Skip to content
2000
image of Circadian Rhythm, Clock Genes, and Stroke

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202622999241028121817
2024-10-28
2025-01-23
Loading full text...

Full text loading...

References

  1. Beker M.C. Caglayan B. Yalcin E. Caglayan A.B. Turkseven S. Gurel B. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT. Mol. Neurobiol. 2018 55 3 2565 2576
    [Google Scholar]
  2. Belgacem Y.H. Borodinsky L.N. CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function. Adv. Exp. Med. Biol. 2017 1015 19 39
    [Google Scholar]
  3. Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr. Neurovasc. Res. 2018 15 1 81 91
    [Google Scholar]
  4. Liu H. Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci. 2019 219 231 237
    [Google Scholar]
  5. Qi X. Mitter S.K. Yan Y. Busik J.V. Grant M.B. Boulton M.E. Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina. Cells 2020 9 4 905
    [Google Scholar]
  6. Chen Y.C. Wang W.S. Lewis S.J.G. Wu S.L. Fighting Against the Clock: Circadian Disruption and Parkinson’s Disease. J. Mov. Disord. 2024 17 1 1 14
    [Google Scholar]
  7. da Silveira E.J.D. Barros C. Bottino M.C. Castilho R.M. Squarize C. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes. Experimental dermatology 2024 33 1 e15005
    [Google Scholar]
  8. Luo B. Song J. Zhang J. Han J. Zhou X. Chen L. The contribution of circadian clock to the biological processes. Frontiers in molecular biosciences 2024 11 1387576
    [Google Scholar]
  9. Yanez-Gomez F. Galvez-Melero L. Ledesma-Corvi S. Bis-Humbert C. Hernandez-Hernandez E. Salort G. Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats. J. Neurosci. Res. 2024 102 2 e25296
    [Google Scholar]
  10. Zhao R Wu T Yin J Wang T He Y Wu Y Cashmere cyclic growth affected by different photoperiods alters DNA methylation patterns. All Life. 2024 17 1
    [Google Scholar]
  11. Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr. Neurovasc. Res. 2017 14 3 299 304
    [Google Scholar]
  12. Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev. Clin. Pharmacol. 2020 13 1 23 34
    [Google Scholar]
  13. Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021 11 7 1002
    [Google Scholar]
  14. Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in bioscience (Landmarkedition). 2021 26 9 614 627
    [Google Scholar]
  15. Maiese K. Biological gases, oxidative stress, artificial intelligence, and machine learning for neurodegeneration and metabolic disorders. Medical Gas Research 2025 15 1 145 147
    [Google Scholar]
  16. Xie L. Cui S. Guo N. Li A. Zhang J. Research hotspots and frontiers of stem cells for Alzheimer’s disease. Chinese Journal of Tissue Engineering Research. 2025 29 7 1475 1485
    [Google Scholar]
  17. Birnie M.T. Claydon M.D.B. Troy O. Flynn B.P. Yoshimura M. Kershaw Y.M. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment. Proc. Natl. Acad. Sci. U S A 2023 120 15 e2211996120
    [Google Scholar]
  18. Amidfar M. Garcez M.L. Kim Y.K. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023 123 110721
    [Google Scholar]
  19. Diamanti-Kandarakis E. Dattilo M. Macut D. Duntas L. Gonos E.S. Goulis D.G. MECHANISMS IN ENDOCRINOLOGY: Aging and anti-aging: a Combo-Endocrinology overview. Eur. J. Endocrinol. 2017 176 6 R283 R308
    [Google Scholar]
  20. Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr. Neurovasc. Res. 2020 17 5 765 783
    [Google Scholar]
  21. Mocayar Maron F.J. Ferder L. Reiter R.J. Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J. Steroid Biochem. Mol. Biol. 2020 199 105595
    [Google Scholar]
  22. Trujillo-Rangel W.A. Acuna-Vaca S. Padilla-Ponce D.J. Garcia-Mercado F.G. Torres-Mendoza B.M. Pacheco-Moises F.P. Modulation of the Circadian Rhythm and Oxidative Stress as Molecular Targets to Improve Vascular Dementia: A Pharmacological Perspective. International journal of molecular sciences 2024 25 8 4401
    [Google Scholar]
  23. Peng X. Fan R. Xie L. Shi X. Dong K. Zhang S. A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer’s Disease. International journal of molecular sciences 2022 23 1
    [Google Scholar]
  24. Zhuang X. Magri A. Hill M. Lai A.G. Kumar A. Rambhatla S.B. The circadian clock components BMAL1 and REV-ERBalpha regulate flavivirus replication. Nature communications 2019 10 1 377
    [Google Scholar]
  25. Di T. Zhou Z. Liu F.E.N. Chen Y. Wang L. Autophagy and circadian rhythms: interactions and clinical implications. Biocell 2024 48 1 33 45
    [Google Scholar]
  26. Wang X. Xu Z. Cai Y. Zeng S. Peng B. Ren X. Rheostatic Balance of Circadian Rhythm and Autophagy in Metabolism and Disease. Front. Cell Dev. Biol. 2020 8 616434
    [Google Scholar]
  27. Felten M. Dame C. Lachmann G. Spies C. Rubarth K. Balzer F. Circadian rhythm disruption in critically ill patients. Acta Physiol. (Oxf.) 2023 238 1 e13962
    [Google Scholar]
  28. Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI J. 2023 22 690 715
    [Google Scholar]
  29. Soni N. Bissa B. Exosomes, circadian rhythms, and cancer precision medicine: New frontiers. Biochimie 2024
    [Google Scholar]
  30. Xu Y. Zeng C. Bin J. Tang H. Li W. Identifying novel circadian rhythm biomarkers for diagnosis and prognosis of melanoma by an integrated bioinformatics and machine learning approach. Aging (Albany NY) 2024 16 16 11824 11842
    [Google Scholar]
  31. Zhao H. Li Z. Yan M. Ma L. Dong X. Li X. Irbesartan ameliorates diabetic kidney injury in db/db mice by restoring circadian rhythm and cell cycle. J. Transl. Int. Med. 2024 12 2 157 169
    [Google Scholar]
  32. Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid. Redox Signal. 2022 37 10-12 704 725
    [Google Scholar]
  33. Rossetti M.L. Esser K.A. Lee C. Tomko R.J. Jr Eroshkin A.M. Gordon B.S. Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion. Am. J. Physiol. Endocrinol. Metab. 2019 317 4 E631 E45
    [Google Scholar]
  34. Shkodina A.D. Tan S.C. Hasan M.M. Abdelgawad M. Chopra H. Bilal M. Roles of clock genes in the pathogenesis of Parkinson’s disease. Ageing research reviews. 2022 74 101554
    [Google Scholar]
  35. Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023 13 5 816
    [Google Scholar]
  36. Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023 10 7 871
    [Google Scholar]
  37. Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Frontiers in immunology 2023 14 Nov 03 1273570
    [Google Scholar]
  38. Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023 12 22 2595
    [Google Scholar]
  39. Cardinali D.P. Brown G.M. Reiter R.J. Pandi-Perumal S.R. Elderly as a High-risk Group during COVID-19 Pandemic: Effect of Circadian Misalignment, Sleep Dysregulation and Melatonin Administration. Sleep Vigil. 2020 4 2 81 87
    [Google Scholar]
  40. Diallo A.B. Gay L. Coiffard B. Leone M. Mezouar S. Mege J.L. Daytime variation in SARS-CoV-2 infection and cytokine production. Microb. Pathog. 2021 158 105067
    [Google Scholar]
  41. Lim R.K. Wambier C.G. Goren A. Are night shift workers at an increased risk for COVID-19? Med. Hypotheses 2020 144 110147
    [Google Scholar]
  42. Maiese K. Circadian Clock Genes: Targeting Innate Immunity for Antiviral Strategies Against COVID-19. Curr. Neurovasc. Res. 2020 17 5 531 533
    [Google Scholar]
  43. Maiese K. The Oversight of Circadian Clock Genes for the Detection, Prevention, and Treatment of COVID-19 Infection. Curr. Neurovasc. Res. 2021 18 5 471 473
    [Google Scholar]
  44. McNaughton C.D. Adams N.M. Hirschie Johnson C. Ward M.J. Schmitz J.E. Lasko T.A. Diurnal Variation in SARS-CoV-2 PCR Test Results: Test Accuracy May Vary by Time of Day. J. Biol. Rhythms 2021 36 6 595 601
    [Google Scholar]
  45. Meng Y. Zhu V. Zhu Y. Co-distribution of Light At Night (LAN) and COVID-19 incidence in the United States. BMC public health 2021 21 1 1509
    [Google Scholar]
  46. Morin C.M. Carrier J. Bastien C. Godbout R. Canadian S. Circadian N. Sleep and circadian rhythm in response to the COVID-19 pandemic. Can. J. Public Health 2020 111 5 654 657
    [Google Scholar]
  47. Roccaro I. Smirni D. Fiat Lux: The Light Became Therapy. An Overview on the Bright Light Therapy in Alzheimer’s Disease Sleep Disorders. J. Alzheimers Dis. 2020 77 1 113 125
    [Google Scholar]
  48. Tamimi F. Abusamak M. Akkanti B. Chen Z. Yoo S.H. Karmouty-Quintana H. The case for chronotherapy in Covid-19-induced acute respiratory distress syndrome. Br. J. Pharmacol. 2020 177 21 4845 4850
    [Google Scholar]
  49. Wang W. Balfe P. Eyre D.W. Lumley S.F. O’Donnell D. Warren F. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. J. Biol. Rhythms 2022 37 1 124 129
    [Google Scholar]
  50. Zhuang X. Tsukuda S. Wrensch F. Wing P.A. Schilling M. Harris J.M. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. bioRxiv 2021 24 10 103144
    [Google Scholar]
  51. Kurki S.N. Kantonen J. Kaivola K. Hokkanen L. Mayranpaa M.I. Puttonen H. APOE epsilon4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study. Acta neuropathologica communications 2021 9 1 199
    [Google Scholar]
  52. Bandelin-Franke L. Scheibenbogen C. Bobbert T. Post-COVID und Diabetes mellitus. Die Diabetologie. 2024 20 3 356 363
    [Google Scholar]
  53. Rego A.C.M. Araujo-Filho I. Post-Acute COVID-19 Syndrome and Stroke. J Surg Cl Res 2024 15 1 44 58
    [Google Scholar]
  54. Xu J. Abdulsalam Khaleel R. Zaidan H.K. Faisal Mutee A. Fahmi Fawy K. Gehlot A. Discovery of common molecular signatures and drug repurposing for COVID-19/Asthma comorbidity: ACE2 and multi-partite networks. Cell Cycle 2024 23 4 405 434
    [Google Scholar]
  55. Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr. Neurovasc. Res. 2020 17 3 332 337
    [Google Scholar]
  56. Luo L. Li R. Wang G. Chen J. Chen L. Qin L.Q. Age-dependent effects of a high-fat diet combined with dietary advanced glycation end products on cognitive function and protection with voluntary exercise. Food Funct. 2022 13 8 4445 4458
    [Google Scholar]
  57. Xiao X. Feng H. Liao Y. Tang H. Li L. Li K. Identification of key circadian rhythm genes in skin aging based on bioinformatics and machine learning. Aging (Albany NY) 2023 15 20 11672 11689
    [Google Scholar]
  58. Xu Y. Wang Y. Jiang Y. Liu M. Zhong W. Ge Z. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease. Frontiers in aging neuroscience 2023 15 1174541
    [Google Scholar]
  59. Abdalla M.M.I. Insulin resistance as the molecular link between diabetes and Alzheimer’s disease. World J. Diabetes 2024 15 7 1430 1447
    [Google Scholar]
  60. Ciardullo S. Muraca E. Bianconi E. Cannistraci R. Perra S. Zerbini F. Diabetes Mellitus is Associated With Higher Serum Neurofilament Light Chain Levels in the General US Population. J. Clin. Endocrinol. Metab. 2023 108 2 361 367
    [Google Scholar]
  61. Ehtewish H. Mesleh A. Ponirakis G. De la Fuente A. Parray A. Bensmail I. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia. International journal of molecular sciences 2023 24 9
    [Google Scholar]
  62. Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. NNeural regeneration research 2016 11 3 372 385
    [Google Scholar]
  63. Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int. Rev. Neurobiol. 2020 155 1 35
    [Google Scholar]
  64. Casciano F. Zauli E. Celeghini C. Caruso L. Gonelli A. Zauli G. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. International journal of molecular sciences. 2024 25 3 1689
    [Google Scholar]
  65. Jahan R. Yousaf M. Khan H. Shah S.A. Khan A.A. Bibi N. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 2023 18 1-2 183 194
    [Google Scholar]
  66. Subramanian A. Tamilanban T. Alsayari A. Ramachawolran G. Wong L.S. Sekar M. Trilateral association of autophagy, mTOR and Alzheimer’s disease: Potential pathway in the development for Alzheimer’s disease therapy. Frontiers in pharmacology 2022 13 1094351
    [Google Scholar]
  67. Ullah H. Hussain A. Asif M. Nawaz F. Rasool M. Natural Products as Bioactive Agents in the Prevention of Dementia. CNS Neurol. Disord. Drug Targets 2023 22 4 466 476
    [Google Scholar]
  68. Chong Z.Z. Li F. Maiese K. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res. Brain Res. Rev. 2005 49 1 1 21
    [Google Scholar]
  69. Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann. Med. 2014 46 8 587 596
    [Google Scholar]
  70. Maiese K. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Curr. Neurovasc. Res. 2017 14 4 415 420
    [Google Scholar]
  71. Guo J. Cheng J. North B.J. Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer’s disease etiology. Biochim. Biophys. Acta Rev. Cancer 2017 1868 2 341 358
    [Google Scholar]
  72. Ji J.S. Liu L. Zeng Y. Yan L.L. Effect of FOXO3 and Air Pollution on Cognitive Function: A Longitudinal Cohort Study of Older Adults in China From 2000 to 2014. J. Gerontol. A Biol. Sci. Med. Sci. 2022 77 8 1534 1541
    [Google Scholar]
  73. Margrett J.A. Schofield T. Martin P. Poon L.W. Masaki K. Donlon T.A. Novel Functional, Health, and Genetic Determinants of Cognitive Terminal Decline: Kuakini Honolulu Heart Program/Honolulu-Asia Aging Study. J. Gerontol. A Biol. Sci. Med. Sci. 2022 77 8 1525 1533
    [Google Scholar]
  74. Maiese K. Chong Z.Z. Shang Y.C. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol. Med. 2008 14 5 219 227
    [Google Scholar]
  75. Maiese K. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J. Transl. Sci. 2016 2 4 241 247
    [Google Scholar]
  76. Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer’s Disease. Curr. Neurovasc. Res. 2018 15 4 367 371
    [Google Scholar]
  77. Maiese K. Wnt Signaling and WISP1 (CCN4): Critical Components in Neurovascular Disease, Blood Brain Barrier Regulation, and Cerebral Hemorrhage. Curr. Neurovasc. Res. 2022 19 4 379 382
    [Google Scholar]
  78. Wexler E.M. Rosen E. Lu D. Osborn G.E. Martin E. Raybould H. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Science signaling 2011 4 193 ra65
    [Google Scholar]
  79. Wiedau-Pazos M. Wong E. Solomon E. Alarcon M. Geschwind D.H. Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiol. Aging 2007
    [Google Scholar]
  80. Dong L. Hou B. Liu C. Mao C. Huang X. Shang L. Association Between Wnt Target Genes and Cortical Volumes in Alzheimer’s Disease. J. Mol. Neurosci. 2023 73 11-12 1010 1016
    [Google Scholar]
  81. Guo T. Chen M. Liu J. Wei Z. Yuan J. Wu W. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. Journal of translational medicine 2023 21 1 297
    [Google Scholar]
  82. Vallee A. Vallee J.N. Lecarpentier Y. Parkinson’s Disease: Potential Actions of Lithium by Targeting the WNT/beta-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021 10 2
    [Google Scholar]
  83. Cronin P. McCarthy M.J. Lim A.S.P. Salmon D.P. Galasko D. Masliah E. Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimer's & dementia : the journal of the Alzheimer's Association 2017 13 6 689 700
    [Google Scholar]
  84. Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural regeneration research 2019 14 5 773 774
    [Google Scholar]
  85. Wu X. Li D. Liu J. Diao L. Ling S. Li Y. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight. Frontiers in pharmacology 2017 8 315
    [Google Scholar]
  86. Maiese K. Sleep Disorders, Neurodegeneration, Glymphatic Pathways, and Circadian Rhythm Disruption. Curr. Neurovasc. Res. 2021 18 3 269 270
    [Google Scholar]
  87. Rami A. Fekadu J. Rawashdeh O. The Hippocampal Autophagic Machinery is Depressed in the Absence of the Circadian Clock Protein PER1 that may Lead to Vulnerability During Cerebral Ischemia. Curr. Neurovasc. Res. 2017 14 3 207 214
    [Google Scholar]
  88. Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr. Neurovasc. Res. 2014 11 2 177 186
    [Google Scholar]
  89. Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural regeneration research 2014 9 15 1413 1417
    [Google Scholar]
  90. Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br. J. Clin. Pharmacol. 2016 82 5 1245 1266
    [Google Scholar]
  91. Di T. Guo M. Xu J. Feng C. Du Y. Wang L. Circadian clock genes REV-ERBalpha regulates the secretion of IL-1beta in deciduous tooth pulp stem cells by regulating autophagy in the process of physiological root resorption of deciduous teeth. Dev. Biol. 2024 510 8 16
    [Google Scholar]
  92. Klionsky D.J. Abdel-Aziz A.K. Abdelfatah S. Abdellatif M. Abdoli A. Abel S. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1) Autophagy 2021 17 1 1 382
    [Google Scholar]
  93. Nakahata Y. Sahar S. Astarita G. Kaluzova M. Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009 324 5927 654 657
    [Google Scholar]
  94. Watroba M. Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front. Physiol. 2021 12 724506
    [Google Scholar]
  95. Chong M.C. Silva A. James P.F. Wu S.S.X. Howitt J. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD(+) activity in recipient cells. Aging Cell 2022 21 7 e13647
    [Google Scholar]
  96. Yamamoto H. Shimomura N. Oura K. Hasegawa Y. Nacre Extract from Pearl Oyster Shell Prevents D-Galactose-Induced Brain and Skin Aging. Mar. Biotechnol. (NY) 2023 25 4 503 518
    [Google Scholar]
  97. Maiese K. Chong Z.Z. Shang Y.C. Wang S. Novel directions for diabetes mellitus drug discovery. Expert opinion on drug discovery 2013 8 1 35 48
    [Google Scholar]
  98. Tabibzadeh S. Signaling pathways and effectors of aging. Frontiers in bioscience (Landmark edition) 2021 26 1 50 96
    [Google Scholar]
  99. Ye M. Zhao Y. Wang Y. Xie R. Tong Y. Sauer J.D. NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nat. Nanotechnol. 2022 17 8 880 890
    [Google Scholar]
/content/journals/cnr/10.2174/1567202622999241028121817
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test