Skip to content
2000
image of Inhibition of Circ0001679 Alleviates Ischemia/Reperfusion-induced Brain Injury via miR-216/TLR4 Regulatory Axis

Abstract

Background

Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.

Methods

The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR-216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment.

Results

Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice via reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress.

Conclusion

This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/R-induced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026352738241205105129
2024-12-23
2025-01-23
Loading full text...

Full text loading...

References

  1. Donkor E.S. Stroke in the 21st century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018 2018 1 10 10.1155/2018/3238165 30598741
    [Google Scholar]
  2. Prust M.L. Forman R. Ovbiagele B. Addressing disparities in the global epidemiology of stroke. Nat. Rev. Neurol. 2024 20 4 207 221 10.1038/s41582‑023‑00921‑z 38228908
    [Google Scholar]
  3. Fan J. Li X. Yu X. Liu Z. Jiang Y. Fang Y. Zong M. Suo C. Man Q. Xiong L. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990–2030. Neurology 2023 101 2 e137 e150 10.1212/WNL.0000000000207387 37197995
    [Google Scholar]
  4. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  5. Haupt M. Gerner S.T. Bähr M. Doeppner T.R. Neuroprotective strategies for ischemic stroke—future perspectives. Int. J. Mol. Sci. 2023 24 5 4334 10.3390/ijms24054334 36901765
    [Google Scholar]
  6. Salami R. Salami M. Mafi A. Vakili O. Asemi Z. Circular RNAs and glioblastoma multiforme: Focus on molecular mechanisms. Cell Commun. Signal. 2022 20 1 13 10.1186/s12964‑021‑00809‑9 35090496
    [Google Scholar]
  7. Patop I.L. Wüst S. Kadener S. Past, present, and future of circ RNAs. EMBO J. 2019 38 16 e100836 10.15252/embj.2018100836 31343080
    [Google Scholar]
  8. Lu S. Wu X. Xin S. Zhang J. Lin H. Miao Y. Li Y. Knockdown of circ_0001679 alleviates lipopolysaccharide-induced MLE-12 lung cell injury by regulating the miR-338-3p/ mitogen-activated protein kinase 1 axis. Bioengineered 2022 13 3 5803 5817 10.1080/21655979.2022.2034564 35264058
    [Google Scholar]
  9. Zou Z. Wang Q. Zhou M. Li W. Zheng Y. Li F. Zheng S. He Z. Protective effects of P2X7R antagonist in sepsis‐induced acute lung injury in mice via regulation of CIRC_0001679 and CIRC_0001212 and downstream PLN, CDH2, and NPRL3 expression. J. Gene Med. 2020 22 12 e3261 10.1002/jgm.3261 32783373
    [Google Scholar]
  10. Macfarlane L.A. Murphy P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics 2010 11 7 537 561 10.2174/138920210793175895 21532838
    [Google Scholar]
  11. Neag M.A. Mitre A.O. Burlacu C.C. Inceu A.I. Mihu C. Melincovici C.S. Bichescu M. Buzoianu A.D. miRNA involvement in cerebral ischemia-reperfusion injury. Front. Neurosci. 2022 16 901360 10.3389/fnins.2022.901360 35757539
    [Google Scholar]
  12. Wang N. Zhang L. Lu Y. Zhang M. Zhang Z. Wang K. Lv J. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway. Biomed. Pharmacother. 2017 89 1187 1195 10.1016/j.biopha.2017.03.011 28320085
    [Google Scholar]
  13. Liang Y. Xu J. Wang Y. Tang J.Y. Yang S.L. Xiang H.G. Wu S.X. Li X.J. Inhibition of MiRNA-125b decreases cerebral ischemia/reperfusion injury by targeting CK2α/NADPH oxidase signaling. Cell. Physiol. Biochem. 2018 45 5 1818 1826 10.1159/000487873 29510389
    [Google Scholar]
  14. Jiang C. Dong N. Feng J. Hao M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch. 2021 473 1 121 130 10.1007/s00424‑020‑02490‑2 33196911
    [Google Scholar]
  15. Wang P. Pan R. Weaver J. Jia M. Yang X. Yang T. Liang J. Liu K.J. MicroRNA-30a regulates acute cerebral ischemia-induced blood–brain barrier damage through ZnT4/zinc pathway. J. Cereb. Blood Flow Metab. 2021 41 3 641 655 10.1177/0271678X20926787 32501158
    [Google Scholar]
  16. Fang Z. He Q.W. Li Q. Chen X.L. Baral S. Jin H.J. Zhu Y.Y. Li M. Xia Y.P. Mao L. Hu B. MicroRNA‐150 regulates blood‐brain barrier permeability via Tie‐2 after permanent middle cerebral artery occlusion in rats. FASEB J. 2016 30 6 2097 2107 10.1096/fj.201500126 26887441
    [Google Scholar]
  17. Li X. Su L. Zhang X. Zhang C. Wang L. Li Y. Zhang Y. He T. Zhu X. Cui L. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury. Neurol. Res. 2017 39 4 367 373 10.1080/01616412.2017.1286541 28191863
    [Google Scholar]
  18. El-Sisi A.E.D.E.S. Sokar S.S. Shebl A.M. Mohamed D.Z. Abu-Risha S.E.S. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury. Toxicol. Appl. Pharmacol. 2021 410 115340 10.1016/j.taap.2020.115340 33264646
    [Google Scholar]
  19. Ying X.D. Wei G. An H. Sodium butyrate relieves lung ischemia-reperfusion injury by inhibiting NF-κB and JAK2/STAT3 signaling pathways. Eur. Rev. Med. Pharmacol. Sci. 2021 25 1 413 422 10.26355/eurrev_202101_24409 33506931
    [Google Scholar]
  20. Wang H. Zheng X. Jin J. Zheng L. Guan T. Huo Y. Xie S. Wu Y. Chen W. LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J. Biomed. Sci. 2020 27 1 40 10.1186/s12929‑020‑00635‑0 32138732
    [Google Scholar]
  21. Duan H. Li L. Shen S. Ma Y. Yin X. Liu Z. Yuan C. Wang Y. Zhang J. Hydrogen sulfide reduces cognitive impairment in rats after subarachnoid hemorrhage by ameliorating neuroinflammation mediated by the TLR4/NF-κB pathway in microglia. Front. Cell. Neurosci. 2020 14 210 10.3389/fncel.2020.00210 32754015
    [Google Scholar]
  22. Zhang M. Liu Q. Meng H. Duan H. Liu X. Wu J. Gao F. Wang S. Tan R. Yuan J. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024 9 1 12 10.1038/s41392‑023‑01688‑x 38185705
    [Google Scholar]
  23. Li Z. Lin Y. Mao L. Zhang L. Expression characteristics of circular RNA in human traumatic brain injury. Front. Neurol. 2023 13 1086553 10.3389/fneur.2022.1086553 36712438
    [Google Scholar]
  24. Zhu H. Xing Z. Zhao Y. Hao Z. Li M. The role of circular RNAs in brain injury. Neuroscience 2020 428 50 59 10.1016/j.neuroscience.2019.12.018 31917349
    [Google Scholar]
  25. Du M. Wu C. Yu R. Cheng Y. Tang Z. Wu B. Fu J. Tan W. Zhou Q. Zhu Z. Balawi E. Huang X. Ma J. Liao Z.B. A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol. Psychiatry 2022 27 11 4575 4589 10.1038/s41380‑022‑01711‑7 35918398
    [Google Scholar]
  26. Yang B. Zang L. Cui J. Wei L. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction. Stem Cell Res. Ther. 2021 12 1 125 10.1186/s13287‑021‑02187‑y 33579365
    [Google Scholar]
  27. Radpour M. Choopani S. Pourbadie H.G. Sayyah M. Activating toll-like receptor 4 after traumatic brain injury inhibits neuroinflammation and the accelerated development of seizures in rats. Exp. Neurol. 2022 357 114202 10.1016/j.expneurol.2022.114202 35970203
    [Google Scholar]
  28. Cao M Song W Liang R Teng L Zhang M Zhang J Zhu L. MicroRNA as a potential biomarker and treatment strategy for ischemia-reperfusion injury. Int. J. Genomics. 2021 2021 9098145 10.1155/2021/9098145 34845433
    [Google Scholar]
  29. Arslan F. Keogh B. McGuirk P. Parker A.E. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm. 2010 2010 1 8 10.1155/2010/704202 20628516
    [Google Scholar]
  30. Hua F. Ha T. Ma J. Li Y. Kelley J. Gao X. Browder I.W. Kao R.L. Williams D.L. Li C. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J. Immunol. 2007 178 11 7317 7324 10.4049/jimmunol.178.11.7317 17513782
    [Google Scholar]
  31. Mao L. Wu D.H. Hu G.H. Fan J.H. TLR4 enhances cerebral ischemia/reperfusion injury via regulating NLRP3 inflammasome and autophagy. Mediators Inflamm. 2023 2023 1 9 10.1155/2023/9335166 36879557
    [Google Scholar]
  32. Hyakkoku K. Hamanaka J. Tsuruma K. Shimazawa M. Tanaka H. Uematsu S. Akira S. Inagaki N. Nagai H. Hara H. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 2010 171 1 258 267 10.1016/j.neuroscience.2010.08.054 20804821
    [Google Scholar]
  33. Wang Y. Ge P. Zhu Y. TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion. Mediators Inflamm. 2013 2013 1 8 10.1155/2013/124614 23864765
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026352738241205105129
Loading
/content/journals/cnr/10.2174/0115672026352738241205105129
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: miRNA ; Ischemia-reperfusion ; circRNA ; TLR4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test