Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Objective

Autonomic Nervous System (ANS) dysfunction may be involved in the pathogenesis of Cerebral Small Vessel Disease (CSVD). The study aimed to explore the relationship between Recent Small Subcortical Infarct (RSSI) and Blood Pressure Variability (BPV), and Heart Rate Variability (HRV).

Methods

A total of 588 patients from the CSVD registration research database of Henan Province were included in this study, and were divided into two groups according to the presence of RSSI. Clinical data, including demographic characteristics, disease history, laboratory indexes, 24-hour ambulatory blood pressure and electrocardiogram indicators, and imaging markers of CSVD, were collected. Univariate and binary logistic regression analyses were used to study the relationship between RSSI and indicators of laboratory, HRV and BPV in the CSVD population.

Results

Multivariate analysis showed that higher 24-hour mean Diastolic Blood Pressure (DBP)[Odds Ratios (OR)=1.083,95% Confidence Intervals (CI)=(1.038,1.129), p < 0.001], Standard Deviation (SD) of 24-hour DBP [OR=1.059,95%CI=(1.000,1.121), = 0.049], nocturnal mean Systolic Blood Pressure (SBP) [OR=1.020,95%CI=(1.004,1.035), = 0.012], nocturnal mean DBP [OR=1.025,95%CI=(1.009,1.040), = 0.002] were independent risk factors for RSSI. In contrast, the decrease of the standard deviation of N–N intervals (SDNN) [OR=0.994,95%CI=(0.989,1.000), = 0.035] was beneficial to the occurrence of RSSI. In addition, neutrophil counts [OR=1.138,95%CI=(1.030,1.258), = 0.011], total cholesterol (TC) [OR=1.203,95%CI=(1.008,1.437), = 0.041] and High-Density Lipoprotein (HDL) [OR=0.391, 95%CI=(0.195,0.786), = 0.008] were also independently associated with the occurrence of RSSI. After adjusting for confounding factors, except for TC, the other factors remained associated with the occurrence of RSSI.

Conclusion

Increased 24-hour mean DBP, nocturnal mean SBP and DBP, SD of 24-hour DBP and decreased SDNN were independently correlated with RSSI occurrence, suggesting that sympathetic overactivity plays a role in the pathogenesis of RSSI.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026303708240321035356
2024-03-29
2025-01-24
Loading full text...

Full text loading...

References

  1. WardlawJ.M. SmithE.E. BiesselsG.J. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.Lancet Neurol.201312882283810.1016/S1474‑4422(13)70124‑8 23867200
    [Google Scholar]
  2. WuS. WuB. LiuM. Stroke in China: Advances and challenges in epidemiology, prevention, and management.Lancet Neurol.201918439440510.1016/S1474‑4422(18)30500‑3 30878104
    [Google Scholar]
  3. GattringerT. EppingerS. PinterD. Morphological MRI characteristics of recent small subcortical infarcts.Int. J. Stroke20151071037104310.1111/ijs.12499 25864877
    [Google Scholar]
  4. CannistraroR.J. BadiM. EidelmanB.H. DicksonD.W. MiddlebrooksE.H. MeschiaJ.F. CNS small vessel disease.Neurology201992241146115610.1212/WNL.0000000000007654 31142635
    [Google Scholar]
  5. AbboudF.M. The sympathetic nervous system in hypertension.Clin. Exp. Hypertens. A198461-2436010.3109/10641968409062550 6697560
    [Google Scholar]
  6. RupprechtS. FinnS. HoyerD. Association between systemic inflammation, carotid arteriosclerosis, and autonomic dysfunction.Transl. Stroke Res.2020111505910.1007/s12975‑019‑00706‑x 31093927
    [Google Scholar]
  7. AcampaM. LazzeriniP.E. MartiniG. Atrial cardiopathy and sympatho-vagal imbalance in cryptogenic stroke: Pathogenic mechanisms and effects on electrocardiographic markers.Front. Neurol.2018946910.3389/fneur.2018.00469
    [Google Scholar]
  8. WuJ.K. HuangZ. ZhangZ. XiaoW. JiangH. Quantitative assessment of autonomic regulation of the cardiac system.J. Healthc. Eng.20192019450150210.1155/2019/4501502
    [Google Scholar]
  9. SluyterJ.D. CamargoC.A.Jr LoweA. ScraggR.K.R. Pulse rate variability predicts atrial fibrillation and cerebrovascular events in a large, population-based cohort.Int. J. Cardiol.2019275838810.1016/j.ijcard.2018.10.026 30318296
    [Google Scholar]
  10. TangS. XiongL. FanY. MokV.C.T. WongK.S. LeungT.W. Stroke outcome prediction by blood pressure variability, heart rate variability, and baroreflex sensitivity.Stroke20205141317132010.1161/STROKEAHA.119.027981 31964286
    [Google Scholar]
  11. ChenY.K. NiZ.X. LiW. Diurnal blood pressure and heart rate variability in hypertensive patients with cerebral small vessel disease: A case-control study.J. Stroke Cerebrovasc. Dis.202130510567310.1016/j.jstrokecerebrovasdis.2021.105673 33631472
    [Google Scholar]
  12. YuY.P. ZhengY.L. TanL. JiangT.T. BPV associated with imaging features of SSI on MRI.Brain Behav.2021116e0215510.1002/brb3.2155 33960729
    [Google Scholar]
  13. ChaoW. Correlation analysis of heart rate variability with moderate and the risk of recurrent stroke in acute ischemic mini-stroke.Henan University, MA thesis2022
    [Google Scholar]
  14. SpalloneV. Blood pressure variability and autonomic dysfunction.Curr. Diab. Rep.2018181213710.1007/s11892‑018‑1108‑z
    [Google Scholar]
  15. ZouX. YuJ. ZhangL. Relation between blood pressure variability and lacunar infarction in elderly patients with hypertension.Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease20162426971
    [Google Scholar]
  16. MartiskainenM. PohjasvaaraT. MikkelssonJ. Fibrinogen gene promoter -455 A allele as a risk factor for lacunar stroke.Stroke200334488689110.1161/01.STR.0000060029.23872.55 12637691
    [Google Scholar]
  17. TullyP.J. YanoY. LaunerL.J. Association between blood pressure variability and cerebral small-vessel disease: A systematic review and meta-analysis.J. Am. Heart Assoc.202091e01384110.1161/JAHA.119.013841 31870233
    [Google Scholar]
  18. MenaL.J. FelixV.G. MelgarejoJ.D. MaestreG.E. 24-hour blood pressure variability assessed by average real variability: A systematic review and meta-analysis.J. Am. Heart Assoc.2017610e00689510.1161/JAHA.117.006895
    [Google Scholar]
  19. YamaguchiY. WadaM. SatoH. Impact of ambulatory blood pressure variability on cerebral small vessel disease progression and cognitive decline in community-based elderly Japanese.Am. J. Hypertens.201427101257126710.1093/ajh/hpu045 24651635
    [Google Scholar]
  20. FilomenaJ. Riba-LlenaI. VinyolesE. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension.Hypertension201566363464010.1161/HYPERTENSIONAHA.115.05440 26101344
    [Google Scholar]
  21. LiuY. DongY.H. LyuP.Y. ChenW.H. LiR. Hypertension-induced cerebral small vessel disease leading to cognitive impairment.Chin. Med. J.2018131561561910.4103/0366‑6999.226069 29483399
    [Google Scholar]
  22. FengC. XuY. HuaT. LiuX.Y. FangM. Irregularly shaped lacunar infarction: risk factors and clinical significance.Arq. Neuropsiquiatr.2013711076977310.1590/0004‑282X20130119 24212512
    [Google Scholar]
  23. CiobanuD.M. MirceaP.A. BalaC. RusuA. Vesa Ş, Roman G. Intercellular adhesion molecule-1 (ICAM-1) associates with 24-hour ambulatory blood pressure variability in type 2 diabetes and controls.Cytokine201911613413810.1016/j.cyto.2019.01.006 30716657
    [Google Scholar]
  24. CocaA. CamafortM. DoménechM. SierraC. Ambulatory blood pressure in stroke and cognitive dysfunction.Curr. Hypertens. Rep.201315315015910.1007/s11906‑013‑0346‑3 23575735
    [Google Scholar]
  25. BrateanuA. Heart rate variability after myocardial infarction: What we know and what we still need to find out.Curr. Med. Res. Opin.201531101855186010.1185/03007995.2015.1086992 26313812
    [Google Scholar]
  26. LombardiF. Clinical implications of present physiological understanding of HRV components.Card. Electrophysiol. Rev.20026324524910.1023/A:1016329008921 12114846
    [Google Scholar]
  27. MalikM. HnatkovaK. HuikuriH.V. LombardiF. SchmidtG. ZabelM. CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness.J. Physiol.2019597102595259810.1113/JP277500 31006862
    [Google Scholar]
  28. NagataK. SasakiE. GodaK. Differences in heart rate variability in non&-hypertensive diabetic patients correlate with the presence of underlying cerebrovascular disease.Clin. Physiol. Funct. Imaging2006262929810.1111/j.1475‑097X.2006.00654.x 16494599
    [Google Scholar]
  29. TianD. ZhangL. ZhuangZ. HuangT. FanD. A two-sample Mendelian randomization analysis of heart rate variability and cerebral small vessel disease.J. Clin. Hypertens.20212381608161410.1111/jch.14316 34196464
    [Google Scholar]
  30. QiuQ. SongW. ZhouX. Heart rate variability is associated with cerebral small vessel disease in patients with diabetes.Front. Neurol.20221398906410.3389/fneur.2022.989064
    [Google Scholar]
  31. WardlawJ.M. SmithC. DichgansM. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging.Lancet Neurol.201312548349710.1016/S1474‑4422(13)70060‑7 23602162
    [Google Scholar]
  32. ThorinE. Thorin-TrescasesN. Vascular endothelial ageing, heartbeat after heartbeat.Cardiovasc. Res.2009841243210.1093/cvr/cvp236 19586943
    [Google Scholar]
  33. UlloaL. The vagus nerve and the nicotinic anti-inflammatory pathway.Nat. Rev. Drug Discov.20054867368410.1038/nrd1797 16056392
    [Google Scholar]
  34. BiniciZ. MouridsenM.R. KøberL. SajadiehA. Decreased nighttime heart rate variability is associated with increased stroke risk.Stroke201142113196320110.1161/STROKEAHA.110.607697 21921280
    [Google Scholar]
  35. LuQ. YaoL. YingD. Study of heart rate variability and its relationship with national institutes of health stroke scales in the patients with aged cerebral infarction.Chin J Geriatr2016351111551159[in Chinese]
    [Google Scholar]
  36. ShengL. Common clinical factor analysis of heart rate variability in patients with cerebral infarction.Chin J Neuromed2010902176180[in Chinese]
    [Google Scholar]
  37. YamaguchiY. WadaM. SatoH. Impact of nocturnal heart rate variability on cerebral small-vessel disease progression: A longitudinal study in community-dwelling elderly Japanese.Hypertens. Res.201538856456910.1038/hr.2015.38 25787037
    [Google Scholar]
  38. WuB. LinS. HaoZ. Proportion, risk factors and outcome of lacunar infarction: A hospital-based study in a Chinese population.Cerebrovasc. Dis.201029218118710.1159/000267277 20029187
    [Google Scholar]
  39. SajiN. TobaK. SakuraiT. Cerebral small vessel disease and arterial stiffness: Tsunami effect in the brain.Pulse201533-418218910.1159/000443614 27195239
    [Google Scholar]
  40. GeorgakisM.K. MalikR. AndersonC.D. ParhoferK.G. HopewellJ.C. DichgansM. Genetic determinants of blood lipids and cerebral small vessel disease: Role of high-density lipoprotein cholesterol.Brain2020143259761010.1093/brain/awz413 31968102
    [Google Scholar]
  41. JiangL. CaiX. YaoD. Association of inflammatory markers with cerebral small vessel disease in community-based population.J. Neuroinflammation202219110610.1186/s12974‑022‑02468‑0
    [Google Scholar]
  42. WuT.H. ChienK.L. LinH.J. Total white blood cell count or neutrophil count predict ischemic stroke events among adult Taiwanese: Report from a community-based cohort study.BMC Neurol.201313710.1186/1471‑2377‑13‑7
    [Google Scholar]
  43. ZhuB. PanY. JingJ. Neutrophil counts, neutrophil ratio, and new stroke in minor ischemic stroke or TIA.Neurology20189021e1870e187810.1212/WNL.0000000000005554 29678934
    [Google Scholar]
  44. WardlawJ.M. SmithC. DichgansM. Small vessel disease: Mechanisms and clinical implications.Lancet Neurol.201918768469610.1016/S1474‑4422(19)30079‑1 31097385
    [Google Scholar]
  45. IharaM. YamamotoY. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease.Stroke201647255456010.1161/STROKEAHA.115.009627 26742799
    [Google Scholar]
  46. CharidimouA. WerringD.J. A raging fire in acute lacunar stroke: Inflammation, blood–brain barrier dysfunction and the origin of cerebral microbleeds.J. Neurol. Sci.20143401-21210.1016/j.jns.2014.03.004 24656599
    [Google Scholar]
  47. LattanziS. CagnettiC. ProvincialiL. SilvestriniM. Neutrophil-to-lymphocyte ratio predicts the outcome of acute intracerebral hemorrhage.Stroke20164761654165710.1161/STROKEAHA.116.013627 27165957
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026303708240321035356
Loading
/content/journals/cnr/10.2174/0115672026303708240321035356
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test