Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

Cerebral Cavernous Malformation (CCM) is one of the most common types of vascular malformation of the central nervous system. Intracerebral hemorrhage, seizures, and lesional growth are the main clinical manifestations. Natural history studies have tried to identify many risk factors; however, the clinical course remains highly unpredictable.

Objective

Here, we have analyzed a multicenter CCM cohort looking for the differential clinical data regarding the patients harboring supra and/or infratentorial cavernous malformations in order to better understand risk factors involved in the anatomical location of the unique neurosurgical disease.

Methods

We have presented a multicenter, Propensity Score Matched (PSM), case-control study including 149 consecutive CCM cases clinically evaluated from May 2017 to December 2022 from three different neurosurgical centers. Epidemiological data were defined at each clinical assessment. Logistic regression was used to identify the independent contribution of each possible risk factor to the bleeding risk. To balance baseline covariates between patients with and without symptoms, and specifically between those with and without symptomatic bleeding, we used a PSM strategy. The Kaplan-Meier curve was drawn to evaluate if patients with infratentorial lesions had a greater chance of bleeding earlier in their life.

Results

The presence of infratentorial lesions was a risk factor in the multivariate analysis comparing the bleeding risk with pure asymptomatic individuals (OR: 3.23, 95% CI 1.43 – 7.26, = 0.005). Also, having an infratentorial CCM was a risk factor after PSM (OR: 4.56, 95% CI 1.47 - 14.10, = 0.008). The presence of an infratentorial lesion was related to precocity of symptoms when the time to first bleed was compared to all other clinical presentations in the overall cohort ( = 0.0328) and in the PSM group ( = 0.03).

Conclusion

Here, we have provided some evidence that infratentorial cerebral cavernous malformation may have a more aggressive clinical course, being a risk factor for symptomatic haemorrhage and precocity of bleeding.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026304601240307051654
2024-03-13
2025-01-24
Loading full text...

Full text loading...

References

  1. Al-Shahi SalmanR. HallJ.M. HorneM.A. MoultrieF. JosephsonC.B. BhattacharyaJ.J. Untreated clinical course of cerebral cavernous malformations: A prospective, population-based cohort study.Lancet Neurol.201211315015610.1016/S1474‑4422(12)70004‑2
    [Google Scholar]
  2. AkersA Al-Shahi SalmanR A Awad I, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: Consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel.Neurosurgery201780566568010.1093/neuros/nyx091 28387823
    [Google Scholar]
  3. de SouzaJ.M. DominguesR.C. CruzL.C.H.Jr DominguesF.S. IasbeckT. GasparettoE.L. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: A comparison with t2-weighted fast spin-echo and gradient-echo sequences.AJNR Am. J. Neuroradiol.200829115415810.3174/ajnr.A0748 17947370
    [Google Scholar]
  4. DammannP. WredeK.H. MaderwaldS. The venous angioarchitecture of sporadic cerebral cavernous malformations: A susceptibility weighted imaging study at 7 T MRI.J. Neurol. Neurosurg. Psychiatry201384219420010.1136/jnnp‑2012‑302599 23085932
    [Google Scholar]
  5. DammannP. WredeK. ZhuY. Correlation of the venous angioarchitecture of multiple cerebral cavernous malformations with familial or sporadic disease: A susceptibility-weighted imaging study with 7-Tesla MRI.J. Neurosurg.2017126257057710.3171/2016.2.JNS152322 27153162
    [Google Scholar]
  6. LabaugeP. DenierC. BergamettiF. Tournier-LasserveE. Genetics of cavernous angiomas.Lancet Neurol.20076323724410.1016/S1474‑4422(07)70053‑4 17303530
    [Google Scholar]
  7. GaultJ. SainS. HuL.J. AwadI.A. Spectrum of genotype and clinical manifestations in cerebral cavernous malformations.Neurosurgery20065961278128510.1227/01.NEU.0000249188.38409.03 17277691
    [Google Scholar]
  8. DenierC. GoutagnyS. LabaugeP. Mutations within the MGC4607 gene cause cerebral cavernous malformations.Am. J. Hum. Genet.200474232633710.1086/381718 14740320
    [Google Scholar]
  9. BergamettiF. DenierC. LabaugeP. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations.Am. J. Hum. Genet.2005761425110.1086/426952 15543491
    [Google Scholar]
  10. Fontes-DantasF.L. da Fontoura GalvãoG. Veloso da SilvaE. Novel CCM1 (KRIT1) mutation detection in brazilian familial cerebral cavernous malformation: Different genetic variants in inflammation, oxidative stress and drug metabolism genes affect disease aggressiveness.World Neurosurg.2020138535540.e810.1016/j.wneu.2020.02.119 32113992
    [Google Scholar]
  11. AwadI.A. PolsterS.P. Cavernous angiomas: Deconstructing a neurosurgical disease.J. Neurosurg.2019131111310.3171/2019.3.JNS181724 31261134
    [Google Scholar]
  12. TaslimiS. ModabberniaA. Amin-HanjaniS. BarkerF.G.II MacdonaldR.L. Natural history of cavernous malformation.Neurology201686211984199110.1212/WNL.0000000000002701 27164680
    [Google Scholar]
  13. BatraS. LinD. RecinosP.F. ZhangJ. RigamontiD. Cavernous malformations: Natural history, diagnosis and treatment.Nat. Rev. Neurol.200951265967010.1038/nrneurol.2009.177 19953116
    [Google Scholar]
  14. GirardR. LiY. StadnikA. A roadmap for developing plasma diagnostic and prognostic biomarkers of cerebral cavernous angioma with symptomatic hemorrhage (CASH).Neurosurgery202188368669710.1093/neuros/nyaa478 33469662
    [Google Scholar]
  15. LyneS.B. GirardR. KoskimäkiJ. Biomarkers of cavernous angioma with symptomatic hemorrhage.JCI Insight2019412e12857710.1172/jci.insight.128577 31217347
    [Google Scholar]
  16. AbdulraufS.I. KaynarM.Y. AwadI.A. A comparison of the clinical profile of cavernous malformations with and without associated venous malformations.Neurosurgery1999441414610.1097/00006123‑199901000‑00020 9894962
    [Google Scholar]
  17. GirardR. ZeineddineH.A. KoskimäkiJ. Plasma biomarkers of inflammation and angiogenesis predict cerebral cavernous malformation symptomatic hemorrhage or lesional growth.Circ. Res.2018122121716172110.1161/CIRCRESAHA.118.312680 29720384
    [Google Scholar]
  18. ZhangD. KinlochA.J. SrinathA. Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu.J. Autoimmun.202011310246910.1016/j.jaut.2020.102469 32362501
    [Google Scholar]
  19. GaoX. YueK. SunJ. Microsurgery vs. Gamma knife radiosurgery for the treatment of brainstem cavernous malformations: A systematic review and meta-analysis.Front. Neurol.20211260046110.3389/fneur.2021.600461 33574793
    [Google Scholar]
  20. El AhmadiehT.Y. AounS.G. BendokB.R. BatjerH.H. Management of brainstem cavernous malformations.Curr. Treat. Options Cardiovasc. Med.201214323725110.1007/s11936‑012‑0181‑x 22555447
    [Google Scholar]
  21. AblaA.A. LekovicG.P. TurnerJ.D. de OliveiraJ.G. PorterR. SpetzlerR.F. Advances in the treatment and outcome of brainstem cavernous malformation surgery: A single-center case series of 300 surgically treated patients.Neurosurgery201168240341510.1227/NEU.0b013e3181ff9cde 21654575
    [Google Scholar]
  22. GarciaR.M. IvanM.E. LawtonM.T. Brainstem cavernous malformations: Surgical results in 104 patients and a proposed grading system to predict neurological outcomes.Neurosurgery201576326527810.1227/NEU.0000000000000602 25599205
    [Google Scholar]
  23. GrossB.A. BatjerH.H. AwadI.A. BendokB.R. DuR. Brainstem cavernous malformations: 1390 surgical cases from the literature.World Neurosurg.2013801-2899310.1016/j.wneu.2012.04.002 22484766
    [Google Scholar]
  24. FloresB.C. WhittemoreA.R. SamsonD.S. BarnettS.L. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations.J. Neurosurg.2015122365366210.3171/2014.11.JNS13680 25574568
    [Google Scholar]
  25. GarciaR.M. OhT. ColeT.S. HendricksB.K. LawtonM.T. Recurrent brainstem cavernous malformations following primary resection: Blind spots, fine lines, and the right-angle method.J. Neurosurg.2021135367168210.3171/2020.6.JNS201555 33254145
    [Google Scholar]
  26. PolsterS.P. StadnikA. AkersA.L. Atorvastatin treatment of cavernous angiomas with symptomatic hemorrhage exploratory proof of concept (AT CASH EPOC) trial.Neurosurgery201985684385310.1093/neuros/nyy539 30476251
    [Google Scholar]
  27. KupersmithM.J. KalishH. EpsteinF. Natural history of brainstem cavernous malformations.Neurosurgery2001481475410.1097/00006123‑200101000‑00007 11152360
    [Google Scholar]
  28. GrossB.A. LinN. DuR. DayA.L. The natural history of intracranial cavernous malformations.Neurosurg. Focus2011306E2410.3171/2011.3.FOCUS1165 21631226
    [Google Scholar]
  29. WeinsheimerS. NelsonJ. AblaA.A. Intracranial hemorrhage rate and lesion burden in patients with familial cerebral cavernous malformation.J. Am. Heart Assoc.2023123e02757210.1161/JAHA.122.027572 36695309
    [Google Scholar]
  30. AlalfiM.O. LanzinoG. FlemmingK.D. Clinical presentation, hemorrhage risk, and outcome in patients with familial cavernous malformations: A pragmatic prospective analysis of 75 patients.J. Neurosurg.202313941710.3171/2023.1.JNS222434 36933254
    [Google Scholar]
  31. ShenkarR. ShiC. RebeizT. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.Genet. Med.201517318819610.1038/gim.2014.97 25122144
    [Google Scholar]
  32. KumarS. LanzinoG. BrinjikjiW. HocquardK.W. FlemmingK.D. Infratentorial developmental venous abnormalities and inflammation increase odds of sporadic cavernous malformation.J. Stroke Cerebrovasc. Dis.20192861662166710.1016/j.jstrokecerebrovasdis.2019.02.025 30878367
    [Google Scholar]
  33. CogswellP.M. PillaiJ.J. LanzinoG. FlemmingK.D. Prevalence of developmental venous anomalies in association with sporadic cavernous malformations on 7T MRI.AJNR Am. J. Neuroradiol.20244517275Epub ahead of print10.3174/ajnr.A8072 38123913
    [Google Scholar]
  34. BrinjikjiW. El-MasriA.E.R. WaldJ.T. FlemmingK.D. LanzinoG. Prevalence of cerebral cavernous malformations associated with developmental venous anomalies increases with age.Childs Nerv. Syst.20173391539154310.1007/s00381‑017‑3484‑0 28643038
    [Google Scholar]
  35. KumarS. LanzinoG. FlemmingK.D. Affected health domains in patients with brainstem cavernous malformations.Acta Neurochir.2019161122521252610.1007/s00701‑019‑04075‑0 31641860
    [Google Scholar]
  36. LashkarivandA. RingstadG. EideP.K. Surgery for brainstem cavernous malformations: Association between preoperative grade and postoperative quality of life.Oper. Neurosurg.202018659059810.1093/ons/opz337 31768544
    [Google Scholar]
  37. CorneliusJ.F. KürtenK. FischerI. HänggiD. SteigerH.J. Quality of life after surgery for cerebral cavernoma: Brainstemversus nonbrainstem location.World Neurosurg.20169531532110.1016/j.wneu.2016.08.014 27542564
    [Google Scholar]
  38. DukatzT. SarntheinJ. SitterH. Quality of life after brainstem cavernoma surgery in 71 patients.Neurosurgery201169368969510.1227/NEU.0b013e31821d31b7 21508880
    [Google Scholar]
  39. BicalhoV.C. BergmannA. DominguesF. FrossardJ.T. de SouzaJ.P.B.M. Cerebral cavernous malformations: Patient-reported outcome validates conservative management.Cerebrovasc. Dis.2017445-631331910.1159/000480125 28968597
    [Google Scholar]
  40. HageS. KinkadeS. GirardR. Trial readiness of cavernous malformations with symptomatic hemorrhage, part II: Biomarkers and trial modeling.Stroke2024551313910.1161/STROKEAHA.123.044083 38134265
    [Google Scholar]
  41. SrinathA. XieB. LiY. Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma.Commun. Med.2023313510.1038/s43856‑023‑00265‑1 36869161
    [Google Scholar]
  42. FlemmingK.D. KimH. HageS. Trial readiness of cavernous malformations with symptomatic hemorrhage, Part I: Event rates and clinical outcome.Stroke2024551223010.1161/STROKEAHA.123.044068 38134268
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026304601240307051654
Loading
/content/journals/cnr/10.2174/0115672026304601240307051654
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test