med.202325445747010.1007/s12017‑023‑08748‑z37166748
    [Google Scholar]
  14. BuizzaC. EnströmA. CarlssonR. PaulG. The Transcriptional Landscape of Pericytes in Acute Ischemic Stroke.Transl. Stroke Res.202310.1007/s12975‑023‑01169‑x37378751
    [Google Scholar]
  15. TsaoC.C. BaumannJ. HuangS.F. KindlerD. SchroeterA. KachappillyN. GassmannM. RudinM. OgunsholaO.O. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome.Angiogenesis202124482384210.1007/s10456‑021‑09796‑434046769
    [Google Scholar]
  16. DalkaraT. Alarcon-MartinezL. YemisciM. Pericytes in Ischemic Stroke.Adv. Exp. Med. Biol.2019114718921310.1007/978‑3‑030‑16908‑4_931147879
    [Google Scholar]
  17. ChengF-F. BaiW-Z. ZhangS. LiaoX-J. WangJ. ShenY. ShiH-F. ZouY. MaC-Y. WangX.Q. WangQ-G. WangX. XuM-Y. Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain.Neural Regen. Res.202217102247225210.4103/1673‑5374.33687635259845
    [Google Scholar]
  18. MachidaT. TakataF. MatsumotoJ. MiyamuraT. HirataR. KimuraI. KataokaY. DohguS. YamauchiA. Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model.PLoS One2017125e017744710.1371/journal.pone.017744728489922
    [Google Scholar]
  19. NakagawaS. DeliM.A. NakaoS. HondaM. HayashiK. NakaokeR. KataokaY. NiwaM. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells.Cell. Mol. Neurobiol.200727668769410.1007/s10571‑007‑9195‑417823866
    [Google Scholar]
  20. ZhangH.R. MaG.Q. LvH.Q. FengY.T. PengY.J. Electroacupuncture alleviates cerebral ischemia-reperfusion injury by regulating the S1PR2/TLR4/NLRP3 signaling pathway via m6A methylation of lncRNA H19.Curr. Neurovasc. Res.2024211647310.2174/011567202629418324020711595638409728
    [Google Scholar]
  21. WuG. FanH. HuangY. ZhengC. YeJ. LiuX. Duhuo Jisheng Decoction-containing serum promotes proliferation of interleukin-1β-induced chondrocytes through the p16-cyclin D1/CDK4-Rb pathway.Mol. Med. Rep.20141052525253410.3892/mmr.2014.252725189115
    [Google Scholar]
  22. ChenH. ShaoX. LiL. ZhengC. XuX. HongX. LiX. WuM. Electroacupuncture serum inhibits TNF-α-mediated chondrocyte inflammation via the Ras-Raf-MEK1/2-ERK1/2 signaling pathway.Mol. Med. Rep.20171655807581410.3892/mmr.2017.736628849229
    [Google Scholar]
  23. WuY. FanX. ChenS. DengL. JiangL. YangS. DongZ. Geraniol-mediated suppression of endoplasmic reticulum stress protects against cerebral ischemia–reperfusion injury via the PERK-ATF4-CHOP pathway.Int. J. Mol. Sci.202224154410.3390/ijms2401054436613992
    [Google Scholar]
  24. XuS.Y. ShengY. PengY.J. YangS. LiW.Q. Protective mechanism of electroacupuncture serum on neurons after cerebral ischemia based on H4K16AC-mediated autophagy.J Beijing Uni Trad Chin Med202144366373
    [Google Scholar]
  25. LiX.X. LiS.J. DongJ.J. HanY.S. Effect of electroacupuncture serum in alleviating oxygen-glucose deprivation/reoxygenation injury of neural cells from neonatal mice in vitro in a rat model of middle cerebral artery occlusion.J Anhui Trad Chin Medi Coll2022414349
    [Google Scholar]
  26. LizanoP. PongS. SantarriagaS. BannaiD. KarmacharyaR. Brain microvascular endothelial cells and blood-brain barrier dysfunction in psychotic disorders.Mol. Psychiatry20232893698370810.1038/s41380‑023‑02255‑037730841
    [Google Scholar]
  27. WangL. ChiX. LyuJ. XuZ. FuG. LiuY. LiuS. QiuW. LiuH. LiangX. ZhangY. An overview of the evidence to guide decision-making in acupuncture therapies for early recovery after acute ischemic stroke.Front. Neurol.202213100581910.3389/fneur.2022.100581936313493
    [Google Scholar]
  28. LiuA.J. LiJ.H. LiH.Q. FuD.L. LuL. BianZ.X. ZhengG.Q. Electroacupuncture for acute ischemic stroke: A meta-analysis of randomized controlled trials.Am. J. Chin. Med.20154381541156610.1142/S0192415X1550088326621442
    [Google Scholar]
  29. ZhuW. YeY. LiuY. WangX.R. ShiG.X. ZhangS. LiuC.Z. Mechanisms of acupuncture therapy for cerebral ischemia: an evidence-based review of clinical and animal studies on cerebral ischemia.J. Neuroimmune Pharmacol.201712457559210.1007/s11481‑017‑9747‑428527041
    [Google Scholar]
  30. XingY. ZhangM. LiW.B. DongF. ZhangF. Mechanisms involved in the neuroprotection of electroacupuncture therapy for ischemic stroke.Front. Neurosci.20181292910.3389/fnins.2018.0092930618558
    [Google Scholar]
  31. ZhangH. YangF. LongX.P. WuX. LiuZ.B. ChenH. WuS.B. AngW.P. Effect of acupuncture serum on expression of microtubule associated protein-2 and nerve growth associated protein-43 in Mg2+-free-cultured hippocampal neurons of neonatal rats.Zhen Ci Yan Jiu202146121029103510.13702/j.1000‑0607.20088334970880
    [Google Scholar]
  32. YudongX. LeimiaoY. Gyoung-HeeP. YuW. WenqianW. YanyanL. YongqingY. Serum from asthmatic rat treated with acupuncture inhibits acetylcholine-induced contractile responses of airway smooth muscle cells.J. Tradit. Chin. Med.201737110110710.1016/S0254‑6272(17)30033‑X29957918
    [Google Scholar]
  33. LiuT. YuJ.N. LiuY. KuangW.C. WangX.Y. WenX. JiangY. QiuX.J. ZengY. ZouH.H. Effect of electroacupuncture serum for autophagy of muscle satellite cells based on PI3K/Akt signalling pathway.Basic Clin. Pharmacol. Toxicol.20201271111
    [Google Scholar]
  34. ZhangZ. LuT. LiS. ZhaoR. LiH. ZhangX. LiY. XiaY. NiG. Acupuncture extended the thrombolysis window by suppressing blood–brain barrier disruption and regulating autophagy–apoptosis balance after ischemic stroke.Brain Sci.202414439910.3390/brainsci1404039938672048
    [Google Scholar]
  35. MengL. WuB. OuYangL. PengR. ChenY. TangZ. ZhangM. XuT. WangY. LuS. JingX. FuS. Electroacupuncture regulates histone acetylation of Bcl-2 and Caspase-3 genes to improve ischemic stroke injury.Heliyon2024106e2704510.1016/j.heliyon.2024.e2704538500994
    [Google Scholar]
  36. HeJ. YuJ.C. Research progress on the effects of acupuncture-moxibustion serum.Zhongguo Zhenjiu20143410421046
    [Google Scholar]
  37. ZhangJ.L. GuoY. LiR.W. LiC.H. LuoM.F. Protecting action of acupuncture serum on calcium over-loaded neurons of the hippocampus in rats of ischemia-reperfusion.Zhongguo Zhenjiu2009294547
    [Google Scholar]
  38. ZhuS. ChenM. YingY. WuQ. HuangZ. NiW. WangX. XuH. BennettS. XiaoJ. XuJ. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair.Bone Res.20221013010.1038/s41413‑022‑00203‑235296645
    [Google Scholar]
  39. NaranjoO. OsborneO. ToricesS. ToborekM. In vivo targeting of the neurovascular unit: Challenges and advancements.Cell. Mol. Neurobiol.20224272131214610.1007/s10571‑021‑01113‑334086179
    [Google Scholar]
  40. Dore-DuffyP. Pericytes: Pluripotent cells of the blood brain barrier.Curr. Pharm. Des.200814161581159310.2174/13816120878470546918673199
    [Google Scholar]
  41. BandopadhyayR. OrteC. LawrensonJ.G. ReidA.R. De SilvaS. AlltG. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers.J. Neurocytol.2001301354410.1023/A:101196530761211577244
    [Google Scholar]
  42. NakanoM. AtobeY. GorisR.C. YazamaF. OnoM. SawadaH. KadotaT. FunakoshiK. KishidaR. Ultrastructure of the capillary pericytes and the expression of smooth muscle α-actin and desmin in the snake infrared sensory organs.Anat. Rec.2000260329930710.1002/1097‑0185(20001101)260:3<299::AID‑AR67>3.0.CO;2‑V11066040
    [Google Scholar]
  43. YemisciM. Gursoy-OzdemirY. VuralA. CanA. TopalkaraK. DalkaraT. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery.Nat. Med.20091591031103710.1038/nm.202219718040
    [Google Scholar]
  44. ChenT. DaiS.H. LiX. LuoP. ZhuJ. WangY.H. FeiZ. JiangX.F. Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia.Redox Biol.20181422923610.1016/j.redox.2017.09.01628965081
    [Google Scholar]
  45. WuX.D. DuL.N. WuG.C. CaoX.D. Effects of electroacupuncture on blood-brain barrier after cerebral ischemia-reperfusion in rat.Acupunct. Electrother. Res.20012611910.3727/03601290181635606311394489
    [Google Scholar]
  46. PengY.J. ZhouF. GuJ. YangR. YangY.Q. ChengJ.S. GuoJ.C. Regulative effect of electroacupuncture on aquaporin-4 in rats with focal cerebral ischemia/reperfusionZhen Ci Yan Jiu20073228387
    [Google Scholar]
  47. YuanQ. WangJ.X. LiR.L. JiaZ.Z. WangS.X. GuoH. ChaiL.J. HuL.M. Effects of salvianolate lyophilized injection combined with Xueshuantong injection in regulation of BBB function in a co-culture model of endothelial cells and pericytesBrain Res2021175114718510.1016/j.brainres.2020.147185
    [Google Scholar]
  48. LangenU.H. AylooS. GuC. Development and cell biology of the blood-brain barrier.Annu. Rev. Cell Dev. Biol.201935159161310.1146/annurev‑cellbio‑100617‑06260831299172
    [Google Scholar]
  49. KurmannL. OkoniewskiM. DubeyR.K. Estradiol inhibits human brain vascular pericyte migration activity: A functional and transcriptomic analysis.Cells2021109231410.3390/cells1009231434571963
    [Google Scholar]
  50. LochheadJ.J. WilliamsE.I. ReddellE.S. DornE. RonaldsonP.T. DavisT.P. High resolution multiplex confocal imaging of the neurovascular unit in health and experimental ischemic strokeCells202312464510.3390/cells12040645
    [Google Scholar]
  51. BaiY. ZhuX. ChaoJ. ZhangY. QianC. LiP. LiuD. HanB. ZhaoL. ZhangJ. BuchS. TengG. HuG. YaoH. Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: Implications for stroke.PLoS One2015104e012436210.1371/journal.pone.012436225884837
    [Google Scholar]
  52. WanY. JinH.J. ZhuY.Y. FangZ. MaoL. HeQ. XiaY.P. LiM. LiY. ChenX. HuB.I MicroRNA-149–5p regulates blood–brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes.FASEB J.20183263133314810.1096/fj.201701121R29401609
    [Google Scholar]
  53. HeybaM. Al-AbdullahL. HenkelA.W. SayedZ. MalatialiS.A. RedzicZ.B. Viability and contractility of rat brain pericytes in conditions that mimic stroke; an in vitro study.Front. Neurosci.201913130610.3389/fnins.2019.0130631866815
    [Google Scholar]
  54. ZhangT. LiuW. YangJ. XuH. CaoY. GuoL. SunJ. LiangB. DuX. ChaiL. YuanQ. HuL. Components of Salvia miltiorrhiza and Panax notoginseng protect pericytes against OGD/R-induced injury via regulating the PI3K/AKT/mTOR and JNK/ERK/P38 signaling pathwaysJ Mol Neurosci202272122377238810.1007/s12031‑022‑02082‑y
    [Google Scholar]
  55. IwaoT. TakataF. MatsumotoJ. GotoY. AridomeH. YasunagaM. YokoyaM. KataokaY. DohguS. Senescence in brain pericytes attenuates blood-brain barrier function in vitro: A comparison of serially passaged and isolated pericytes from aged rat brains.Biochem. Biophys. Res. Commun.202364515416310.1016/j.bbrc.2023.01.03736689812
    [Google Scholar]
  56. KurmannL. OkoniewskiM. DubeyR. Transcriptomic analysis of human brain-microvascular endothelial cell driven changes in-vascular pericytes.Cells2021107178410.3390/cells1007178434359953
    [Google Scholar]
  57. CuiQ. ZhangY. TianN. YangJ. YaD. XiangW. ZhouZ. JiangY. DengJ. YangB. LinX. LiQ. LiaoR. Leptin promotes angiogenesis via pericyte STAT3 pathway upon intracerebral hemorrhage.Cells20221117275510.3390/cells1117275536078162
    [Google Scholar]
  58. DohguS. TakataF. MatsumotoJ. KimuraI. YamauchiA. KataokaY. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro.Microvasc. Res.2019124616610.1016/j.mvr.2019.03.00530885616
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026361204241115112340
Loading
/content/journals/cnr/10.2174/0115672026361204241115112340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test