Skip to content
2000
image of Nanotechnology in Drug Delivery: An Overview of Developing the Blood Brain Barrier

Abstract

The close connection between the brain microvascular endothelial cells (BMECs) that are enclosed within this barrier is the result of an intracellular junction, which is responsible for the constricted connection. The regulation and control of drug delivery systems both require nanoparticles, which are extremely small particles made up of a variety of materials, including polymers, metals, and other chemicals. Nanoparticles are a crucial component of the regulation and control of drug delivery systems. There is a possibility that nanomaterials composed of inorganic chemicals, such as gold nanoparticles, could be utilized in the treatment of neurodegenerative illnesses like Parkinson's disease. In addition to this, they are used as nano-carriers for the aim of distributing drugs to the region of the brain that is being targeted. There are a number of advantages that are easily apparent when compared to other methods of administering drugs for neurological diseases. The current review demonstrates both the advantages and disadvantages of utilizing a wide variety of nanomaterials for brain delivery, as well as the potential impact that this will have in the future on the safety and effectiveness of patient care.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026346307240919112023
2024-10-15
2025-01-23
Loading full text...

Full text loading...

References

  1. Wang Y. Wu J. Wang J. He L. Lai H. Zhang T. Wang X. Li W. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion 2023 69 71 82 10.1016/j.mito.2023.01.007 36709855
    [Google Scholar]
  2. Hashimoto Y. Greene C. Munnich A. Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023 20 1 22 10.1186/s12987‑023‑00424‑5 36978081
    [Google Scholar]
  3. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  4. Ahamed J. Jaswanth Gowda B.H. Almalki W.H. Gupta N. Sahebkar A. Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur. Polym. J. 2023 193 112111 10.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  5. Kim J. Wilson D.R. Zamboni C.G. Green J.J. Targeted polymeric nanoparticles for cancer gene therapy. J. Drug Target. 2015 23 7-8 627 641 10.3109/1061186X.2015.1048519 26061296
    [Google Scholar]
  6. Kaur S. Saini A.K. Tuli H.S. Garg N. Joshi H. Varol M. Kaur J. Chhillar A.K. Saini R.V. Polymer-mediated nanoformulations: A promising strategy for cancer immunotherapy. Naunyn Schmiedebergs Arch. Pharmacol. 2023 397 3 1311 1326 10.1007/s00210‑023‑02699‑9 37695334
    [Google Scholar]
  7. Thukral P. Chowdhury R. Sable H. Kaushik A. Chaudhary V. Sustainable green synthesized nanoparticles for neurodegenerative diseases diagnosis and treatment. Mater. Today Proc. 2023 73 323 328 10.1016/j.matpr.2022.10.315
    [Google Scholar]
  8. Nsairat H. Ibrahim A.A. Jaber A.M. Abdelghany S. Atwan R. Shalan N. Abdelnabi H. Odeh F. El-Tanani M. Alshaer W. Liposome bilayer stability: Emphasis on cholesterol and its alternatives. J. Liposome Res. 2023 34 1 1 25 10.1080/08982104.2023.2226216 37378553
    [Google Scholar]
  9. Thakur C.K. Karthikeyan C. Abou-Dahech M.S. Altabakha M.M.A.M. Al Shahwan M.J.S. Ashby C.R. Jr Tiwari A.K. Babu R.J. Moorthy N.S.H.N. Microwave-assisted functionalization of multi-walled carbon nanotubes for biosensor and drug delivery applications. Pharmaceutics 2023 15 2 335 10.3390/pharmaceutics15020335 36839659
    [Google Scholar]
  10. Fowler M.J. Cotter J.D. Knight B.E. Sevick-Muraca E.M. Sandberg D.I. Sirianni R.W. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 2020 165-166 77 95 10.1016/j.addr.2020.02.006 32142739
    [Google Scholar]
  11. Yang J. Luly K.M. Green J.J. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 2 e1853 10.1002/wnan.1853 36193561
    [Google Scholar]
  12. Kurawattimath V. Wilson B. Geetha K.M. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma. OpenNano 2023 10 100128 10.1016/j.onano.2023.100128
    [Google Scholar]
  13. Han L. Kong D.K. Zheng M. Murikinati S. Ma C. Yuan P. Li L. Tian D. Cai Q. Ye C. Holden D. Park J.H. Gao X. Thomas J.L. Grutzendler J. Carson R.E. Huang Y. Piepmeier J.M. Zhou J. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano 2016 10 4 4209 4218 10.1021/acsnano.5b07573 26967254
    [Google Scholar]
  14. Liu Z. Zhang L. He Q. Liu X. Chukwunweike Ikechukwu O. Tong L. Guo L. Yang H. Zhang Q. Zhao H. Gu X. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia–reperfusion in rats. Int. J. Pharm. 2015 489 1-2 131 138 10.1016/j.ijpharm.2015.04.049 25895718
    [Google Scholar]
  15. Zhang T.T. Li W. Meng G. Wang P. Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater. Sci. 2016 4 2 219 229 10.1039/C5BM00383K 26646694
    [Google Scholar]
  16. Dighe S. Jog S. Momin M. Sawarkar S. Omri A. Intranasal drug delivery by nanotechnology: Advances in and challenges for alzheimer’s disease management. Pharmaceutics 2023 16 1 58 10.3390/pharmaceutics16010058 38258068
    [Google Scholar]
  17. Khairnar P. Soni M. Handa M. Riadi Y. Kesharwani P. Shukla R. Recent highlights on Omicron as a new SARS-COVID-19 variant: Evolution, genetic mutation, and future perspectives. J. Drug Target. 2022 30 6 603 613 10.1080/1061186X.2022.2056187 35311601
    [Google Scholar]
  18. Lim S.H. Yee G.T. Khang D. Nanoparticle-based combinational strategies for overcoming the blood-brain barrier and blood-tumor barrier. Int. J. Nanomedicine 2024 19 2529 2552 10.2147/IJN.S450853 38505170
    [Google Scholar]
  19. Fock E. Parnova R. Mechanisms of blood–brain barrier protection by microbiota-derived short-chain fatty acids. Cells 2023 12 4 657 10.3390/cells12040657 36831324
    [Google Scholar]
  20. Mizrahy S. Gutkin A. Decuzzi P. Peer D. Targeting central nervous system pathologies with nanomedicines. J. Drug Target. 2019 27 5-6 542 554 10.1080/1061186X.2018.1533556 30296187
    [Google Scholar]
  21. Godfrey L. Iannitelli A. Garrett N.L. Moger J. Imbert I. King T. Porreca F. Soundararajan R. Lalatsa A. Schätzlein A.G. Uchegbu I.F. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia. J. Control. Release 2018 270 135 144 10.1016/j.jconrel.2017.11.041 29191784
    [Google Scholar]
  22. Asrorov A.M. Wang H. Zhang M. Wang Y. He Y. Sharipov M. Yili A. Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev. Res. 2023 84 6 1037 1071 10.1002/ddr.22076 37195405
    [Google Scholar]
  23. Bazi Alahri M. Jibril Ibrahim A. Barani M. Arkaban H. Shadman S.M. Salarpour S. Zarrintaj P. Jaberi J. Turki Jalil A. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform. Molecules 2023 28 2 841 10.3390/molecules28020841 36677899
    [Google Scholar]
  24. Mahringer A. Puris E. Fricker G. Crossing the blood-brain barrier: A review on drug delivery strategies using colloidal carrier systems. Neurochem. Int. 2021 147 105017 10.1016/j.neuint.2021.105017 33887377
    [Google Scholar]
  25. Zhuang X. Teng Y. Samykutty A. Mu J. Deng Z. Zhang L. Cao P. Rong Y. Yan J. Miller D. Zhang H.G. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol. Ther. 2016 24 1 96 105 10.1038/mt.2015.188 26444082
    [Google Scholar]
  26. Shi D. Mi G. Shen Y. Webster T.J. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood–brain barrier. Nanoscale 2019 11 32 15057 15071 10.1039/C9NR03931G 31369016
    [Google Scholar]
  27. Liu Y. Zhang D. An Y. Sun Y. Li J. Zheng M. Zou Y. Shi B. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 2023 49 101790 10.1016/j.nantod.2023.101790
    [Google Scholar]
  28. Kiessling M. Herchenhan E. Eggert H.R. Cerebrovascular and metabolic effects on the rat brain of focal Nd:YAG laser irradiation. J. Neurosurg. 1990 73 6 909 917 10.3171/jns.1990.73.6.0909 2230973
    [Google Scholar]
  29. Li X. Vemireddy V. Cai Q. Xiong H. Kang P. Li X. Giannotta M. Hayenga H.N. Pan E. Sirsi S.R. Mateo C. Kleinfeld D. Greene C. Campbell M. Dejana E. Bachoo R. Qin Z. Reversibly modulating the blood-brain barrier by laser stimulation of molecular-targeted nanoparticles. Nano Lett. 2021 21 22 9805 9815 10.1021/acs.nanolett.1c02996 34516144
    [Google Scholar]
  30. Li W. Qiu J. Li X.L. Aday S. Zhang J. Conley G. Xu J. Joseph J. Lan H. Langer R. Mannix R. Karp J.M. Joshi N. BBB pathophysiology–independent delivery of siRNA in traumatic brain injury. Sci. Adv. 2021 7 1 eabd6889 10.1126/sciadv.abd6889 33523853
    [Google Scholar]
  31. Wang J.H. Gessler D.J. Zhan W. Gallagher T.L. Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024 9 1 78 10.1038/s41392‑024‑01780‑w 38565561
    [Google Scholar]
  32. Yao Y. Wang J. Liu Y. Qu Y. Wang K. Zhang Y. Chang Y. Yang Z. Wan J. Liu J. Nakashima H. Lawler S.E. Chiocca E.A. Cho C.F. Bei F. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates. Nat. Biomed. Eng. 2022 6 11 1257 1271 10.1038/s41551‑022‑00938‑7 36217021
    [Google Scholar]
  33. Sun R. Liu M. Lu J. Chu B. Yang Y. Song B. Wang H. He Y. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat. Commun. 2022 13 1 5127 10.1038/s41467‑022‑32837‑5 36050316
    [Google Scholar]
  34. Nehra M. Uthappa U.T. Kumar V. Kumar R. Dixit C. Dilbaghi N. Mishra Y.K. Kumar S. Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J. Control. Release 2021 338 224 243 10.1016/j.jconrel.2021.08.027 34418523
    [Google Scholar]
  35. Song Y.H. De R. Lee K.T. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Adv. Colloid Interface Sci. 2023 320 103008 10.1016/j.cis.2023.103008 37776736
    [Google Scholar]
  36. Shakeri S. Ashrafizadeh M. Zarrabi A. Roghanian R. Afshar E.G. Pardakhty A. Mohammadinejad R. Kumar A. Thakur V.K. Multifunctional polymeric nanoplatforms for brain disease diagnosis, therapy and theranostics. Biomedicines 2020 8 1 13 10.3390/biomedicines8010013 31941057
    [Google Scholar]
  37. Pande S. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif. Cells Nanomed. Biotechnol. 2023 51 1 428 440 10.1080/21691401.2023.2247036 37594208
    [Google Scholar]
  38. Ross C. Taylor M. Fullwood N. Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 8507 8522 10.2147/IJN.S183117 30587974
    [Google Scholar]
  39. Zhang Y. He J. Shen L. Wang T. Yang J. Li Y. Wang Y. Quan D. Brain-targeted delivery of obidoxime, using aptamer-modified liposomes, for detoxification of organophosphorus compounds. J. Control. Release 2021 329 1117 1128 10.1016/j.jconrel.2020.10.039 33096123
    [Google Scholar]
  40. Dash R. Yadav M. Biswal J. Chandra A. Goel V.K. Sharma T. Prusty S.K. Mohapatra S. Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis. Int. J. Pharm. 2023 640 123009 10.1016/j.ijpharm.2023.123009 37142139
    [Google Scholar]
  41. Desai H.R. Shinde U.A. Hybrid nanoparticles to cross the blood-brain barrier. InNanocarriers for Drug-Targeting Brain Tumors Elsevier, 2022 565 586 10.1016/B978‑0‑323‑90773‑6.00002‑6
    [Google Scholar]
  42. Patel T. Zhou J. Piepmeier J.M. Saltzman W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 701 705 10.1016/j.addr.2011.12.006 22210134
    [Google Scholar]
  43. Madni A. Noreen S. Maqbool I. Rehman F. Batool A. Kashif P.M. Rehman M. Tahir N. Khan M.I. Graphene-based nanocomposites: Synthesis and their theranostic applications. J. Drug Target. 2018 26 10 858 883 10.1080/1061186X.2018.1437920 29424250
    [Google Scholar]
  44. Mishra V. Patil A. Thakur S. Kesharwani P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov. Today 2018 23 6 1219 1232 10.1016/j.drudis.2018.01.006 29366761
    [Google Scholar]
  45. Zhang W. Sigdel G. Mintz K.J. Seven E.S. Zhou Y. Wang C. Leblanc R.M. Carbon dots: A future Blood–Brain Barrier penetrating nanomedicine and drug nanocarrier. Int. J. Nanomedicine 2021 16 5003 5016 10.2147/IJN.S318732 34326638
    [Google Scholar]
  46. Cheng W. Zhang W. Xia X. Zhang J. Wang M. Li Y. Li X. Zheng Y. Liu J. Zhang R. Tang J. The domino effect in inhaled carbon black nanoparticles triggers blood brain barrier disruption via altering circulatory inflammation. Nano Today 2023 48 101721 10.1016/j.nantod.2022.101721
    [Google Scholar]
  47. Asghar F. Murtaza B. Shakoor B. Iqbal N. Shafique M. Murtaza R. Butler I.S. Properties, assembly and characterization of carbon nanotubes: Their application in water purification, environmental pollution control and biomedicines—a comprehensive review. Carbon Letters 2023 33 2 275 306 10.1007/s42823‑022‑00432‑9
    [Google Scholar]
  48. Teleanu D.M. Chircov C. Grumezescu A.M. Volceanov A. Teleanu R.I. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018 10 4 269 10.3390/pharmaceutics10040269 30544966
    [Google Scholar]
  49. Cao Y. Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicol. Appl. Pharmacol. 2019 385 114801 10.1016/j.taap.2019.114801 31678607
    [Google Scholar]
  50. Kudaibergen D. Park H.S. Park J. Im G.B. Lee J.R. Joung Y.K. Bhang S.H. Kim J.H. Silica-based advanced nanoparticles for treating ischemic disease. Tissue Eng. Regen. Med. 2023 20 2 177 198 10.1007/s13770‑022‑00510‑z 36689072
    [Google Scholar]
  51. Song Y. Du D. Li L. Xu J. Dutta P. Lin Y. In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier. ACS Appl. Mater. Interfaces 2017 9 24 20410 20416 10.1021/acsami.7b03504 28541655
    [Google Scholar]
  52. Ghaferi M. Koohi Moftakhari Esfahani M. Raza A. Al Harthi S. Ebrahimi Shahmabadi H. Alavi S.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances. J. Drug Target. 2021 29 2 131 154 10.1080/1061186X.2020.1812614 32815741
    [Google Scholar]
  53. Narayan R. Nayak U.Y. Raichur A.M. Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018 10 3 118 10.3390/pharmaceutics10030118 30082647
    [Google Scholar]
  54. Zhang W. Zhu D. Tong Z. Peng B. Cheng X. Esser L. Voelcker N.H. Influence of surface ligand density and particle size on the penetration of the blood–brain barrier by porous silicon nanoparticles. Pharmaceutics 2023 15 9 2271 10.3390/pharmaceutics15092271 37765240
    [Google Scholar]
  55. Guarino V. Zizzari A. Bianco M. Gigli G. Moroni L. Arima V. Advancements in modelling human blood brain-barrier on a chip. Biofabrication 2023 15 2 022003 10.1088/1758‑5090/acb571 36689766
    [Google Scholar]
  56. Pérez-López A. Torres-Suárez A.I. Martín-Sabroso C. Aparicio-Blanco J. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv. Drug Deliv. Rev. 2023 196 114816 10.1016/j.addr.2023.114816 37003488
    [Google Scholar]
  57. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  58. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  59. Boyetey M.J.B. Choi Y. Lee H.Y. Choi J. Nanotechnology-based delivery of therapeutics through the intranasal pathway and the blood–brain barrier for Alzheimer’s disease treatment. Biomater. Sci. 2024 12 8 2007 2018 10.1039/D3BM02003G 38456516
    [Google Scholar]
  60. Unnisa A. Greig N.H. Kamal M.A. Nanotechnology: A promising targeted drug delivery system for brain tumours and alzheimer’s disease. Curr. Med. Chem. 2023 30 3 255 270 10.2174/0929867329666220328125206 35345990
    [Google Scholar]
  61. Dash R. Biswal J. Yadav M. Sharma T. Mohapatra S. Prusty S.K. Novel atorvastatin-curcumin conjugate nanogel, a selective COX2 inhibitor with enhanced biopharmaceutical profile: Design, synthesis, in silico, in vitro, and in vivo investigation. J. Drug Deliv. Sci. Technol. 2023 81 104211 10.1016/j.jddst.2023.104211
    [Google Scholar]
  62. Pardo-Moreno T. González-Acedo A. Rivas-Domínguez A. García-Morales V. García-Cozar F.J. Ramos-Rodríguez J.J. Melguizo-Rodríguez L. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives. Pharmaceutics 2022 14 6 1117 10.3390/pharmaceutics14061117 35745693
    [Google Scholar]
  63. Srinivasan E.S. Liu Y. Odion R.A. Chongsathidkiet P. Wachsmuth L.P. Haskell-Mendoza A.P. Edwards R.M. Canning A.J. Willoughby G. Hinton J. Norton S.J. Lascola C.D. Maccarini P.F. Mariani C.L. Vo-Dinh T. Fecci P.E. Gold nanostars obviate limitations to laser interstitial thermal therapy (LITT) for the treatment of intracranial tumors. Clin. Cancer Res. 2023 29 16 3214 3224 10.1158/1078‑0432.CCR‑22‑1871 37327318
    [Google Scholar]
  64. Safir M. Hecht I. Sharon T. Einan-Lifshitz A. Belkin A. Application of Nd:YAG laser to the anterior vitreous in malignant glaucoma — A systemic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2022 260 9 2981 2990 10.1007/s00417‑022‑05640‑7 35348842
    [Google Scholar]
  65. Weiss C.K. Kohnle M.V. Landfester K. Hauk T. Fischer D. Schmitz-Wienke J. Mailänder V. The first step into the brain: Uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. ChemMedChem 2008 3 9 1395 1403 10.1002/cmdc.200800130 18613205
    [Google Scholar]
  66. Padmawar SS Sawale AV Dhage DN Fadnis JA Modern method of drug delivery across blood brain barrier. WJBPHS 2023 14 2 015 027 10.30574/wjbphs.2023.14.2.0198
    [Google Scholar]
  67. Zhou Y. Peng Z. Seven E.S. Leblanc R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release 2018 270 290 303 10.1016/j.jconrel.2017.12.015 29269142
    [Google Scholar]
  68. Dash R. Mohapatra S. A contemporary insight into SARS-CoV-2 pathophysiology, retrieved threat of mutants and prospect of vaccine development. Minerva Biotechnol Biomol Res 2021 33 3 157 10.23736/S2724‑542X.21.02765‑8
    [Google Scholar]
  69. Kadja G.T.M. Mualliful Ilmi M. Mardiana S. Khalil M. Sagita F. Culsum N.T.U. Fajar A.T.N. Recent advances of carbon nanotubes as electrocatalyst for in-situ hydrogen production and CO2 conversion to fuels. Results Chem. 2023 6 101037 10.1016/j.rechem.2023.101037
    [Google Scholar]
  70. Yokel R. Grulke E. MacPhail R. Metal‐based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013 5 4 346 373 10.1002/wnan.1202 23568784
    [Google Scholar]
  71. Bhardwaj H. Jangde R.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnology 2023 2 100013 10.1016/j.nxnano.2023.100013
    [Google Scholar]
  72. Hersh A.M. Alomari S. Tyler B.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 2022 23 8 4153 10.3390/ijms23084153 35456971
    [Google Scholar]
  73. Trapani A. Denora N. Iacobellis G. Sitterberg J. Bakowsky U. Kissel T. Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: A promising strategy for the administration of the anticancer drug to brain tumors. AAPS PharmSciTech 2011 12 4 1302 1311 10.1208/s12249‑011‑9695‑x 21948322
    [Google Scholar]
  74. Hrubý M. Filippov S.K. Štěpánek P. Biomedical application of block copolymers. Macromolecular Self‐Assembly Wiley 2016 231 250 10.1002/9781118887813.ch8
    [Google Scholar]
  75. Lohan S. Raza K. Mehta S.K. Bhatti G.K. Saini S. Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm. 2017 530 1-2 263 278 10.1016/j.ijpharm.2017.07.080 28774853
    [Google Scholar]
  76. Harish V. Ansari M.M. Tewari D. Yadav A.B. Sharma N. Bawarig S. García-Betancourt M.L. Karatutlu A. Bechelany M. Barhoum A. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. J. Taiwan Inst. Chem. Eng. 2023 149 105010 10.1016/j.jtice.2023.105010
    [Google Scholar]
  77. Kumar S. Anselmo A.C. Banerjee A. Zakrewsky M. Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 2015 220 Pt A 141 148 10.1016/j.jconrel.2015.09.069 26437263
    [Google Scholar]
  78. Lockman P.R. Koziara J.M. Mumper R.J. Allen D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 2004 12 9-10 635 641 10.1080/10611860400015936 15621689
    [Google Scholar]
  79. Amulya E Sikder A Vambhurkar G Shah S Khatri DK Raghuvanshi RS Singh SB Srivastava S Nanomedicine based strategies for oligonucleotide traversing across the blood-brain barrier. J. Control. Release 354 554 571 10.1016/j.jconrel.2023.01.031
    [Google Scholar]
  80. Na Y. Zhang N. Zhong X. Gu J. Yan C. Yin S. Lei X. Zhao J. Geng F. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine 2023 18 2 125 143 10.2217/nnm‑2022‑0287 36916394
    [Google Scholar]
  81. Ding S. Khan A.I. Cai X. Song Y. Lyu Z. Du D. Dutta P. Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  82. Furtado D. Björnmalm M. Ayton S. Bush A.I. Kempe K. Caruso F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 2018 30 46 1801362 10.1002/adma.201801362 30066406
    [Google Scholar]
  83. Bashiri G. Padilla M.S. Swingle K.L. Shepherd S.J. Mitchell M.J. Wang K. Nanoparticle protein corona: From structure and function to therapeutic targeting. Lab Chip 2023 23 6 1432 1466 10.1039/D2LC00799A 36655824
    [Google Scholar]
  84. Stahl P. Kollenda S. Sager J. Schmidt L. Schroer M.A. Stauber R.H. Epple M. Knauer S.K. Tuning nanobodies’ bioactivity: Coupling to ultrasmall gold nanoparticles allows the intracellular interference with survivin. Small 2023 19 33 2300871 10.1002/smll.202300871 37035950
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026346307240919112023
Loading
/content/journals/cnr/10.2174/0115672026346307240919112023
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanomaterials ; nanocarriers ; Endothelial cells ; neurological disorder
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test