Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

END (Early Neurologic Deterioration) significantly elevates the risk of morbidity and mortality. While numerous studies have investigated END following hemorrhagic transformation post-thrombolysis in acute cerebral infarction research on END without hemorrhagic transformations in patients with acute cerebral infarction due to non-cardiogenic embolism remains scarce.

Aim

This study aimed to elucidate the impact of PCSK9 inhibitors on early neurological deterioration (END) in patients with acute non-cardioembolism cerebral infarction without hemorrhagic transformation post-intravenous thrombolysis. Additionally it aimed to identify risk factors associated with END in patients suffering from this type of stroke.

Objective

The objective of this study is to investigate the effect of PCSK9 inhibitors on early neurologic deterioration (END) in patients with acute non-cardiogenic cerebral infarction without hemorrhagic transformation after intravenous thrombolysis and identify associated risk factors for END in this patient population.

Methods

In this retrospective case-control study the data of consecutive patients who underwent intravenous thrombolysis after AIS (acute ischemic stroke) without hemorrhagic transformation during hospitalization at the Stroke Center of The Fifth Affiliated Hospital of Sun Yat-sen University between January 2018 to February 2023 were retrieved and assessed. An increase of 2 in the National Institutes of Health Stroke Scale (NIHSS) within 7 days after admission was defined as END.

Results

This study included 250 patients (56 males 22.4%) they were 63.344±12.901 years old. There were 41 patients in the END group and 209 in the non-END group. The usage rate of PCSK9 inhibitors was significantly different between the END group and non-END group (29.268% 58.852% <0.001). The White blood cell count (WBC) and homocysteine levels showed a significant difference between the two groups (all <0.05). Patients not using PCSK9 inhibitors (OR=0.282 95%CI: 0.127-0.593) and white blood cell count (OR=1.197, 95%CI: 1.085-1.325) were independently associated with END. Receiver-operating characteristic curve analysis suggested that the sensitivity specificity and area under the curve for PCSK9 inhibitors used for END were 88.9%, 80.7% and 0.648 respectively.

Conclusion

The use of PCSK9 inhibitors can reduce the incidence of early neurological deterioration in patients with acute non-cardioembolism and non-hemorrhagic transformation after intravenous thrombolysis.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026332171240624100802
2024-07-11
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/cnr/21/3/CNR-21-3-10.html?itemId=/content/journals/cnr/10.2174/0115672026332171240624100802&mimeType=html&fmt=ahah

References

  1. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  2. PowersW.J. RabinsteinA.A. AckersonT. AdeoyeO.M. BambakidisN.C. BeckerK. BillerJ. BrownM. DemaerschalkB.M. HohB. JauchE.C. KidwellC.S. Leslie-MazwiT.M. OvbiageleB. ScottP.A. ShethK.N. SoutherlandA.M. SummersD.V. TirschwellD.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association.Stroke20195012e344e41810.1161/STR.000000000000021131662037
    [Google Scholar]
  3. HankeyG.J. Stroke.Lancet20173891006964165410.1016/S0140‑6736(16)30962‑X27637676
    [Google Scholar]
  4. SenersP. TurcG. OppenheimC. BaronJ.C. Incidence, causes and predictors of neurological deterioration occurring within 24 h following acute ischaemic stroke: A systematic review with pathophysiological implications.J. Neurol. Neurosurg. Psychiatry2015861879410.1136/jnnp‑2014‑30832724970907
    [Google Scholar]
  5. LydenP. Using the national institutes of health stroke scale.Stroke201748251351910.1161/STROKEAHA.116.01543428077454
    [Google Scholar]
  6. DaiZ. CaoH. WangF. LiL. GuoH. ZhangX. JiangH. ZhuJ. JiangY. LiuD. XuG. Impacts of stress hyperglycemia ratio on early neurological deterioration and functional outcome after endovascular treatment in patients with acute ischemic stroke.Front. Endocrinol.202314109435310.3389/fendo.2023.109435336777360
    [Google Scholar]
  7. AdamsH.P.Jr BendixenB.H. KappelleL.J. BillerJ. LoveB.B. GordonD.L. MarshE.E.III Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment.Stroke1993241354110.1161/01.STR.24.1.357678184
    [Google Scholar]
  8. GrundyS.M. StoneN.J. BaileyA.L. BeamC. BirtcherK.K. BlumenthalR.S. BraunL.T. de FerrantiS. Faiella-TommasinoJ. FormanD.E. GoldbergR. HeidenreichP.A. HlatkyM.A. JonesD.W. Lloyd-JonesD. Lopez-PajaresN. NdumeleC.E. OrringerC.E. PeraltaC.A. SaseenJ.J. SmithS.C.Jr SperlingL. ViraniS.S. YeboahJ. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol.J. Am. Coll. Cardiol.20197324e285e35010.1016/j.jacc.2018.11.00330423393
    [Google Scholar]
  9. TouboulP.J. HennericiM.G. MeairsS. AdamsH. AmarencoP. BornsteinN. CsibaL. DesvarieuxM. EbrahimS. Hernandez HernandezR. JaffM. KownatorS. NaqviT. PratiP. RundekT. SitzerM. SchminkeU. TardifJ.C. TaylorA. VicautE. WooK.S. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011.Cerebrovasc. Dis.201234429029610.1159/00034314523128470
    [Google Scholar]
  10. ZhouM. WangH. ZengX. YinP. ZhuJ. ChenW. LiX. WangL. WangL. LiuY. LiuJ. ZhangM. QiJ. YuS. AfshinA. GakidouE. GlennS. KrishV.S. Miller-PetrieM.K. Mountjoy-VenningW.C. MullanyE.C. RedfordS.B. LiuH. NaghaviM. HayS.I. WangL. MurrayC.J.L. LiangX. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet2019394102041145115810.1016/S0140‑6736(19)30427‑131248666
    [Google Scholar]
  11. WuS. WuB. LiuM. ChenZ. WangW. AndersonC.S. SandercockP. WangY. HuangY. CuiL. PuC. JiaJ. ZhangT. LiuX. ZhangS. XieP. FanD. JiX. WongK.S.L. WangL. WuS. WuB. LiuM. ChenZ. WangW. AndersonC.S. SandercockP. WangY. HuangY. CuiL. PuC. JiaJ. ZhangT. LiuX. ZhangS. XieP. FanD. JiX. WongK-S.L. WangL. WeiC. WangY. ChengY. LiuY. LiX. DongQ. ZengJ. PengB. XuY. YangY. WangY. ZhaoG. WangW. XuY. YangQ. HeZ. WangS. YouC. GaoY. ZhouD. HeL. LiZ. YangJ. LeiC. ZhaoY. LiuJ. ZhangS. TaoW. HaoZ. WangD. ZhangS. Stroke in China: Advances and challenges in epidemiology, prevention, and management.Lancet Neurol.201918439440510.1016/S1474‑4422(18)30500‑330878104
    [Google Scholar]
  12. ZiW. SongJ. KongW. HuangJ. GuoC. HeW. YuY. ZhangB. GengW. TanX. TianY. LiuZ. CaoM. ChengD. LiB. HuangW. LiuJ. WangP. YuZ. LiangH. YangS. TangM. LiuW. HuangX. LiuS. TangY. WuY. YaoL. ShiZ. HeP. ZhaoH. ChenZ. LuoJ. WanY. ShiQ. WangM. YangD. ChenX. HuangF. MuJ. LiH. LiZ. ZhengJ. XieS. CaiT. PengY. XieW. QiuZ. LiuC. YueC. LiL. TianY. YangD. MiaoJ. YangJ. HuJ. NogueiraR.G. WangD. SaverJ.L. LiF. YangQ. Tirofiban for stroke without large or medium-sized vessel occlusion.N. Engl. J. Med.2023388222025203610.1056/NEJMoa221429937256974
    [Google Scholar]
  13. FeiginV.L. NguyenG. CercyK. JohnsonC.O. AlamT. ParmarP.G. AbajobirA.A. AbateK.H. Abd-AllahF. AbejieA.N. AbyuG.Y. AdemiZ. AgarwalG. AhmedM.B. AkinyemiR.O. Al-RaddadiR. AmindeL.N. Amlie-LefondC. AnsariH. AsayeshH. AsgedomS.W. AteyT.M. AyeleH.T. BanachM. BanerjeeA. BaracA. Barker-ColloS.L. BärnighausenT. BarregardL. BasuS. BediN. BehzadifarM. BéjotY. BennettD.A. BensenorI.M. BerheD.F. BoneyaD.J. BraininM. Campos-NonatoI.R. CasoV. Castañeda-OrjuelaC.A. RivasJ.C. Catalá-LópezF. ChristensenH. CriquiM.H. DamascenoA. DandonaL. DandonaR. DavletovK. de CourtenB. deVeberG. DokovaK. EdessaD. EndresM. FaraonE.J.A. FarvidM.S. FischerF. ForemanK. ForouzanfarM.H. GallS.L. GebrehiwotT.T. GeleijnseJ.M. GillumR.F. GiroudM. GoulartA.C. GuptaR. GuptaR. HachinskiV. HamadehR.R. HankeyG.J. HareriH.A. HavmoellerR. HayS.I. HegazyM.I. HibstuD.T. JamesS.L. JeemonP. JohnD. JonasJ.B. JóźwiakJ. KalaniR. KandelA. KasaeianA. KengneA.P. KhaderY.S. KhanA.R. KhangY.H. KhubchandaniJ. KimD. KimY.J. KivimakiM. KokuboY. KolteD. KopecJ.A. KosenS. KravchenkoM. KrishnamurthiR. KumarG.A. LafranconiA. LavadosP.M. LegesseY. LiY. LiangX. LoW.D. LorkowskiS. LotufoP.A. LoyC.T. MackayM.T. Abd El RazekH.M. MahdaviM. MajeedA. MalekzadehR. MaltaD.C. MamunA.A. MantovaniL.G. MartinsS.C.O. MateK.K. MazidiM. MehataS. MeierT. MelakuY.A. MendozaW. MensahG.A. MeretojaA. MezgebeH.B. MiazgowskiT. MillerT.R. IbrahimN.M. MohammedS. MokdadA.H. MoosazadehM. MoranA.E. MusaK.I. NegoiR.I. NguyenM. NguyenQ.L. NguyenT.H. TranT.T. NguyenT.T. Anggraini NingrumD.N. NorrvingB. NoubiapJ.J. O’DonnellM.J. OlagunjuA.T. OnumaO.K. OwolabiM.O. ParsaeianM. PattonG.C. PiradovM. PletcherM.A. PourmalekF. PrakashV. QorbaniM. RahmanM. RahmanM.A. RaiR.K. RantaA. RawafD. RawafS. RenzahoA.M. RobinsonS.R. SahathevanR. SahebkarA. SalomonJ.A. SantaluciaP. SantosI.S. SartoriusB. SchutteA.E. SepanlouS.G. ShafieesabetA. ShaikhM.A. ShamsizadehM. ShethK.N. SisayM. ShinM.J. ShiueI. SilvaD.A.S. SobngwiE. SoljakM. SorensenR.J.D. SposatoL.A. StrangesS. SuliankatchiR.A. Tabarés-SeisdedosR. TanneD. NguyenC.T. ThakurJ.S. ThriftA.G. TirschwellD.L. Topor-MadryR. TranB.X. NguyenL.T. TruelsenT. TsilimparisN. TyrovolasS. UkwajaK.N. UthmanO.A. VarakinY. VasankariT. VenketasubramanianN. VlassovV.V. WangW. WerdeckerA. WolfeC.D.A. XuG. YanoY. YonemotoN. YuC. ZaidiZ. El Sayed ZakiM. ZhouM. ZiaeianB. ZipkinB. VosT. NaghaviM. MurrayC.J.L. RothG.A. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016.N. Engl. J. Med.2018379252429243710.1056/NEJMoa180449230575491
    [Google Scholar]
  14. SharmaA. PanditA.K. MishraB. SrivastavaM.V.P. SrivastavaA.K. VishnuV.Y. SinghR.K. Early neurological deterioration in acute ischemic stroke.Ir. J. Med. Sci.2024193294995510.1007/s11845‑023‑03485‑537561387
    [Google Scholar]
  15. KorompokiE. NtaiosG. TountopoulouA. MavraganisG. TsampalasE. KalliontzakisI. VassilopoulouS. ManiosE. SavopoulosC. MilionisH. ProtogerouA. KakaletsisN. GalanisP. KaitelidouD. SiskouO. VemmosK. Quality indicators and clinical outcomes of acute stroke: results from a prospective multicenter registry in greece (SUN4P).J. Clin. Med.202413391710.3390/jcm1303091738337611
    [Google Scholar]
  16. DebP. SharmaS. HassanK.M. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis.Pathophysiology201017319721810.1016/j.pathophys.2009.12.00120074922
    [Google Scholar]
  17. SenersP. TurcG. MaïerB. MasJ.L. OppenheimC. BaronJ.C. Incidence and predictors of early recanalization after intravenous thrombolysis.Stroke20164792409241210.1161/STROKEAHA.116.01418127462117
    [Google Scholar]
  18. SmithC.J. EmsleyH.C.A. GavinC.M. GeorgiouR.F. VailA. BarberanE.M. del ZoppoG.J. HallenbeckJ.M. RothwellN.J. HopkinsS.J. TyrrellP.J. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome.BMC Neurol.200441210.1186/1471‑2377‑4‑214725719
    [Google Scholar]
  19. O’DonoghueM.L. FazioS. GiuglianoR.P. StroesE.S.G. KanevskyE. Gouni-BertholdI. ImK. Lira PinedaA. WassermanS.M. ČeškaR. EzhovM.V. JukemaJ.W. JensenH.K. TokgözoğluS.L. MachF. HuberK. SeverP.S. KeechA.C. PedersenT.R. SabatineM.S. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk.Circulation2019139121483149210.1161/CIRCULATIONAHA.118.03718430586750
    [Google Scholar]
  20. ZhengY. ZhuT. LiG. XuL. ZhangY. PCSK9 inhibitor protects against ischemic cerebral injury by attenuating inflammation via the GPNMB/CD44 pathway.Int. Immunopharmacol.202412611119510.1016/j.intimp.2023.11119538048667
    [Google Scholar]
  21. SeidahN.G. PratA. The multifaceted biology of PCSK9.Endocr. Rev.202243355858210.1210/endrev/bnab03535552680
    [Google Scholar]
  22. GiuglianoR.P. PedersenT.R. SaverJ.L. SeverP.S. KeechA.C. BohulaE.A. MurphyS.A. WassermanS.M. HonarpourN. WangH. Lira PinedaA. SabatineM.S. Stroke prevention with the PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitor evolocumab added to statin in high-risk patients with stable atherosclerosis.Stroke20205151546155410.1161/STROKEAHA.119.02775932312223
    [Google Scholar]
  23. AlloubaniA. NimerR. SamaraR. Relationship between hyperlipidemia, cardiovascular disease and stroke: A systematic review.Curr. Cardiol. Rev.2021176e05112118901510.2174/1573403X1699920121020034233305711
    [Google Scholar]
  24. ZandaG. VarbellaF. Stabilization of vulnerable plaque in the ACS patient: Evidence from HUYGENS studies.Eur. Heart J. Suppl.202325Suppl. CC106C10810.1093/eurheartjsupp/suad01337125301
    [Google Scholar]
  25. AhmadP. AlviS.S. IqbalD. KhanM.S. Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis.Life Sci.202025411775610.1016/j.lfs.2020.11775632389832
    [Google Scholar]
  26. PaciulloF. MomiS. GreseleP. PCSK9 in haemostasis and thrombosis: Possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention.Thromb. Haemost.2019119335936710.1055/s‑0038‑167686330605918
    [Google Scholar]
  27. QiZ. HuL. ZhangJ. YangW. LiuX. JiaD. YaoZ. ChangL. PanG. ZhongH. LuoX. YaoK. SunA. QianJ. DingZ. GeJ. PCSK9 (proprotein convertase subtilisin/kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36.Circulation20211431456110.1161/CIRCULATIONAHA.120.04629032988222
    [Google Scholar]
  28. IadecolaC. AnratherJ. The immunology of stroke: from mechanisms to translation.Nat. Med.201117779680810.1038/nm.239921738161
    [Google Scholar]
  29. GaleaI. The blood–brain barrier in systemic infection and inflammation.Cell. Mol. Immunol.202118112489250110.1038/s41423‑021‑00757‑x34594000
    [Google Scholar]
  30. ZeraK.A. BuckwalterM.S. The local and peripheral immune responses to stroke: implications for therapeutic development.Neurotherapeutics202017241443510.1007/s13311‑020‑00844‑332193840
    [Google Scholar]
  31. DeLongJ.H. OhashiS.N. O’ConnorK.C. SansingL.H. Inflammatory responses after ischemic stroke.Semin. Immunopathol.202244562564810.1007/s00281‑022‑00943‑735767089
    [Google Scholar]
  32. MarfellaR. PrattichizzoF. SarduC. PaolissoP. D’OnofrioN. ScisciolaL. La GrottaR. FrigéC. FerraraccioF. PanareseI. FanelliM. ModugnoP. CalafioreA.M. MelchionnaM. SassoF.C. FurbattoF. D’AndreaD. SiniscalchiM. MauroC. CesaroA. CalabròP. SantulliG. BalestrieriM.L. BarbatoE. CerielloA. PaolissoG. Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque.Atherosclerosis202337811718010.1016/j.atherosclerosis.2023.06.97137422356
    [Google Scholar]
  33. MoustafaB. TestaiF.D. Efficacy and Safety of PCSK9 inhibitors in stroke prevention.J. Stroke Cerebrovasc. Dis.2021301110605710.1016/j.jstrokecerebrovasdis.2021.10605734450482
    [Google Scholar]
  34. NardiK. MiliaP. EusebiP. PaciaroniM. CasoV. AgnelliG. Admission leukocytosis in acute cerebral ischemia: Influence on early outcome.J. Stroke Cerebrovasc. Dis.201221881982410.1016/j.jstrokecerebrovasdis.2011.04.01521703875
    [Google Scholar]
  35. KollikowskiA.M. SchuhmannM.K. NieswandtB. MüllgesW. StollG. PhamM. Local leukocyte invasion during hyperacute human ischemic stroke.Ann. Neurol.202087346647910.1002/ana.2566531899551
    [Google Scholar]
  36. ShiZ. GuanY. HuoY.R. LiuS. ZhangM. LuH. YueW. WangJ. JiY. Elevated total homocysteine levels in acute ischemic stroke are associated with long-term mortality.Stroke20154692419242510.1161/STROKEAHA.115.00913626199315
    [Google Scholar]
  37. ZhangT. JiangY. ZhangS. TieT. ChengY. SuX. ManZ. HouJ. SunL. TianM. ZhangY. LiJ. MaY. The association between homocysteine and ischemic stroke subtypes in Chinese.Medicine20209912e1946710.1097/MD.000000000001946732195946
    [Google Scholar]
  38. ZhangH. HuangJ. ZhouY. FanY. Association of homocysteine level with adverse outcomes in patients with acute ischemic stroke: a meta-analysis.Curr. Med. Chem.202128367583759110.2174/092986732866621041913101633874865
    [Google Scholar]
  39. FuH.J. ZhaoL.B. XueJ.J. WuZ.X. HuangY.P. LiuW. GaoZ. Elevated serum homocysteine (Hcy) levels may contribute to the pathogenesis of cerebral infarction.J. Mol. Neurosci.201556355356110.1007/s12031‑015‑0497‑625682236
    [Google Scholar]
  40. EsseR. BarrosoM. Tavares de AlmeidaI. CastroR. The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art.Int. J. Mol. Sci.201920486710.3390/ijms2004086730781581
    [Google Scholar]
  41. ZaricB.L. ObradovicM. BajicV. HaidaraM.A. JovanovicM. IsenovicE.R. Homocysteine and hyperhomocysteinaemia.Curr. Med. Chem.201926162948296110.2174/092986732566618031310594929532755
    [Google Scholar]
  42. SpenceJ.D. YiQ. HankeyG.J. B vitamins in stroke prevention: time to reconsider.Lancet Neurol.201716975076010.1016/S1474‑4422(17)30180‑128816120
    [Google Scholar]
  43. Martí-CarvajalA.J. SolàI. LathyrisD. DayerM. Homocysteine-lowering interventions for preventing cardiovascular events.Cochrane Database Syst. Rev.201788CD00661228816346
    [Google Scholar]
  44. MacchiC. BanachM. CorsiniA. SirtoriC.R. FerriN. RuscicaM. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels experimental and clinical approaches with lipid-lowering agents.Eur. J. Prev. Cardiol.201926993094910.1177/204748731983150030776916
    [Google Scholar]
  45. GangulyP. AlamS.F. Role of homocysteine in the development of cardiovascular disease.Nutr. J.2015141610.1186/1475‑2891‑14‑625577237
    [Google Scholar]
  46. ŠkovierováH. VidomanováE. MahmoodS. SopkováJ. DrgováA. ČerveňováT. HalašováE. LehotskýJ. The molecular and cellular effect of homocysteine metabolism imbalance on human health.Int. J. Mol. Sci.20161710173310.3390/ijms1710173327775595
    [Google Scholar]
  47. KwonH.M. LeeY.S. BaeH.J. KangD.W. Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke.Stroke201445387187310.1161/STROKEAHA.113.00409924448992
    [Google Scholar]
  48. CaoY.X. LiS. LiuH.H. LiJ.J. Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: A systematic review and meta-analysis of randomised controlled trials.BMJ Open201889e02234810.1136/bmjopen‑2018‑02234830287608
    [Google Scholar]
  49. BaraleC. MelchiondaE. MorottiA. RussoI. PCSK9 biology and its role in atherothrombosis.Int. J. Mol. Sci.20212211588010.3390/ijms2211588034070931
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026332171240624100802
Loading
/content/journals/cnr/10.2174/0115672026332171240624100802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test