Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

Aloe-emodin (AE), a monomer derived from traditional Chinese medicine, has demonstrated remarkable efficacy in the clinical management of cognitive disorders. Ferroptosis (FPT), a specialized form of programmed cell death, plays a critical role in the pathological progression of various cognitive diseases.

Methods

This study explored the therapeutic potential of AE in a rat model of Wilson's disease cognitive impairments (WDCI) and examined whether these effects are mediated through the silencing information regulator 1 (SIRT1)-regulated FPT signaling pathway. Employing techniques, such as the Morris water maze (MWM), Hematoxylin & eosin (H&E) staining, Transmission electron microscopy (TEM), Immunofluorescence (IF), assessments of oxidative stress markers, and measurements of FPT-related protein levels, we evaluated the extent of SIRT1-mediated FPT and the therapeutic efficacy of AE.

Results

The findings from the WD copper-loaded rat model experiments revealed that MWM, H&E, TEM, and IF outcomes indicated AE's potential to promote the restoration of learning and memory functions, ameliorate hippocampal neuronal morphological damage, and preserve cell membrane integrity. Results from western blot (WB) and ELISA analyses demonstrated that AE markedly upregulated the expression of SIRT1, nuclear factor erythroid-2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SCL7A11), and glutathione peroxidase 4 (GPX4) proteins while simultaneously reversing the expression of oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), and reactive oxygen species (ROS). Consequently, we posit that AE may attenuate WD copper-loaded rat model hippocampal neuronal FPT by activating the SIRT1-mediated signaling pathway.

Conclusion

These findings suggested that AE mitigates WD copper-loaded rat model hippocampal neuronal damage through the activation of SIRT1-mediated FPT, thereby presenting a valuable candidate Chinese herbal monomer for the clinical treatment of WDCI.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026348862241003042336
2024-10-11
2025-04-09
Loading full text...

Full text loading...

References

  1. Lucena-ValeraA. Ruz-ZafraP. AmpueroJ. Wilson’s disease: Overview.Med. Clin. (Barc.)2023160626126710.1016/j.medcli.2022.12.01636697289
    [Google Scholar]
  2. RobertsE.A. Update on the diagnosis and management of wilson disease.Curr. Gastroenterol. Rep.201820125610.1007/s11894‑018‑0660‑730397835
    [Google Scholar]
  3. DevS. KruseR.L. HamiltonJ.P. LutsenkoS. Wilson disease: Update on pathophysiology and treatment.Front. Cell Dev. Biol.20221087187710.3389/fcell.2022.87187735586338
    [Google Scholar]
  4. AlkhouriN. Gonzalez-PeraltaR.P. MediciV. Wilson disease: a summary of the updated AASLD Practice Guidance.Hepatol. Commun.202376e015010.1097/HC9.000000000000015037184530
    [Google Scholar]
  5. HuangQ. LuG. ShenH.M. ChungM.C.M. OngC.N. Anti-cancer properties of anthraquinones from rhubarb.Med. Res. Rev.200727560963010.1002/med.2009417022020
    [Google Scholar]
  6. HammanJ.H. Composition and applications of Aloe vera leaf gel.Molecules20081381599161610.3390/molecules1308159918794775
    [Google Scholar]
  7. YiT. LeungK.S.Y. LuG.H. ZhangH. ChanK. Identification and determination of the major constituents in traditional Chinese medicinal plant Polygonum multiflorum thunb by HPLC coupled with PAD and ESI/MS.Phytochem. Anal.200718318118710.1002/pca.96317500359
    [Google Scholar]
  8. DongX. ZengY. LiuY. YouL. YinX. FuJ. NiJ. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics.Phytother. Res.202034227028110.1002/ptr.653231680350
    [Google Scholar]
  9. HuB. ZhangH. MengX. WangF. WangP. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages.J. Ethnopharmacol.2014153384685310.1016/j.jep.2014.03.05924685589
    [Google Scholar]
  10. LiS.W. YangT.C. LaiC.C. HuangS.H. LiaoJ.M. WanL. LinY.J. LinC.W. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation.Eur. J. Pharmacol.201473812513210.1016/j.ejphar.2014.05.02824877694
    [Google Scholar]
  11. WooS.W. NanJ.X. LeeS.H. ParkE.J. ZhaoY.Z. SohnD.H. Aloe emodin suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture.Pharmacol. Toxicol.200290419319810.1034/j.1600‑0773.2002.900404.x12076313
    [Google Scholar]
  12. TaoL. XieJ. WangY. WangS. WuS. WangQ. DingH. Protective effects of aloe-emodin on scopolamine-induced memory impairment in mice and H2O2-induced cytotoxicity in PC12 cells.Bioorg. Med. Chem. Lett.201424235385538910.1016/j.bmcl.2014.10.04925453793
    [Google Scholar]
  13. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  14. LitwinT. DusekP. SzafrańskiT. DzieżycK. CzłonkowskaA. RybakowskiJ.K. Psychiatric manifestations in Wilson’s disease: Possibilities and difficulties for treatment.Ther. Adv. Psychopharmacol.20188719921110.1177/204512531875946129977520
    [Google Scholar]
  15. WangX. ShaoN. ZhangX. ChenH. ChangZ. XieD. ZhangJ. Ferulic acid activates SIRT1 mediated ferroptosis signaling pathway to improve cognition dysfunction in wilson’s disease.Neuropsychiatr. Dis. Treat.2023192681269610.2147/NDT.S44327838077239
    [Google Scholar]
  16. MishraP. MittalA.K. KaloniaH. MadanS. GhoshS. SinhaJ.K. RajputS.K. SIRT1 promotes neuronal fortification in neurodegenerative diseases through attenuation of pathological hallmarks and enhancement of cellular lifespan.Curr. Neuropharmacol.20211971019103710.2174/18756190MTA44NjIg132727328
    [Google Scholar]
  17. QiongyueZ. XinY. MengP. SulinM. YanlinW. XinyiL. XueminS. Post-treatment with irisin attenuates acute kidney injury in sepsis mice through anti-ferroptosis via the SIRT1/Nrf2 Pathway.Front. Pharmacol.20221385706710.3389/fphar.2022.85706735370723
    [Google Scholar]
  18. LiD. LiuX. PiW. ZhangY. YuL. XuC. SunZ. JiangJ. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation.Front. Pharmacol.20221280848010.3389/fphar.2021.80848035273493
    [Google Scholar]
  19. TonelliC. ChioI.I.C. TuvesonD.A. Transcriptional regulation by Nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.734228899199
    [Google Scholar]
  20. KerinsM.J. OoiA. The roles of NRF2 in modulating cellular iron homeostasis.Antioxid. Redox Signal.201829171756177310.1089/ars.2017.717628793787
    [Google Scholar]
  21. TorrenteL. DeNicolaG.M. Targeting NRF2 and its downstream processes: Opportunities and challenges.Annu. Rev. Pharmacol. Toxicol.202262127930010.1146/annurev‑pharmtox‑052220‑10402534499527
    [Google Scholar]
  22. XuJ. JiangH. LiJ. ChengK.K. DongJ. ChenZ. 1H NMR-based metabolomics investigation of copper-laden rat: A model of Wilson’s disease.PLoS One2015104e011965410.1371/journal.pone.011965425849323
    [Google Scholar]
  23. ZhangX. WangX. YeT. ShaoN. WangJ. CaiB. XieD. Network pharmacology-based approach to understand the effect and mechanism of chrysophanol against cognitive impairment in Wilson disease.Metab. Brain Dis.2023391899910.1007/s11011‑023‑01321‑437999884
    [Google Scholar]
  24. ZhangG. LiQ. GaoW. LiuS. WuR. ShenZ. LiuW. ChenY. Copper chloride dose-dependently alters spatial learning and memory, and glutamate levels, in the hippocampus of rats.Mol. Med. Rep.20181734074408229257305
    [Google Scholar]
  25. ZhangY. ZhouQ. LuL. SuY. ShiW. ZhangH. LiuR. PuY. YinL. Copper induces cognitive impairment in mice via modulation of cuproptosis and CREB signaling.Nutrients202315497210.3390/nu1504097236839332
    [Google Scholar]
  26. PalmieriG.R. De MicheleG. MatarazzoM. Di DatoF. PerilloS. Dello IacovoD.C.P. CuomoN. PaneC. RussoC.V. IorioR. De MicheleG. De RosaA. Prevalence and features of non-motor symptoms in Wilson’s disease.Parkinsonism Relat. Disord.20229510310610.1016/j.parkreldis.2022.01.01635093711
    [Google Scholar]
  27. KirkF.T. MunkD.E. LaursenT.L. VilstrupH. OttP. GrønbækH. LauridsenM.M. SandahlT.D. Cognitive impairment in stable Wilson disease across phenotype.Metab. Brain Dis.20213672173217710.1007/s11011‑021‑00804‑634342812
    [Google Scholar]
  28. KalitaJ. KumarV. MisraU.K. BoraH.K. Memory and learning dysfunction following copper toxicity: Biochemical and immunohistochemical basis.Mol. Neurobiol.20185553800381128536976
    [Google Scholar]
  29. PhilbertS.A. SchönbergerS.J. XuJ. ChurchS.J. UnwinR.D. CooperG.J.S. Elevated hippocampal copper in cases of type 2 diabetes.EBioMedicine20228610431710.1016/j.ebiom.2022.10431736335667
    [Google Scholar]
  30. ChenL.L. FanY.G. ZhaoL.X. ZhangQ. WangZ.Y. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators.Bioorg. Chem.202313110630110.1016/j.bioorg.2022.10630136455485
    [Google Scholar]
  31. RenQ. ChenJ. WesselingS. BouwmeesterH. RietjensI.M.C.M. Physiologically based kinetic modeling-facilitated quantitative in vitro to in vivo extrapolation to predict the effects of aloe-emodin in rats and humans.J. Agric. Food Chem.20247229161631617610.1021/acs.jafc.4c0096938980703
    [Google Scholar]
  32. LiuH. GuoD. WangJ. ZhangW. ZhuZ. ZhuK. BiS. PanP. LiangG. Aloe-emodin from Sanhua Decoction inhibits neuroinflammation by regulating microglia polarization after subarachnoid hemorrhage.J. Ethnopharmacol.202432211758310.1016/j.jep.2023.11758338122912
    [Google Scholar]
  33. XianM. CaiJ. ZhengK. LiuQ. LiuY. LinH. LiangS. WangS. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway.Food Funct.202112178056806710.1039/D1FO01144H34286782
    [Google Scholar]
  34. LitwinT. DusekP. AntosA. CzłonkowskaA. BembenekJ. Tackling the neurological manifestations in Wilson’s disease – currently available treatment options.Expert Rev. Neurother.202323121249125910.1080/14737175.2023.226884137842984
    [Google Scholar]
  35. LeeE.J. WooM.H. MoonJ.S. KoJ.S. Efficacy and safety of D-penicillamine, trientine, and zinc in pediatric Wilson disease patients.Orphanet J. Rare Dis.202419126110.1186/s13023‑024‑03271‑138982450
    [Google Scholar]
  36. LiY. DuY. ZhouY. ChenQ. LuoZ. RenY. ChenX. ChenG. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death.Cell Commun. Signal.202321132710.1186/s12964‑023‑01267‑137974196
    [Google Scholar]
  37. TeschkeR. EickhoffA. Wilson disease: Copper-mediated cuproptosis, iron-related ferroptosis, and clinical highlights, with comprehensive and critical analysis update.Int. J. Mol. Sci.2024259475310.3390/ijms2509475338731973
    [Google Scholar]
  38. LaneD.J.R. MetselaarB. GreenoughM. BushA.I. AytonS.J. Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer’s disease.Essays Biochem.202165792594010.1042/EBC2021001734623415
    [Google Scholar]
  39. FuC. WuY. LiuS. LuoC. LuY. LiuM. WangL. ZhangY. LiuX. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia.J. Ethnopharmacol.202228911502110.1016/j.jep.2022.11502135091012
    [Google Scholar]
  40. LiY. ZhangE. YangH. ChenY. TaoL. XuY. ChenT. ShenX. Gastrodin ameliorates cognitive dysfunction in vascular dementia rats by suppressing ferroptosis via the regulation of the Nrf2/Keap1-GPx4 signaling pathway.Molecules20222719631110.3390/molecules27196311
    [Google Scholar]
  41. ZhongY. LiuL. ZhaoY. FengZ. LiuY. Elucidating the molecular mechanisms behind the therapeutic impact of median nerve stimulation on cognitive dysfunction post-traumatic brain injury.Exp. Gerontol.202419411250010.1016/j.exger.2024.11250038901771
    [Google Scholar]
  42. ShiY.S. ChenJ.C. LinL. ChengY.Z. ZhaoY. ZhangY. PanX.D. Dendrobine rescues cognitive dysfunction in diabetic encephalopathy by inhibiting ferroptosis via activating Nrf2/GPX4 axis.Phytomedicine202311915499310.1016/j.phymed.2023.15499337567006
    [Google Scholar]
  43. YuanY. ZhaiY. ChenJ. XuX. WangH. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis.Biomolecules202111792310.3390/biom1107092334206421
    [Google Scholar]
  44. LiuH. ZhangT. ZhangW.Y. HuangS.R. HuY. SunJ. Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway.Exp. Neurol.202336911454110.1016/j.expneurol.2023.11454137714424
    [Google Scholar]
  45. YangS. WangL. ZengY. WangY. PeiT. XieZ. XiongQ. WeiH. LiW. LiJ. SuQ. WeiD. ChengW. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice.Phytomedicine202311415476210.1016/j.phymed.2023.15476236965372
    [Google Scholar]
  46. YangS. xieZ. PeiT. zengY. XiongQ. WeiH. WangY. ChengW. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer’s disease mice and glutamate-injured HT22 cells.Chin. Med.20221718210.1186/s13020‑022‑00634‑335787281
    [Google Scholar]
  47. KongL. WangY. TongZ. DaiR. YusufA. DuL. LiuB. HuangZ. HuL. Granulathiazole A protects 6-OHDA-induced Parkinson’s disease from ferroptosis via activating Nrf2/HO-1 pathway.Bioorg. Chem.202414710739910.1016/j.bioorg.2024.10739938678778
    [Google Scholar]
  48. XieR. ZhaoW. LoweS. BentleyR. HuG. MeiH. JiangX. SunC. WuY. LiuY. Corrigendum to Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway.Free Radic. Biol. Med.2022193Pt 18010.1016/j.freeradbiomed.2022.10.27536252463
    [Google Scholar]
  49. WangJ. ShiJ. XiaoY. ChenG. YangC. DuanL. ZhaoW. WangQ. Fo-Shou-San ameliorates chronic cerebral hypoperfusion-induced cognitive impairment in mice by regulating NRF2/HO-1 pathway against ferroptosis.J. Integr. Neurosci.20232224110.31083/j.jin220204136992577
    [Google Scholar]
  50. DangR. WangM. LiX. WangH. LiuL. WuQ. ZhaoJ. JiP. ZhongL. LicinioJ. XieP. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway.J. Neuroinflammation20221914110.1186/s12974‑022‑02400‑635130906
    [Google Scholar]
  51. SeilerA. SchneiderM. FörsterH. RothS. WirthE.K. CulmseeC. PlesnilaN. KremmerE. RådmarkO. WurstW. BornkammG.W. SchweizerU. ConradM. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death.Cell Metab.20088323724810.1016/j.cmet.2008.07.00518762024
    [Google Scholar]
  52. WangF. WangJ. ShenY. LiH. RauschW.D. HuangX. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis?Front. Aging Neurosci.20221483056910.3389/fnagi.2022.83056935391749
    [Google Scholar]
  53. BaruahP. MoorthyH. RameshM. PadhiD. GovindarajuT. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-β induced ferroptosis in Alzheimer’s disease.Chem. Sci. (Camb.)202314359427943810.1039/D3SC02350H37712018
    [Google Scholar]
  54. LiaoW. ZhangR. ChenG. ZhuX. WuW. ChenZ. JiangC. LinZ. MaL. YuH. Berberine synergises with ferroptosis inducer sensitizing NSCLC to ferroptosis in p53-dependent SLC7A11-GPX4 pathway.Biomed. Pharmacother.202417611683210.1016/j.biopha.2024.11683238850659
    [Google Scholar]
  55. LiC. WuZ. XueH. GaoQ. ZhangY. WangC. ZhaoP. Ferroptosis contributes to hypoxic–ischemic brain injury in neonatal rats: Role of the SIRT1 /Nrf2/ GPx4 signaling pathway.CNS Neurosci. Ther.202228122268228010.1111/cns.1397336184790
    [Google Scholar]
  56. KwonH. LeeE.H. ParkS.Y. ParkJ.Y. HongJ.H. KimE.K. ShinT.S. KimY.K. HanP.L. Lactobacillus-derived extracellular vesicles counteract Aβ42-induced abnormal transcriptional changes through the upregulation of MeCP2 and Sirt1 and improve Aβ pathology in Tg-APP/PS1 mice.Exp. Mol. Med.20235592067208210.1038/s12276‑023‑01084‑z37704750
    [Google Scholar]
  57. TangH. WenJ. QinT. ChenY. HuangJ. YangQ. JiangP. WangL. ZhaoY. YangQ. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke.Front. Cell. Neurosci.202317122876110.3389/fncel.2023.122876137622049
    [Google Scholar]
  58. HassaneinE.H.M. SalehF.M. AliF.E.M. RashwanE.K. AtwaA.M. Abd El-GhafarO.A.M. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1–7 signals.Immunopharmacol. Immunotoxicol.202345330431610.1080/08923973.2022.214337136326099
    [Google Scholar]
  59. ZhaoN. ZhuX. XieL. GuanX. TangL. JiangG. PangT. The combination of citicoline and nicotinamide mononucleotide induces neurite outgrowth and mitigates vascular cognitive impairment via SIRT1/CREB pathway.Cell. Mol. Neurobiol.20234384261427710.1007/s10571‑023‑01416‑737812361
    [Google Scholar]
  60. GuX. XieY. CaoQ. HouZ. ZhangY. WangW. Fisetin alleviates cerebral ischemia/reperfusion injury by regulating Sirt1/Foxc1/Ubqln1 pathway-mediated proteostasis.Int. Immunopharmacol.202413011174210.1016/j.intimp.2024.11174238452414
    [Google Scholar]
  61. MaJ. ChenT. WangR. Astragaloside IV ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway.Neurochem. Int.202316710553510.1016/j.neuint.2023.10553537209830
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026348862241003042336
Loading
/content/journals/cnr/10.2174/0115672026348862241003042336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test