Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

The close connection between the brain microvascular endothelial cells (BMECs) that are enclosed within this barrier is the result of an intracellular junction, which is responsible for the constricted connection. The regulation and control of drug delivery systems both require nanoparticles, which are extremely small particles made up of a variety of materials, including polymers, metals, and other chemicals. Nanoparticles are a crucial component of the regulation and control of drug delivery systems. There is a possibility that nanomaterials composed of inorganic chemicals, such as gold nanoparticles, could be utilized in the treatment of neurodegenerative illnesses like Parkinson's disease. In addition to this, they are used as nano-carriers for the aim of distributing drugs to the region of the brain that is being targeted. There are a number of advantages that are easily apparent when compared to other methods of administering drugs for neurological diseases. The current review demonstrates both the advantages and disadvantages of utilizing a wide variety of nanomaterials for brain delivery, as well as the potential impact that this will have in the future on the safety and effectiveness of patient care.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026346307240919112023
2024-10-15
2025-04-02
Loading full text...

Full text loading...

References

  1. WangY. WuJ. WangJ. HeL. LaiH. ZhangT. WangX. LiW. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption.Mitochondrion202369718210.1016/j.mito.2023.01.00736709855
    [Google Scholar]
  2. HashimotoY. GreeneC. MunnichA. CampbellM. The CLDN5 gene at the blood-brain barrier in health and disease.Fluids Barriers CNS20232012210.1186/s12987‑023‑00424‑536978081
    [Google Scholar]
  3. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w37231000
    [Google Scholar]
  4. AhamedJ. GowdaB.H.J AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  5. KimJ. WilsonD.R. ZamboniC.G. GreenJ.J. Targeted polymeric nanoparticles for cancer gene therapy.J. Drug Target.2015237-862764110.3109/1061186X.2015.104851926061296
    [Google Scholar]
  6. KaurS. SainiA.K. TuliH.S. GargN. JoshiH. VarolM. KaurJ. ChhillarA.K. SainiR.V. Polymer-mediated nanoformulations: A promising strategy for cancer immunotherapy.Naunyn Schmiedebergs Arch. Pharmacol.202339731311132610.1007/s00210‑023‑02699‑937695334
    [Google Scholar]
  7. ThukralP. ChowdhuryR. SableH. KaushikA. ChaudharyV. Sustainable green synthesized nanoparticles for neurodegenerative diseases diagnosis and treatment.Mater. Today Proc.20237332332810.1016/j.matpr.2022.10.315
    [Google Scholar]
  8. NsairatH. IbrahimA.A. JaberA.M. AbdelghanyS. AtwanR. ShalanN. AbdelnabiH. OdehF. El-TananiM. AlshaerW. Liposome bilayer stability: Emphasis on cholesterol and its alternatives.J. Liposome Res.202334112510.1080/08982104.2023.222621637378553
    [Google Scholar]
  9. ThakurC.K. KarthikeyanC. Abou-DahechM.S. AltabakhaM.M.A.M. Al ShahwanM.J.S. AshbyC.R.Jr TiwariA.K. BabuR.J. MoorthyN.S.H.N. Microwave-assisted functionalization of multi-walled carbon nanotubes for biosensor and drug delivery applications.Pharmaceutics202315233510.3390/pharmaceutics1502033536839659
    [Google Scholar]
  10. FowlerM.J. CotterJ.D. KnightB.E. Sevick-MuracaE.M. SandbergD.I. SirianniR.W. Intrathecal drug delivery in the era of nanomedicine.Adv. Drug Deliv. Rev.2020165-166779510.1016/j.addr.2020.02.00632142739
    [Google Scholar]
  11. YangJ. LulyK.M. GreenJ.J. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023152e185310.1002/wnan.185336193561
    [Google Scholar]
  12. KurawattimathV. WilsonB. GeethaK.M. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma.OpenNano20231010012810.1016/j.onano.2023.100128
    [Google Scholar]
  13. HanL. KongD.K. ZhengM. MurikinatiS. MaC. YuanP. LiL. TianD. CaiQ. YeC. HoldenD. ParkJ.H. GaoX. ThomasJ.L. GrutzendlerJ. CarsonR.E. HuangY. PiepmeierJ.M. ZhouJ. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging.ACS Nano20161044209421810.1021/acsnano.5b0757326967254
    [Google Scholar]
  14. LiuZ. ZhangL. HeQ. LiuX. Chukwunweike IkechukwuO. TongL. GuoL. YangH. ZhangQ. ZhaoH. GuX. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia–reperfusion in rats.Int. J. Pharm.20154891-213113810.1016/j.ijpharm.2015.04.04925895718
    [Google Scholar]
  15. ZhangT.T. LiW. MengG. WangP. LiaoW. Strategies for transporting nanoparticles across the blood–brain barrier.Biomater. Sci.20164221922910.1039/C5BM00383K26646694
    [Google Scholar]
  16. DigheS. JogS. MominM. SawarkarS. OmriA. Intranasal drug delivery by nanotechnology: Advances in and challenges for alzheimer’s disease management.Pharmaceutics20231615810.3390/pharmaceutics1601005838258068
    [Google Scholar]
  17. KhairnarP. SoniM. HandaM. RiadiY. KesharwaniP. ShuklaR. Recent highlights on Omicron as a new SARS-COVID-19 variant: Evolution, genetic mutation, and future perspectives.J. Drug Target.202230660361310.1080/1061186X.2022.205618735311601
    [Google Scholar]
  18. LimS.H. YeeG.T. KhangD. Nanoparticle-based combinational strategies for overcoming the blood-brain barrier and blood-tumor barrier.Int. J. Nanomedicine2024192529255210.2147/IJN.S45085338505170
    [Google Scholar]
  19. FockE. ParnovaR. Mechanisms of blood–brain barrier protection by microbiota-derived short-chain fatty acids.Cells202312465710.3390/cells1204065736831324
    [Google Scholar]
  20. MizrahyS. GutkinA. DecuzziP. PeerD. Targeting central nervous system pathologies with nanomedicines.J. Drug Target.2019275-654255410.1080/1061186X.2018.153355630296187
    [Google Scholar]
  21. GodfreyL. IannitelliA. GarrettN.L. MogerJ. ImbertI. KingT. PorrecaF. SoundararajanR. LalatsaA. SchätzleinA.G. UchegbuI.F. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia.J. Control. Release201827013514410.1016/j.jconrel.2017.11.04129191784
    [Google Scholar]
  22. AsrorovA.M. WangH. ZhangM. WangY. HeY. SharipovM. YiliA. HuangY. Cell penetrating peptides: Highlighting points in cancer therapy.Drug Dev. Res.20238461037107110.1002/ddr.2207637195405
    [Google Scholar]
  23. AlahriM.B IbrahimA.J BaraniM. ArkabanH. ShadmanS.M. SalarpourS. ZarrintajP. JaberiJ. Turki JalilA. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform.Molecules202328284110.3390/molecules2802084136677899
    [Google Scholar]
  24. MahringerA. PurisE. FrickerG. Crossing the blood-brain barrier: A review on drug delivery strategies using colloidal carrier systems.Neurochem. Int.202114710501710.1016/j.neuint.2021.10501733887377
    [Google Scholar]
  25. ZhuangX. TengY. SamykuttyA. MuJ. DengZ. ZhangL. CaoP. RongY. YanJ. MillerD. ZhangH.G. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression.Mol. Ther.20162419610510.1038/mt.2015.18826444082
    [Google Scholar]
  26. ShiD. MiG. ShenY. WebsterT.J. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood–brain barrier.Nanoscale20191132150571507110.1039/C9NR03931G31369016
    [Google Scholar]
  27. LiuY. ZhangD. AnY. SunY. LiJ. ZhengM. ZouY. ShiB. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma.Nano Today20234910179010.1016/j.nantod.2023.101790
    [Google Scholar]
  28. KiesslingM. HerchenhanE. EggertH.R. Cerebrovascular and metabolic effects on the rat brain of focal Nd: YAG laser irradiation.J. Neurosurg.199073690991710.3171/jns.1990.73.6.09092230973
    [Google Scholar]
  29. LiX. VemireddyV. CaiQ. XiongH. KangP. LiX. GiannottaM. HayengaH.N. PanE. SirsiS.R. MateoC. KleinfeldD. GreeneC. CampbellM. DejanaE. BachooR. QinZ. Reversibly modulating the blood-brain barrier by laser stimulation of molecular-targeted nanoparticles.Nano Lett.202121229805981510.1021/acs.nanolett.1c0299634516144
    [Google Scholar]
  30. LiW. QiuJ. LiX.L. AdayS. ZhangJ. ConleyG. XuJ. JosephJ. LanH. LangerR. MannixR. KarpJ.M. JoshiN. BBB pathophysiology–independent delivery of siRNA in traumatic brain injury.Sci. Adv.202171eabd688910.1126/sciadv.abd688933523853
    [Google Scholar]
  31. WangJ.H. GesslerD.J. ZhanW. GallagherT.L. GaoG. Adeno-associated virus as a delivery vector for gene therapy of human diseases.Signal Transduct. Target. Ther.2024917810.1038/s41392‑024‑01780‑w38565561
    [Google Scholar]
  32. YaoY. WangJ. LiuY. QuY. WangK. ZhangY. ChangY. YangZ. WanJ. LiuJ. NakashimaH. LawlerS.E. ChioccaE.A. ChoC.F. BeiF. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates.Nat. Biomed. Eng.20226111257127110.1038/s41551‑022‑00938‑736217021
    [Google Scholar]
  33. SunR. LiuM. LuJ. ChuB. YangY. SongB. WangH. HeY. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy.Nat. Commun.2022131512710.1038/s41467‑022‑32837‑536050316
    [Google Scholar]
  34. NehraM. UthappaU.T. KumarV. KumarR. DixitC. DilbaghiN. MishraY.K. KumarS. KaushikA. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner.J. Control. Release202133822424310.1016/j.jconrel.2021.08.02734418523
    [Google Scholar]
  35. SongY.H. DeR. LeeK.T. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview.Adv. Colloid Interface Sci.202332010300810.1016/j.cis.2023.10300837776736
    [Google Scholar]
  36. ShakeriS. AshrafizadehM. ZarrabiA. RoghanianR. AfsharE.G. PardakhtyA. MohammadinejadR. KumarA. ThakurV.K. Multifunctional polymeric nanoplatforms for brain disease diagnosis, therapy and theranostics.Biomedicines2020811310.3390/biomedicines801001331941057
    [Google Scholar]
  37. PandeS. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes.Artif. Cells Nanomed. Biotechnol.202351142844010.1080/21691401.2023.224703637594208
    [Google Scholar]
  38. RossC. TaylorM. FullwoodN. AllsopD. Liposome delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2018138507852210.2147/IJN.S18311730587974
    [Google Scholar]
  39. ZhangY. HeJ. ShenL. WangT. YangJ. LiY. WangY. QuanD. Brain-targeted delivery of obidoxime, using aptamer-modified liposomes, for detoxification of organophosphorus compounds.J. Control. Release20213291117112810.1016/j.jconrel.2020.10.03933096123
    [Google Scholar]
  40. DashR. YadavM. BiswalJ. ChandraA. GoelV.K. SharmaT. PrustyS.K. MohapatraS. Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis.Int. J. Pharm.202364012300910.1016/j.ijpharm.2023.12300937142139
    [Google Scholar]
  41. DesaiH.R. ShindeU.A. Hybrid nanoparticles to cross the blood-brain barrier.In Nanocarriers for Drug-Targeting Brain TumorsElsevier,202256558610.1016/B978‑0‑323‑90773‑6.00002‑6
    [Google Scholar]
  42. PatelT. ZhouJ. PiepmeierJ.M. SaltzmanW.M. Polymeric nanoparticles for drug delivery to the central nervous system.Adv. Drug Deliv. Rev.201264770170510.1016/j.addr.2011.12.00622210134
    [Google Scholar]
  43. MadniA. NoreenS. MaqboolI. RehmanF. BatoolA. KashifP.M. RehmanM. TahirN. KhanM.I. Graphene-based nanocomposites: Synthesis and their theranostic applications.J. Drug Target.2018261085888310.1080/1061186X.2018.143792029424250
    [Google Scholar]
  44. MishraV. PatilA. ThakurS. KesharwaniP. Carbon dots: Emerging theranostic nanoarchitectures.Drug Discov. Today20182361219123210.1016/j.drudis.2018.01.00629366761
    [Google Scholar]
  45. ZhangW. SigdelG. MintzK.J. SevenE.S. ZhouY. WangC. LeblancR.M. Carbon dots: A future Blood–Brain Barrier penetrating nanomedicine and drug nanocarrier.Int. J. Nanomedicine2021165003501610.2147/IJN.S31873234326638
    [Google Scholar]
  46. ChengW. ZhangW. XiaX. ZhangJ. WangM. LiY. LiX. ZhengY. LiuJ. ZhangR. TangJ. The domino effect in inhaled carbon black nanoparticles triggers blood brain barrier disruption via altering circulatory inflammation.Nano Today20234810172110.1016/j.nantod.2022.101721
    [Google Scholar]
  47. AsgharF. MurtazaB. ShakoorB. IqbalN. ShafiqueM. MurtazaR. ButlerI.S. Properties, assembly and characterization of carbon nanotubes: Their application in water purification, environmental pollution control and biomedicines—a comprehensive review.Carbon Lett202333227530610.1007/s42823‑022‑00432‑9
    [Google Scholar]
  48. TeleanuD.M. ChircovC. GrumezescuA.M. VolceanovA. TeleanuR.I. Blood-brain delivery methods using nanotechnology.Pharmaceutics201810426910.3390/pharmaceutics1004026930544966
    [Google Scholar]
  49. CaoY. LuoY. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review.Toxicol. Appl. Pharmacol.201938511480110.1016/j.taap.2019.11480131678607
    [Google Scholar]
  50. KudaibergenD. ParkH.S. ParkJ. ImG.B. LeeJ.R. JoungY.K. BhangS.H. KimJ.H. Silica-based advanced nanoparticles for treating ischemic disease.Tissue Eng. Regen. Med.202320217719810.1007/s13770‑022‑00510‑z36689072
    [Google Scholar]
  51. SongY. DuD. LiL. XuJ. DuttaP. LinY. In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier.ACS Appl. Mater. Interfaces2017924204102041610.1021/acsami.7b0350428541655
    [Google Scholar]
  52. GhaferiM. EsfahaniM.K.M RazaA. Al HarthiS. ShahmabadiH.E AlaviS.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances.J. Drug Target.202129213115410.1080/1061186X.2020.181261432815741
    [Google Scholar]
  53. NarayanR. NayakU.Y. RaichurA.M. GargS. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances.Pharmaceutics201810311810.3390/pharmaceutics1003011830082647
    [Google Scholar]
  54. ZhangW. ZhuD. TongZ. PengB. ChengX. EsserL. VoelckerN.H. Influence of surface ligand density and particle size on the penetration of the blood–brain barrier by porous silicon nanoparticles.Pharmaceutics2023159227110.3390/pharmaceutics1509227137765240
    [Google Scholar]
  55. GuarinoV. ZizzariA. BiancoM. GigliG. MoroniL. ArimaV. Advancements in modelling human blood brain-barrier on a chip.Biofabrication202315202200310.1088/1758‑5090/acb57136689766
    [Google Scholar]
  56. Pérez-LópezA. Torres-SuárezA.I. Martín-SabrosoC. Aparicio-BlancoJ. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines.Adv. Drug Deliv. Rev.202319611481610.1016/j.addr.2023.11481637003488
    [Google Scholar]
  57. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a02041225561720
    [Google Scholar]
  58. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.04427208862
    [Google Scholar]
  59. BoyeteyM.J.B. ChoiY. LeeH.Y. ChoiJ. Nanotechnology-based delivery of therapeutics through the intranasal pathway and the blood–brain barrier for Alzheimer’s disease treatment.Biomater. Sci.20241282007201810.1039/D3BM02003G38456516
    [Google Scholar]
  60. UnnisaA. GreigN.H. KamalM.A. Nanotechnology: A promising targeted drug delivery system for brain tumours and alzheimer’s disease.Curr. Med. Chem.202330325527010.2174/092986732966622032812520635345990
    [Google Scholar]
  61. DashR. BiswalJ. YadavM. SharmaT. MohapatraS. PrustyS.K. Novel atorvastatin-curcumin conjugate nanogel, a selective COX2 inhibitor with enhanced biopharmaceutical profile: Design, synthesis, in silico, in vitro, and in vivo investigation.J. Drug Deliv. Sci. Technol.20238110421110.1016/j.jddst.2023.104211
    [Google Scholar]
  62. Pardo-MorenoT. González-AcedoA. Rivas-DomínguezA. García-MoralesV. García-CozarF.J. Ramos-RodríguezJ.J. Melguizo-RodríguezL. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives.Pharmaceutics2022146111710.3390/pharmaceutics1406111735745693
    [Google Scholar]
  63. SrinivasanE.S. LiuY. OdionR.A. ChongsathidkietP. WachsmuthL.P. Haskell-MendozaA.P. EdwardsR.M. CanningA.J. WilloughbyG. HintonJ. NortonS.J. LascolaC.D. MaccariniP.F. MarianiC.L. Vo-DinhT. FecciP.E. Gold nanostars obviate limitations to laser interstitial thermal therapy (LITT) for the treatment of intracranial tumors.Clin. Cancer Res.202329163214322410.1158/1078‑0432.CCR‑22‑187137327318
    [Google Scholar]
  64. SafirM. HechtI. SharonT. Einan-LifshitzA. BelkinA. Application of Nd:YAG laser to the anterior vitreous in malignant glaucoma — A systemic review and meta-analysis.Graefes Arch. Clin. Exp. Ophthalmol.202226092981299010.1007/s00417‑022‑05640‑735348842
    [Google Scholar]
  65. WeissC.K. KohnleM.V. LandfesterK. HaukT. FischerD. Schmitz-WienkeJ. MailänderV. The first step into the brain: Uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation.ChemMedChem2008391395140310.1002/cmdc.20080013018613205
    [Google Scholar]
  66. PadmawarSS SawaleAV DhageDN FadnisJA Modern method of drug delivery across blood brain barrier.WJBPHS202314201502710.30574/wjbphs.2023.14.2.0198
    [Google Scholar]
  67. ZhouY. PengZ. SevenE.S. LeblancR.M. Crossing the blood-brain barrier with nanoparticles.J. Control. Release201827029030310.1016/j.jconrel.2017.12.01529269142
    [Google Scholar]
  68. DashR. MohapatraS. A contemporary insight into SARS-CoV-2 pathophysiology, retrieved threat of mutants and prospect of vaccine development.Minerva Biotechnol Biomol Res202133315710.23736/S2724‑542X.21.02765‑8
    [Google Scholar]
  69. KadjaG.T.M. IlmiM.M MardianaS. KhalilM. SagitaF. CulsumN.T.U. FajarA.T.N. Recent advances of carbon nanotubes as electrocatalyst for in-situ hydrogen production and CO2 conversion to fuels.Results Chem.2023610103710.1016/j.rechem.2023.101037
    [Google Scholar]
  70. YokelR. GrulkeE. MacPhailR. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20135434637310.1002/wnan.120223568784
    [Google Scholar]
  71. BhardwajH. JangdeR.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications.Next Nanotechnol2023210001310.1016/j.nxnano.2023.100013
    [Google Scholar]
  72. HershA.M. AlomariS. TylerB.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology.Int. J. Mol. Sci.2022238415310.3390/ijms2308415335456971
    [Google Scholar]
  73. TrapaniA. DenoraN. IacobellisG. SitterbergJ. BakowskyU. KisselT. Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: A promising strategy for the administration of the anticancer drug to brain tumors.AAPS PharmSciTech20111241302131110.1208/s12249‑011‑9695‑x21948322
    [Google Scholar]
  74. HrubýM. FilippovS.K. ŠtěpánekP. Biomedical application of block copolymers.Macromolecular Self-AssemblyWiley201623125010.1002/9781118887813.ch8
    [Google Scholar]
  75. LohanS. RazaK. MehtaS.K. BhattiG.K. SainiS. SinghB. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence.Int. J. Pharm.20175301-226327810.1016/j.ijpharm.2017.07.08028774853
    [Google Scholar]
  76. HarishV. AnsariM.M. TewariD. YadavA.B. SharmaN. BawarigS. García-BetancourtM.L. KaratutluA. BechelanyM. BarhoumA. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review.J. Taiwan Inst. Chem. Eng.202314910501010.1016/j.jtice.2023.105010
    [Google Scholar]
  77. KumarS. AnselmoA.C. BanerjeeA. ZakrewskyM. MitragotriS. Shape and size-dependent immune response to antigen-carrying nanoparticles.J. Control. Release2015220Pt A14114810.1016/j.jconrel.2015.09.06926437263
    [Google Scholar]
  78. LockmanP.R. KoziaraJ.M. MumperR.J. AllenD.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability.J. Drug Target.2004129-1063564110.1080/1061186040001593615621689
    [Google Scholar]
  79. AmulyaE SikderA VambhurkarG ShahS KhatriDK RaghuvanshiRS SinghSB SrivastavaS Nanomedicine based strategies for oligonucleotide traversing across the blood-brain barrier.J. Control. Release35455457110.1016/j.jconrel.2023.01.031
    [Google Scholar]
  80. NaY. ZhangN. ZhongX. GuJ. YanC. YinS. LeiX. ZhaoJ. GengF. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery.Nanomedicine202318212514310.2217/nnm‑2022‑028736916394
    [Google Scholar]
  81. DingS. KhanA.I. CaiX. SongY. LyuZ. DuD. DuttaP. LinY. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.00133093794
    [Google Scholar]
  82. FurtadoD. BjörnmalmM. AytonS. BushA.I. KempeK. CarusoF. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases.Adv. Mater.20183046180136210.1002/adma.20180136230066406
    [Google Scholar]
  83. BashiriG. PadillaM.S. SwingleK.L. ShepherdS.J. MitchellM.J. WangK. Nanoparticle protein corona: From structure and function to therapeutic targeting.Lab Chip20232361432146610.1039/D2LC00799A36655824
    [Google Scholar]
  84. StahlP. KollendaS. SagerJ. SchmidtL. SchroerM.A. StauberR.H. EppleM. KnauerS.K. Tuning nanobodies’ bioactivity: Coupling to ultrasmall gold nanoparticles allows the intracellular interference with survivin.Small20231933230087110.1002/smll.20230087137035950
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026346307240919112023
Loading
/content/journals/cnr/10.2174/0115672026346307240919112023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test