Skip to content
2000
image of Risk Factors for Silent Brain Infarction in Nonvalvular Atrial Fibrillation Patients with Low CHA2DS2-VASc Score

Abstract

Background

Silent Brain Infarction (SBI) has been found to be linked to an increased risk of cognitive impairment and future symptomatic stroke. Atrial fibrillation is a significant risk factor for SBI. Even in low-risk atrial fibrillation patients the incidence of SBI remains high. This study aims to investigate the risk factors for SBI in nonvalvular atrial fibrillation (NVAF) patients with a CHA2DS2-VASc score of 0 to 1

Methods

A total of 301 consecutive low-risk NVAF patients (male: CHA2DS2-VASc=0 female: CHA2DS2-VASc=1) were enrolled. According to brain Magnetic Resonance Imaging (MRI) patients were divided into SBI (n=90) and non-SBI (n=211) groups. Baseline characteristics blood parameters and echocardiography results were analyzed. Multivariate logistic regression was performed to identify independent predictors. Receiver Operating Characteristic (ROC) curve analysis was used to evaluate the diagnostic power of the relevant risk factors

Results

The study revealed that neutrophil count, monocyte count, Platelet-To-Lymphocyte Ratio (PLR), neutrophil-to-high density lipoprotein cholesterol ratio (NHR), and left atrial diameter (LAD) were significantly higher in the SBI group than non-SBI group (p <0.05). Multivariate logistic regression analysis identified PLR (OR, 1.004 95%CI 1.001-1.007 p =0.026) and LAD (OR 1.092 95%CI 1.054-1.130 p <0.001) as the independent risk factors associated with SBI. The ROC showed that the area under the curve (AUC) of PLR is 0.589 (95%CI 0.515-0.662 p =0.015) with an optimal cut-off point of 151 (sensitivity 43.3%, specificity 74.6%). The AUC of LAD is 0.676 (95%CI 0.606-0.746 p <0.001) with an optimal cut-off point of 39mm (sensitivity 61.1%, specificity 72.0%). The AUC of PLR combined with LAD is 0.711 (95%CI 0.646-0.777 p <0.001) with a sensitivity of 63.3% and specificity of 73.5% for SBI

Conclusion

PLR and LAD can be independent risk factors for SBI in NVAF patients with low CHA2DS2-VASc scores The combination of the two factors can enhance the predictive ability of SBI in these patients

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026354260241218115435
2024-12-26
2025-01-23
Loading full text...

Full text loading...

References

  1. Kühne M. Krisai P. Coslovsky M. Rodondi N. Müller A. Beer J.H. Ammann P. Auricchio A. Moschovitis G. Hayoz D. Kobza R. Shah D. Stephan F.P. Schläpfer J. Di Valentino M. Aeschbacher S. Ehret G. Eken C. Monsch A. Roten L. Schwenkglenks M. Springer A. Sticherling C. Reichlin T. Zuern C.S. Meyre P.B. Blum S. Sinnecker T. Würfel J. Bonati L.H. Conen D. Osswald S. Silent brain infarcts impact on cognitive function in atrial fibrillation. Eur. Heart J. 2022 43 22 2127 2135 10.1093/eurheartj/ehac020 35171989
    [Google Scholar]
  2. Gupta A. Giambrone A.E. Gialdini G. Finn C. Delgado D. Gutierrez J. Wright C. Beiser A.S. Seshadri S. Pandya A. Kamel H. Silent brain infarction and risk of future stroke. Stroke 2016 47 3 719 725 10.1161/STROKEAHA.115.011889 26888534
    [Google Scholar]
  3. De Marchis G.M. Krisai P. Werlen L. Sinnecker T. Aeschbacher S. Dittrich T.D. Polymeris A.A. Coslovsky M. Blum M.R. Rodondi N. Reichlin T. Moschovitis G. Wuerfel J. Lyrer P.A. Fischer U. Conen D. Kastner P. Ziegler A. Osswald S. Kühne M. Bonati L.H. Biomarker, imaging, and clinical factors associated with overt and covert stroke in patients with atrial fibrillation. Stroke 2023 54 10 2542 2551 10.1161/STROKEAHA.123.043302 37548011
    [Google Scholar]
  4. Fanning J.P. Wong A.A. Fraser J.F. The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med. 2014 12 1 119 10.1186/s12916‑014‑0119‑0 25012298
    [Google Scholar]
  5. Zhou Z. You S. Sakamoto Y. Xu Y. Ding S. Xu W. Li W. Yu J. Wang Y. Harris K. Delcourt C. Reeves M.J. Lindley R.I. Parsons M.W. Woodward M. Anderson C. Du X. Pu J. Wardlaw J.M. Carcel C. Covert cerebrovascular changes in people with heart disease. Neurology 2024 102 8 e209204 10.1212/WNL.0000000000209204 38531010
    [Google Scholar]
  6. Chen J. Zhou M. Wang H. Zheng Z. Rong W. He B. Zhao L. Risk factors for left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients with low CHA2DS2-VASc score. J. Thromb. Thrombolysis 2022 53 2 523 531 10.1007/s11239‑021‑02554‑9 34476733
    [Google Scholar]
  7. Dolu A.K. Akçay F.A. Atalay M. Karaca M. Systemic immune-inflammation index as a predictor of left atrial thrombosis in nonvalvular atrial fibrillation. J. Tehran Univ. Heart Cent. 2023 18 2 87 93 10.18502/jthc.v18i2.13317 37637278
    [Google Scholar]
  8. Yan Y.K. Huang H. Li D.P. Ai Z.Y. Li X. Sun Z. Prognostic value of the platelet-to-lymphocyte ratio for outcomes of stroke: a systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021 25 21 6529 6538 10.26355/eurrev_202111_27095 34787855
    [Google Scholar]
  9. Tokunaga K. Koga M. Yoshimura S. Okada Y. Yamagami H. Todo K. Itabashi R. Kimura K. Sato S. Terasaki T. Inoue M. Shiokawa Y. Takagi M. Kamiyama K. Tanaka K. Takizawa S. Shiozawa M. Okuda S. Kameda T. Nagakane Y. Hasegawa Y. Shibuya S. Ito Y. Matsuoka H. Takamatsu K. Nishiyama K. Kario K. Yagita Y. Mizoguchi T. Fujita K. Ando D. Kumamoto M. Miwa K. Arihiro S. Toyoda K. Left atrial size and ischemic events after ischemic stroke or transient ischemic attack in patients with nonvalvular atrial fibrillation. Cerebrovasc. Dis. 2020 49 6 619 624 10.1159/000511393 33176314
    [Google Scholar]
  10. Smith E.E. Saposnik G. Biessels G.J. Doubal F.N. Fornage M. Gorelick P.B. Greenberg S.M. Higashida R.T. Kasner S.E. Seshadri S. Prevention of stroke in patients with silent cerebrovascular disease: a scientific statement for healthcare professionals from the american heart association/american stroke association. Stroke 2017 48 2 e44 e71 10.1161/STR.0000000000000116 27980126
    [Google Scholar]
  11. Chen L.Y. Lopez F.L. Gottesman R.F. Huxley R.R. Agarwal S.K. Loehr L. Mosley T. Alonso A. Atrial fibrillation and cognitive decline-the role of subclinical cerebral infarcts: the atherosclerosis risk in communities study. Stroke 2014 45 9 2568 2574 10.1161/STROKEAHA.114.005243 25052319
    [Google Scholar]
  12. Cha M. Park H.E. Lee M. Cho Y. Choi E. Oh S. Prevalence of and risk factors for silent ischemic stroke in patients with atrial fibrillation as determined by brain magnetic resonance imaging. Am. J. Cardiol. 2014 113 4 655 661 10.1016/j.amjcard.2013.11.011 24360776
    [Google Scholar]
  13. Vermeer S.E. Longstreth W.T. Jr Koudstaal P.J. Silent brain infarcts: a systematic review. Lancet Neurol. 2007 6 7 611 619 10.1016/S1474‑4422(07)70170‑9 17582361
    [Google Scholar]
  14. Herm J. Schurig J. Martinek M.R. Höltgen R. Schirdewan A. Kirchhof P. Wieczorek M. Pürerfellner H. Heuschmann P.U. Fiebach J.B. Haeusler K.G. MRI-detected brain lesions in AF patients without further stroke risk factors undergoing ablation - a retrospective analysis of prospective studies. BMC Cardiovasc. Disord. 2019 19 1 58 10.1186/s12872‑019‑1035‑1 30871479
    [Google Scholar]
  15. Miki K. Nakano M. Aizawa K. Hasebe Y. Kimura Y. Morosawa S. Akashi T. Morishita Y. Miyata S. Fukuda K. Shimokawa H. Risk factors and localization of silent cerebral infarction in patients with atrial fibrillation. Heart Rhythm 2019 16 9 1305 1313 10.1016/j.hrthm.2019.03.013 30898584
    [Google Scholar]
  16. Escudero-Martínez I. Ocete R.F. Mancha F. Vega Á. Piñero P. López-Rueda A. Fajardo E. Algaba P. Fernández-Engo J.R. Martín-Sánchez E.M. Galvao-Carmona A. Zapata-Arriaza E. Lebrato L. Pardo-Galiana B. Cabezas J.A. Ayuso M.I. González A. Moniche F. Montaner J. Prevalence and risk factors of silent brain infarcts in patients with AF detected by 3T-MRI. J. Neurol. 2020 267 9 2675 2682 10.1007/s00415‑020‑09887‑0 32410017
    [Google Scholar]
  17. Berg D.D. Ruff C.T. Morrow D.A. Biomarkers for risk assessment in atrial fibrillation. Clin. Chem. 2021 67 1 87 95 10.1093/clinchem/hvaa298 33313695
    [Google Scholar]
  18. Galenko O. Jacobs V. Bunch T.J. Biomarkers in the risk assessment for stroke and dementia in atrial fibrillation. Curr. Opin. Cardiol. 2020 35 1 1 7 10.1097/HCO.0000000000000688 31574002
    [Google Scholar]
  19. Gasparyan A.Y. Ayvazyan L. Mukanova U. Yessirkepov M. Kitas G.D. The platelet-to-lymphocyte ratio as an inflammatory marker in rheumatic diseases. Ann. Lab. Med. 2019 39 4 345 357 10.3343/alm.2019.39.4.345 30809980
    [Google Scholar]
  20. Chen C. Gu L. Chen L. Hu W. Feng X. Qiu F. Fan Z. Chen Q. Qiu J. Shao B. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as potential predictors of prognosis in acute ischemic stroke. Front. Neurol. 2021 11 525621 10.3389/fneur.2020.525621 33569032
    [Google Scholar]
  21. Bakogiannis C. Sachse M. Stamatelopoulos K. Stellos K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine 2019 122 154157 10.1016/j.cyto.2017.09.013 29198385
    [Google Scholar]
  22. Kojok K. El-Kadiry A.E.H. Merhi Y. Role of NF-κB in platelet function. Int. J. Mol. Sci. 2019 20 17 4185 10.3390/ijms20174185 31461836
    [Google Scholar]
  23. Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Med. J. 2021 122 7 474 488 10.4149/BLL_2021_078 34161115
    [Google Scholar]
  24. Li Q. Nie J. Cao M. Luo C. Sun C. Association between inflammation markers and all-cause mortality in critical ill patients with atrial fibrillation: Analysis of the Multi-Parameter Intelligent Monitoring in Intensive Care (MIMIC-IV) database. Int. J. Cardiol. Heart Vasc. 2024 51 101372 10.1016/j.ijcha.2024.101372 38435383
    [Google Scholar]
  25. Altintas O. Tasal A. Niftaliyev E. Kucukdagli O.T. Asil T. Association of platelet-to-lymphocyte ratio with silent brain infarcts in patients with paroxysmal atrial fibrillation. Neurol. Res. 2016 38 9 753 758 10.1080/01616412.2016.1210357 27456433
    [Google Scholar]
  26. Suwa Y. Miyasaka Y. Taniguchi N. Harada S. Nakai E. Shiojima I. Atrial fibrillation and stroke: importance of left atrium as assessed by echocardiography. J. Echocardiogr. 2022 20 2 69 76 10.1007/s12574‑021‑00561‑6 35066798
    [Google Scholar]
  27. Zhou M. Chen J. Wang H. Xi S. Gan T. Zhao L. Independent risk factors of atrial thrombosis in patients with nonvalvular atrial fibrillation and low CHA2DS2-VASc scores. Nan Fang Yi Ke Da Xue Xue Bao 2021 41 8 1243 1249 10.12122/j.issn.1673‑4254.2021.08.17 34549717
    [Google Scholar]
  28. Ogata T. Matsuo R. Kiyuna F. Hata J. Ago T. Tsuboi Y. Kitazono T. Kamouchi M. Ibayashi S. Kusuda K. Fujii K. Nagao T. Okada Y. Yasaka M. Ooboshi H. Irie K. Omae T. Nakane H. Sugimori H. Arakawa S. Fukuda K. Kitayama J. Fujimoto S. Arihiro S. Kuroda J. Wakisaka Y. Fukushima Y. Kumai Y. Makihara N. Takada J. Left atrial size and long‐term risk of recurrent stroke after acute ischemic stroke in patients with nonvalvular atrial fibrillation. J. Am. Heart Assoc. 2017 6 8 e006402 10.1161/JAHA.117.006402 28862939
    [Google Scholar]
  29. Pradella M. Baraboo J.J. Prabhakaran S. Zhao L. Hijaz T. McComb E.N. Naidich M.J. Heckbert S.R. Nasrallah I.M. Bryan R.N. Passman R.S. Markl M. Greenland P. MRI investigation of the association of left atrial and left atrial appendage hemodynamics with silent brain infarction. J. Magn. Reson. Imaging 2024 jmri.29349 Online ahead of print 10.1002/jmri.29349 38490945
    [Google Scholar]
  30. Chen Y.C. Voskoboinik A. Gerche A.L. Marwick T.H. McMullen J.R. Prevention of pathological atrial remodeling and atrial fibrillation. J. Am. Coll. Cardiol. 2021 77 22 2846 2864 10.1016/j.jacc.2021.04.012 34082914
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026354260241218115435
Loading
/content/journals/cnr/10.2174/0115672026354260241218115435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test