Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202622999241028121817
2024-10-28
2025-07-07
Loading full text...

Full text loading...

/deliver/fulltext/cnr/21/4/CNR-21-4-01.html?itemId=/content/journals/cnr/10.2174/1567202622999241028121817&mimeType=html&fmt=ahah

References

  1. BekerM.C. CaglayanB. YalcinE. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT.Mol. Neurobiol.201855325652576
    [Google Scholar]
  2. BelgacemY.H. BorodinskyL.N. CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function.Adv. Exp. Med. Biol.201710151939
    [Google Scholar]
  3. MaieseK. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors.Curr. Neurovasc. Res.20181518191
    [Google Scholar]
  4. LiuH. ChenA. Roles of sleep deprivation in cardiovascular dysfunctions.Life Sci.2019219231237
    [Google Scholar]
  5. QiX. MitterS.K. YanY. BusikJ.V. GrantM.B. BoultonM.E. Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina.Cells202094905
    [Google Scholar]
  6. ChenY.C. WangW.S. LewisS.J.G. WuS.L. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease.J. Mov. Disord.2024171114
    [Google Scholar]
  7. da SilveiraE.J.D. BarrosC. BottinoM.C. CastilhoR.M. SquarizeC. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes.Experimental dermatology2024331e15005
    [Google Scholar]
  8. LuoB. SongJ. ZhangJ. HanJ. ZhouX. ChenL. The contribution of circadian clock to the biological processes.Frontiers in molecular biosciences2024111387576
    [Google Scholar]
  9. Yanez-GomezF. Galvez-MeleroL. Ledesma-CorviS. Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats.J. Neurosci. Res.2024102 2e25296
    [Google Scholar]
  10. ZhaoR WuT YinJ Cashmere cyclic growth affected by different photoperiods alters DNA methylation patterns.All Life2024171
    [Google Scholar]
  11. MaieseK. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.Curr. Neurovasc. Res.2017143299304
    [Google Scholar]
  12. MaieseK. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways.Expert Rev. Clin. Pharmacol.20201312334
    [Google Scholar]
  13. MaieseK. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways.Biomolecules20211171002
    [Google Scholar]
  14. MaieseK. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm.Frontiers in bioscience (Landmark edition).2021269614627
    [Google Scholar]
  15. MaieseK. Biological gases, oxidative stress, artificial intelligence, and machine learning for neurodegeneration and metabolic disorders.Medical Gas Research2025151145147
    [Google Scholar]
  16. XieL. CuiS. GuoN. LiA. ZhangJ. Research hotspots and frontiers of stem cells for Alzheimer's disease.Chinese Journal of Tissue Engineering Research202529714751485
    [Google Scholar]
  17. BirnieM.T. ClaydonM.D.B. TroyO. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment.Proc. Natl. Acad. Sci. USA202312015e2211996120
    [Google Scholar]
  18. AmidfarM. GarcezM.L. KimY.K. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances.Prog. Neuropsychopharmacol. Biol. Psychiatry2023123110721
    [Google Scholar]
  19. Diamanti-KandarakisE. DattiloM. MacutD. Mechanisms in endocrinology: Aging and anti-aging: a Combo-Endocrinology overview.Eur. J. Endocrinol.20171766R283R308
    [Google Scholar]
  20. MaieseK. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes.Curr. Neurovasc. Res.2020175765783
    [Google Scholar]
  21. Mocayar MaronF.J. FerderL. ReiterR.J. ManuchaW. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin.J. Steroid Biochem. Mol. Biol.2020199105595
    [Google Scholar]
  22. Trujillo-RangelW.A. Acuna-VacaS. Padilla-PonceD.J. Modulation of the Circadian Rhythm and Oxidative Stress as Molecular Targets to Improve Vascular Dementia: A Pharmacological Perspective.International journal of molecular sciences20242584401
    [Google Scholar]
  23. PengX. FanR. XieL. A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease.International journal of molecular sciences2022231
    [Google Scholar]
  24. ZhuangX. MagriA. HillM. The circadian clock components BMAL1 and REV-ERBalpha regulate flavivirus replication.Nature communications2019101377
    [Google Scholar]
  25. DiT. ZhouZ. LiuF.E.N. ChenY. WangL. Autophagy and circadian rhythms: interactions and clinical implications.Biocell20244813345
    [Google Scholar]
  26. WangX. XuZ. CaiY. Rheostatic Balance of Circadian Rhythm and Autophagy in Metabolism and Disease.Front. Cell Dev. Biol.20208616434
    [Google Scholar]
  27. FeltenM. DameC. LachmannG. SpiesC. RubarthK. BalzerF. Circadian rhythm disruption in critically ill patients.Acta Physiol. (Oxf.)20232381e13962
    [Google Scholar]
  28. MaieseK. Innovative therapeutic strategies for cardiovascular disease.EXCLI J.202322690715
    [Google Scholar]
  29. SoniN. BissaB. Exosomes, circadian rhythms, and cancer precision medicine: New frontiers.Biochimie.2024
    [Google Scholar]
  30. XuY. ZengC. BinJ. TangH. LiW. Identifying novel circadian rhythm biomarkers for diagnosis and prognosis of melanoma by an integrated bioinformatics and machine learning approach.Aging (Albany NY)202416161182411842
    [Google Scholar]
  31. ZhaoH. LiZ. YanM. Irbesartan ameliorates diabetic kidney injury in db/db mice by restoring circadian rhythm and cell cycle.J. Transl. Int. Med.2024122157169
    [Google Scholar]
  32. HardelandR. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions.Antioxid. Redox Signal.20223710-12704725
    [Google Scholar]
  33. RossettiM.L. EsserK.A. LeeC. TomkoR.J.,Jr. EroshkinA.M. GordonB.S. Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion.Am. J. Physiol. Endocrinol. Metab.20193174E631E45
    [Google Scholar]
  34. ShkodinaA.D. TanS.C. HasanM.M. Roles of clock genes in the pathogenesis of Parkinson's disease.Ageing research reviews202274101554
    [Google Scholar]
  35. MaieseK. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System.Biomolecules2023135816
    [Google Scholar]
  36. MaieseK. Cognitive Impairment in Multiple Sclerosis.Bioengineering (Basel)2023107871
    [Google Scholar]
  37. MaieseK. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk.Frontiers in immunology202314Nov 031273570
    [Google Scholar]
  38. MaieseK. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK.Cells202312222595
    [Google Scholar]
  39. CardinaliD.P. BrownG.M. ReiterR.J. Pandi-PerumalS.R. Elderly as a High-risk Group during COVID-19 Pandemic: Effect of Circadian Misalignment, Sleep Dysregulation and Melatonin Administration.Sleep Vigil.2020428187
    [Google Scholar]
  40. DialloA.B. GayL. CoiffardB. LeoneM. MezouarS. MegeJ.L. Daytime variation in SARS-CoV-2 infection and cytokine production.Microb. Pathog.2021158105067
    [Google Scholar]
  41. LimR.K. WambierC.G. GorenA. Are night shift workers at an increased risk for COVID-19?Med. Hypotheses2020144110147
    [Google Scholar]
  42. MaieseK. Circadian Clock Genes: Targeting Innate Immunity for Antiviral Strategies Against COVID-19.Curr. Neurovasc. Res.2020175531533
    [Google Scholar]
  43. MaieseK. The Oversight of Circadian Clock Genes for the Detection, Prevention, and Treatment of COVID-19 Infection.Curr. Neurovasc. Res.2021185471473
    [Google Scholar]
  44. McNaughtonC.D. AdamsN.M. Hirschie JohnsonC. WardM.J. SchmitzJ.E. LaskoT.A. Diurnal Variation in SARS-CoV-2 PCR Test Results: Test Accuracy May Vary by Time of Day.J. Biol. Rhythms2021366595601
    [Google Scholar]
  45. MengY. ZhuV. ZhuY. Co-distribution of Light At Night (LAN) and COVID-19 incidence in the United States.BMC public health20212111509
    [Google Scholar]
  46. MorinC.M. CarrierJ. BastienC. GodboutR. CanadianS. CircadianN. Sleep and circadian rhythm in response to the COVID-19 pandemic.Can. J. Public Health20201115654657
    [Google Scholar]
  47. RoccaroI. SmirniD. Fiat Lux: The Light Became Therapy. An Overview on the Bright Light Therapy in Alzheimer's Disease Sleep Disorders.J. Alzheimers Dis.2020771113125
    [Google Scholar]
  48. TamimiF. AbusamakM. AkkantiB. ChenZ. YooS.H. Karmouty-QuintanaH. The case for chronotherapy in Covid-19-induced acute respiratory distress syndrome.Br. J. Pharmacol.20201772148454850
    [Google Scholar]
  49. WangW. BalfeP. EyreD.W. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers.J. Biol. Rhythms2022371124129
    [Google Scholar]
  50. ZhuangX. TsukudaS. WrenschF. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells.bioRxiv20212410103144
    [Google Scholar]
  51. KurkiS.N. KantonenJ. KaivolaK. APOE epsilon4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study.Acta neuropathologica communications202191199
    [Google Scholar]
  52. Bandelin-FrankeL. ScheibenbogenC. BobbertT. Post-COVID und Diabetes mellitus.Die Diabetologie2024203356363
    [Google Scholar]
  53. RegoA.C.M. Araujo-FilhoI. Post-Acute COVID-19 Syndrome and Stroke.J Surg Cl Res20241514458
    [Google Scholar]
  54. XuJ. Abdulsalam KhaleelR. ZaidanH.K. Discovery of common molecular signatures and drug repurposing for COVID-19/Asthma comorbidity: ACE2 and multi-partite networks.Cell Cycle2024234405434
    [Google Scholar]
  55. MaieseK. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment.Curr. Neurovasc. Res.2020173332337
    [Google Scholar]
  56. LuoL. LiR. WangG. Age-dependent effects of a high-fat diet combined with dietary advanced glycation end products on cognitive function and protection with voluntary exercise.Food Funct.202213844454458
    [Google Scholar]
  57. XiaoX. FengH. LiaoY. Identification of key circadian rhythm genes in skin aging based on bioinformatics and machine learning.Aging (Albany NY)202315201167211689
    [Google Scholar]
  58. XuY. WangY. JiangY. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease.Frontiers in aging neuroscience2023151174541
    [Google Scholar]
  59. AbdallaM.M.I. Insulin resistance as the molecular link between diabetes and Alzheimer's disease.World J. Diabetes202415714301447
    [Google Scholar]
  60. CiardulloS. MuracaE. BianconiE. Diabetes Mellitus is Associated With Higher Serum Neurofilament Light Chain Levels in the General US Population.J. Clin. Endocrinol. Metab.20231082361367
    [Google Scholar]
  61. EhtewishH. MeslehA. PonirakisG. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia.International journal of molecular sciences2023249
    [Google Scholar]
  62. MaieseK. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR.Neural regeneration research2016113372385
    [Google Scholar]
  63. MaieseK. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease.Int. Rev. Neurobiol.2020155135
    [Google Scholar]
  64. CascianoF. ZauliE. CeleghiniC. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease.International journal of molecular sciences20242531689
    [Google Scholar]
  65. JahanR. YousafM. KhanH. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice.Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology2023181-2183194
    [Google Scholar]
  66. SubramanianA. TamilanbanT. AlsayariA. Trilateral association of autophagy, mTOR and Alzheimer's disease: Potential pathway in the development for Alzheimer's disease therapy.Frontiers in pharmacology2022131094351
    [Google Scholar]
  67. UllahH. HussainA. AsifM. NawazF. RasoolM. Natural Products as Bioactive Agents in the Prevention of Dementia.CNS Neurol. Disord. Drug Targets2023224466476
    [Google Scholar]
  68. ChongZ.Z. LiF. MaieseK. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease.Brain Res. Brain Res. Rev.2005491121
    [Google Scholar]
  69. MaieseK. Taking aim at Alzheimer's disease through the mammalian target of rapamycin.Ann. Med.2014468587596
    [Google Scholar]
  70. MaieseK. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss.Curr. Neurovasc. Res.2017144415420
    [Google Scholar]
  71. GuoJ. ChengJ. NorthB.J. WeiW. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology.Biochim. Biophys. Acta Rev. Cancer201718682341358
    [Google Scholar]
  72. JiJ.S. LiuL. ZengY. YanL.L. Effect of FOXO3 and Air Pollution on Cognitive Function: A Longitudinal Cohort Study of Older Adults in China From 2000 to 2014.J. Gerontol. A Biol. Sci. Med. Sci.202277815341541
    [Google Scholar]
  73. MargrettJ.A. SchofieldT. MartinP. Novel Functional, Health, and Genetic Determinants of Cognitive Terminal Decline: Kuakini Honolulu Heart Program/Honolulu-Asia Aging Study.J. Gerontol. A Biol. Sci. Med. Sci.202277815251533
    [Google Scholar]
  74. MaieseK. ChongZ.Z. ShangY.C. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins.Trends Mol. Med.2008145219227
    [Google Scholar]
  75. MaieseK. Forkhead transcription factors: new considerations for alzheimer's disease and dementia.J. Transl. Sci.201624241247
    [Google Scholar]
  76. MaieseK. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease.Curr. Neurovasc. Res.2018154367371
    [Google Scholar]
  77. MaieseK. Wnt Signaling and WISP1 (CCN4): Critical Components in Neurovascular Disease, Blood Brain Barrier Regulation, and Cerebral Hemorrhage.Curr. Neurovasc. Res.2022194379382
    [Google Scholar]
  78. WexlerE.M. RosenE. LuD. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.Science signaling20114193ra65
    [Google Scholar]
  79. Wiedau-PazosM. WongE. SolomonE. Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice.Neurobiol. Aging2007
    [Google Scholar]
  80. DongL. HouB. LiuC. Association Between Wnt Target Genes and Cortical Volumes in Alzheimer's Disease.J. Mol. Neurosci.20237311-1210101016
    [Google Scholar]
  81. GuoT. ChenM. LiuJ. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia.Journal of translational medicine2023211297
    [Google Scholar]
  82. ValleeA. ValleeJ.N. LecarpentierY. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/beta-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway.Cells2021102
    [Google Scholar]
  83. CroninP. McCarthyM.J. LimA.S.P. Circadian alterations during early stages of Alzheimer's disease are associated with aberrant cycles of DNA methylation in BMAL1.Alzheimer's & dementia : the journal of the Alzheimer's Association2017136689700
    [Google Scholar]
  84. MaieseK. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock.Neural regeneration research2019145773774
    [Google Scholar]
  85. WuX. LiD. LiuJ. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight.Frontiers in pharmacology20178315
    [Google Scholar]
  86. MaieseK. Sleep Disorders, Neurodegeneration, Glymphatic Pathways, and Circadian Rhythm Disruption.Curr. Neurovasc. Res.2021183269270
    [Google Scholar]
  87. RamiA. FekaduJ. RawashdehO. The Hippocampal Autophagic Machinery is Depressed in the Absence of the Circadian Clock Protein PER1 that may Lead to Vulnerability During Cerebral Ischemia.Curr. Neurovasc. Res.2017143207214
    [Google Scholar]
  88. MaieseK. Cutting through the complexities of mTOR for the treatment of stroke.Curr. Neurovasc. Res.2014112177186
    [Google Scholar]
  89. MaieseK. Driving neural regeneration through the mammalian target of rapamycin.Neural regeneration research201491514131417
    [Google Scholar]
  90. MaieseK. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.Br. J. Clin. Pharmacol.201682512451266
    [Google Scholar]
  91. DiT. GuoM. XuJ. Circadian clock genes REV-ERBalpha regulates the secretion of IL-1beta in deciduous tooth pulp stem cells by regulating autophagy in the process of physiological root resorption of deciduous teeth.Dev. Biol.2024510816
    [Google Scholar]
  92. KlionskyD.J. Abdel-AzizA.K. AbdelfatahS. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1).Autophagy20211711382
    [Google Scholar]
  93. NakahataY. SaharS. AstaritaG. KaluzovaM. Sassone-CorsiP. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.Science20093245927654657
    [Google Scholar]
  94. WatrobaM. SzukiewiczD. Sirtuins at the Service of Healthy Longevity.Front. Physiol.202112724506
    [Google Scholar]
  95. ChongM.C. SilvaA. JamesP.F. WuS.S.X. HowittJ. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD(+) activity in recipient cells.Aging Cell2022217e13647
    [Google Scholar]
  96. YamamotoH. ShimomuraN. OuraK. HasegawaY. Nacre Extract from Pearl Oyster Shell Prevents D-Galactose-Induced Brain and Skin Aging.Mar. Biotechnol. (NY)2023254503518
    [Google Scholar]
  97. MaieseK. ChongZ.Z. ShangY.C. WangS. Novel directions for diabetes mellitus drug discovery.Expert opinion on drug discovery.2013813548
    [Google Scholar]
  98. TabibzadehS. Signaling pathways and effectors of aging.Frontiers in bioscience (Landmark edition).20212615096
    [Google Scholar]
  99. YeM. ZhaoY. WangY. NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis.Nat. Nanotechnol.2022178880890
    [Google Scholar]
/content/journals/cnr/10.2174/1567202622999241028121817
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test