Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.

Methods

The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR-216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment.

Results

Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress.

Conclusion

This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/R-induced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026352738241205105129
2024-12-23
2025-04-24
Loading full text...

Full text loading...

References

  1. DonkorE.S. Stroke in the 21st century: A snapshot of the burden, epidemiology, and quality of life.Stroke Res. Treat.2018201811010.1155/2018/323816530598741
    [Google Scholar]
  2. PrustM.L. FormanR. OvbiageleB. Addressing disparities in the global epidemiology of stroke.Nat. Rev. Neurol.202420420722110.1038/s41582‑023‑00921‑z38228908
    [Google Scholar]
  3. FanJ. LiX. YuX. LiuZ. JiangY. FangY. ZongM. SuoC. ManQ. XiongL. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990–2030.Neurology20231012e137e15010.1212/WNL.000000000020738737197995
    [Google Scholar]
  4. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  5. HauptM. GernerS.T. BährM. DoeppnerT.R. Neuroprotective strategies for ischemic stroke—Future perspectives.Int. J. Mol. Sci.2023245433410.3390/ijms2405433436901765
    [Google Scholar]
  6. SalamiR. SalamiM. MafiA. VakiliO. AsemiZ. Circular RNAs and glioblastoma multiforme: Focus on molecular mechanisms.Cell Commun. Signal.20222011310.1186/s12964‑021‑00809‑935090496
    [Google Scholar]
  7. PatopI.L. WüstS. KadenerS. Past, present, and future of circ RNAs.EMBO J.20193816e10083610.15252/embj.201810083631343080
    [Google Scholar]
  8. LuS. WuX. XinS. ZhangJ. LinH. MiaoY. LiY. Knockdown of circ_0001679 alleviates lipopolysaccharide-induced MLE-12 lung cell injury by regulating the miR-338-3p/ mitogen-activated protein kinase 1 axis.Bioengineered20221335803581710.1080/21655979.2022.203456435264058
    [Google Scholar]
  9. ZouZ. WangQ. ZhouM. LiW. ZhengY. LiF. ZhengS. HeZ. Protective effects of P2X7R antagonist in sepsis‐induced acute lung injury in mice via regulation of CIRC_0001679 and CIRC_0001212 and downstream PLN, CDH2, and NPRL3 expression.J. Gene Med.20202212e326110.1002/jgm.326132783373
    [Google Scholar]
  10. MacfarlaneL.A. MurphyP.R. MicroRNA: Biogenesis, function and role in cancer.Curr. Genomics201011753756110.2174/13892021079317589521532838
    [Google Scholar]
  11. NeagM.A. MitreA.O. BurlacuC.C. InceuA.I. MihuC. MelincoviciC.S. BichescuM. BuzoianuA.D. miRNA involvement in cerebral ischemia-reperfusion injury.Front. Neurosci.20221690136010.3389/fnins.2022.90136035757539
    [Google Scholar]
  12. WangN. ZhangL. LuY. ZhangM. ZhangZ. WangK. LvJ. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway.Biomed. Pharmacother.2017891187119510.1016/j.biopha.2017.03.01128320085
    [Google Scholar]
  13. LiangY. XuJ. WangY. TangJ.Y. YangS.L. XiangH.G. WuS.X. LiX.J. Inhibition of MiRNA-125b decreases cerebral ischemia/reperfusion injury by targeting CK2α/NADPH oxidase signaling.Cell. Physiol. Biochem.20184551818182610.1159/00048787329510389
    [Google Scholar]
  14. JiangC. DongN. FengJ. HaoM. miRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway.Pflugers Arch.2021473112113010.1007/s00424‑020‑02490‑233196911
    [Google Scholar]
  15. WangP. PanR. WeaverJ. JiaM. YangX. YangT. LiangJ. LiuK.J. MicroRNA-30a regulates acute cerebral ischemia-induced blood–brain barrier damage through ZnT4/zinc pathway.J. Cereb. Blood Flow Metab.202141364165510.1177/0271678X2092678732501158
    [Google Scholar]
  16. FangZ. HeQ.W. LiQ. ChenX.L. BaralS. JinH.J. ZhuY.Y. LiM. XiaY.P. MaoL. HuB. MicroRNA‐150 regulates blood‐brain barrier permeability via Tie‐2 after permanent middle cerebral artery occlusion in rats.FASEB J.20163062097210710.1096/fj.20150012626887441
    [Google Scholar]
  17. LiX. SuL. ZhangX. ZhangC. WangL. LiY. ZhangY. HeT. ZhuX. CuiL. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury.Neurol. Res.201739436737310.1080/01616412.2017.128654128191863
    [Google Scholar]
  18. El-SisiA.E.D.E.S. SokarS.S. SheblA.M. MohamedD.Z. Abu-RishaS.E.S. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury.Toxicol. Appl. Pharmacol.202141011534010.1016/j.taap.2020.11534033264646
    [Google Scholar]
  19. YingX.D. WeiG. AnH. Sodium butyrate relieves lung ischemia-reperfusion injury by inhibiting NF-κB and JAK2/STAT3 signaling pathways.Eur. Rev. Med. Pharmacol. Sci.202125141342210.26355/eurrev_202101_2440933506931
    [Google Scholar]
  20. WangH. ZhengX. JinJ. ZhengL. GuanT. HuoY. XieS. WuY. ChenW. LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4.J. Biomed. Sci.20202714010.1186/s12929‑020‑00635‑032138732
    [Google Scholar]
  21. DuanH. LiL. ShenS. MaY. YinX. LiuZ. YuanC. WangY. ZhangJ. Hydrogen sulfide reduces cognitive impairment in rats after subarachnoid hemorrhage by ameliorating neuroinflammation mediated by the TLR4/NF-κB pathway in microglia.Front. Cell. Neurosci.20201421010.3389/fncel.2020.0021032754015
    [Google Scholar]
  22. ZhangM. LiuQ. MengH. DuanH. LiuX. WuJ. GaoF. WangS. TanR. YuanJ. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.2024911210.1038/s41392‑023‑01688‑x38185705
    [Google Scholar]
  23. LiZ. LinY. MaoL. ZhangL. Expression characteristics of circular RNA in human traumatic brain injury.Front. Neurol.202313108655310.3389/fneur.2022.108655336712438
    [Google Scholar]
  24. ZhuH. XingZ. ZhaoY. HaoZ. LiM. The role of circular RNAs in brain injury.Neuroscience2020428505910.1016/j.neuroscience.2019.12.01831917349
    [Google Scholar]
  25. DuM. WuC. YuR. ChengY. TangZ. WuB. FuJ. TanW. ZhouQ. ZhuZ. BalawiE. HuangX. MaJ. LiaoZ.B. A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury.Mol. Psychiatry202227114575458910.1038/s41380‑022‑01711‑735918398
    [Google Scholar]
  26. YangB. ZangL. CuiJ. WeiL. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction.Stem Cell Res. Ther.202112112510.1186/s13287‑021‑02187‑y33579365
    [Google Scholar]
  27. RadpourM. ChoopaniS. PourbadieH.G. SayyahM. Activating toll-like receptor 4 after traumatic brain injury inhibits neuroinflammation and the accelerated development of seizures in rats.Exp. Neurol.202235711420210.1016/j.expneurol.2022.11420235970203
    [Google Scholar]
  28. CaoM SongW LiangR TengL ZhangM ZhangJ ZhuL. MicroRNA as a potential biomarker and treatment strategy for ischemia-reperfusion injury.Int. J. Genomics.20212021909814510.1155/2021/909814534845433
    [Google Scholar]
  29. ArslanF. KeoghB. McGuirkP. ParkerA.E. TLR2 and TLR4 in ischemia reperfusion injury.Mediators Inflamm.201020101810.1155/2010/70420220628516
    [Google Scholar]
  30. HuaF. HaT. MaJ. LiY. KelleyJ. GaoX. BrowderI.W. KaoR.L. WilliamsD.L. LiC. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism.J. Immunol.2007178117317732410.4049/jimmunol.178.11.731717513782
    [Google Scholar]
  31. MaoL. WuD.H. HuG.H. FanJ.H. TLR4 enhances cerebral ischemia/reperfusion injury via regulating NLRP3 inflammasome and autophagy.Mediators Inflamm.202320231910.1155/2023/933516636879557
    [Google Scholar]
  32. HyakkokuK. HamanakaJ. TsurumaK. ShimazawaM. TanakaH. UematsuS. AkiraS. InagakiN. NagaiH. HaraH. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia.Neuroscience2010171125826710.1016/j.neuroscience.2010.08.05420804821
    [Google Scholar]
  33. WangY. GeP. ZhuY. TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion.Mediators Inflamm.201320131810.1155/2013/12461423864765
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026352738241205105129
Loading
/content/journals/cnr/10.2174/0115672026352738241205105129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test