Skip to content
2000
image of Nanotubes and Nanodiamonds in 3D printing: Enhancing Mechanical and Biological Properties of Nanocomposites through Advanced Formulation Technologies

Abstract

Aim

With the aim to improve the thermal and mechanical characteristics of nanocomposites for cutting-edge engineering applications, this work looks at how nanotubes and nanodiamonds can be integrated into 3D printing processes.

Background

The performance of 3D-printed products has been greatly enhanced by the addition of nanomaterials like carbon nanotubes as well as nanodiamonds into polymer matrices. While nanodiamonds offer remarkable hardness and thermal stability, carbon nanotubes are widely recognized for their better electrical conductivity and bending strength. Their qualities make them the best options for raising the calibre of nanocomposites that are 3D printed.

Objective

This paper looks at the effects of dispersion, functionalization, and synthesis of nanotubes and nanodiamonds on the mechanical and thermal properties of nanocomposites, taking into account the environmental impact, obstacles, and applications of these materials.

Methods

The techniques for adding nanotubes and nanodiamonds to 3D printing formulations were the main topic of a thorough literature study. A number of important factors were examined, including stability, toughness, elasticity, and tensile strength. The influence of uniform particle spread on overall composite performance as well as developments in dispersion technologies were reviewed in the paper.

Results

The study found that the incorporation of nanotubes and nanodiamonds into 3D printing processes significantly improved the mechanical and biological properties of nanocomposites. These nanomaterials improved electrical conductivity and thermal stability, making them suitable for applications in electronics, aerospace, and biomedical fields. However, challenges such as high costs, ecological impacts, and long-term stability assessments remain.

Conclusion

Although there is potential for next-generation materials with the incorporation of nanotubes along with nanodiamonds in 3D-printed nanocomposites, issues such as uniform nanoparticle dispersion still need to be resolved.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615354356241130072649
2024-12-16
2025-01-12
Loading full text...

Full text loading...

References

  1. Anzar N. Hasan R. Tyagi M. Yadav N. Narang J. Carbon nanotube - A review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 2020 1 100003 10.1016/j.sintl.2020.100003
    [Google Scholar]
  2. Jha R. Singh A. Sharma P.K. Fuloria N.K. Smart carbon nanotubes for drug delivery system: A comprehensive study. J. Drug Deliv. Sci. Technol. 2020 58 101811 10.1016/j.jddst.2020.101811
    [Google Scholar]
  3. Piazza F. Maestra P.U.C.M.Y. Sp3-bonded carbon materials, methods of manufacturing and uses thereof. US Patent 20210206640A1 2018
  4. Rathod V. Tripathi R. Joshi P. Jha P.K. Bahadur P. Tiwari S. Paclitaxel encapsulation into dual-functionalized multi-walled carbon nanotubes. AAPS PharmSciTech 2019 20 2 51 10.1208/s12249‑018‑1218‑6 30617845
    [Google Scholar]
  5. Monthioux M. Kuznetsov V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006 44 9 1621 1623 10.1016/j.carbon.2006.03.019
    [Google Scholar]
  6. Ali-Boucetta H. Kostarelos K. Pharmacology of carbon nanotubes: Toxicokinetics, excretion and tissue accumulation. Adv. Drug Deliv. Rev. 2013 65 15 2111 2119 10.1016/j.addr.2013.10.004 24184372
    [Google Scholar]
  7. Chauhan S. Jain N. Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020 10 1 1 12 10.1016/j.jpha.2019.09.003 32123595
    [Google Scholar]
  8. Bilal M. Cheng H. González-González R.B. Parra-Saldívar R. Iqbal H.M.N. Bio-applications and biotechnological applications of nanodiamonds. J. Mater. Res. Technol. 2021 15 6175 6189 10.1016/j.jmrt.2021.11.037
    [Google Scholar]
  9. Németh P. McColl K. Garvie L.A.J. Salzmann C.G. Pickard C.J. Corà F. Smith R.L. Mezouar M. Howard C.A. McMillan P.F. Diaphite-structured nanodiamonds with six- and twelve-fold symmetries. Diam. Relat. Mater. 2021 119 108573 10.1016/j.diamond.2021.108573
    [Google Scholar]
  10. van der Laan K. Hasani M. Zheng T. Schirhagl R. Nanodiamonds for in vivo applications. Small 2018 14 19 1703838 10.1002/smll.201703838 29424097
    [Google Scholar]
  11. Rifai A. Tran N. Lau D.W. Elbourne A. Zhan H. Stacey A.D. Mayes E.L.H. Sarker A. Ivanova E.P. Crawford R.J. Tran P.A. Gibson B.C. Greentree A.D. Pirogova E. Fox K. Polycrystalline diamond coating of additively manufactured titanium for biomedical applications. ACS Appl. Mater. Interfaces 2018 10 10 8474 8484 10.1021/acsami.7b18596 29470044
    [Google Scholar]
  12. Yahyazadeh A. Nanda S. Dalai A.K. Carbon nanotubes: A review of synthesis methods and applications. Reactions 2024 5 3 429 451 10.3390/reactions5030022
    [Google Scholar]
  13. Venkataraman A. Amadi E.V. Chen Y. Papadopoulos C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 2019 14 1 220 10.1186/s11671‑019‑3046‑3 31263975
    [Google Scholar]
  14. Cui W. Simon F. Zhang Y. Shi L. Ayala P. Pichler T. Ultra-clean isotope engineered double-walled carbon nanotubes as tailored hosts to trace the growth of carbyne. Adv. Funct. Mater. 2022 32 41 2206491 10.1002/adfm.202206491
    [Google Scholar]
  15. Agasti N. Gautam V. Priyanka N. Manju N. Pandey N. Genwa M. Meena P.L. Tandon S. Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. Appl. Surface Sci. Adv. 2022 10 100270 10.1016/j.apsadv.2022.100270
    [Google Scholar]
  16. Taurbekov A. Fierro V. Kuspanov Z. Abdisattar A. Atamanova T. Kaidar B. Mansurov Z. Atamanov M. Nanocellulose and carbon nanotube composites: A universal solution for environmental and energy challenges. J. Environ. Chem. Eng. 2024 12 5 113262 10.1016/j.jece.2024.113262
    [Google Scholar]
  17. Herrera-Ramirez J.M. Perez-Bustamante R. Aguilar-Elguezabal A. Chapter two - An overview of the synthesis, characterization, and applications of carbon nanotubes. Carbon-Based Nanofillers and Their Rubber Nanocomposites Elsevier 2019 47 75 10.1016/B978‑0‑12‑813248‑7.00002‑X
    [Google Scholar]
  18. de Andrade L.R.M. Andrade L.N. Bahú J.O. Cárdenas Concha V.O. Machado A.T. Pires D.S. Santos R. Cardoso T.F.M. Cardoso J.C. Albuquerque-Junior R.L.C. Severino P. Souto E.B. Biomedical applications of carbon nanotubes: A systematic review of data and clinical trials. J. Drug Deliv. Sci. Technol. 2024 99 105932 10.1016/j.jddst.2024.105932
    [Google Scholar]
  19. Norizan M.N. Moklis M.H. Ngah Demon S.Z. Halim N.A. Samsuri A. Mohamad I.S. Knight V.F. Abdullah N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances 2020 10 71 43704 43732 10.1039/D0RA09438B 35519676
    [Google Scholar]
  20. Díez-Pascual A.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview. Macromol 2021 1 2 64 83 10.3390/macromol1020006
    [Google Scholar]
  21. Burdanova M.G. Kharlamova M.V. Kramberger C. Nikitin M.P. Applications of pristine and functionalized carbon nanotubes, graphene, and graphene nanoribbons in biomedicine. Nanomaterials 2021 11 11 3020 10.3390/nano11113020 34835783
    [Google Scholar]
  22. Rathinavel S. Priyadharshini K. Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021 268 115095 10.1016/j.mseb.2021.115095
    [Google Scholar]
  23. Mohd Nurazzi N. Asyraf M.R.M. Khalina A. Abdullah N. Sabaruddin F.A. Kamarudin S.H. Ahmad S. Mahat A.M. Lee C.L. Aisyah H.A. Norrrahim M.N.F. Ilyas R.A. Harussani M.M. Ishak M.R. Sapuan S.M. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers 2021 13 7 1047 10.3390/polym13071047 33810584
    [Google Scholar]
  24. Hosseini H. Ghaffarzadeh M. Surface functionalization of carbon nanotubes via plasma discharge: A review. Inorg. Chem. Commun. 2022 138 109276 10.1016/j.inoche.2022.109276
    [Google Scholar]
  25. Curcio M. Farfalla A. Saletta F. Valli E. Pantuso E. Nicoletta F. P. Iemma F. Vittorio O. Cirillo G. Functionalized carbon nanostructures versus drug resistance: Promising scenarios in cancer treatment. Molecules 2020 25 9 2102 10.3390/molecules25092102
    [Google Scholar]
  26. Deshmukh M.A. Jeon J.Y. Ha T.J. Carbon nanotubes: An effective platform for biomedical electronics. Biosens. Bioelectron. 2020 150 111919 10.1016/j.bios.2019.111919 31787449
    [Google Scholar]
  27. Yeh Y.T. Lin Z. Zheng S.Y. Terrones M. A carbon nanotube integrated microfluidic device for blood plasma extraction. Sci. Rep. 2018 8 1 13623 10.1038/s41598‑018‑31810‑x 30206295
    [Google Scholar]
  28. Hanif F. Muzaffar K. Perveen K. Malhi S.M. Simjee ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. PubMed 2017 18 1 3 9 10.22034/apjcp.2017.18.1.3 28239999
    [Google Scholar]
  29. Pan F. Khan M. Ragab A.H. Javed E. Alsalmah H.A. Khan I. Lei T. Hussain A. Mohamed A. Zada A. Ansari M.Z. Recent advances in the structure and biomedical applications of nanodiamonds and their future perspectives. Mater. Des. 2023 233 112179 10.1016/j.matdes.2023.112179
    [Google Scholar]
  30. Bogdanov D. Bogdanov A. Plotnikov V. Makarov S. Yelisseyev A. Chepurov A. Core growth of detonation nanodiamonds under high-pressure annealing. RSC Advances 2021 11 21 12961 12970 10.1039/D1RA00270H
    [Google Scholar]
  31. Henke A.H. Saunders T.P. Pedersen J.A. Hamers R.J. Enhancing electrochemical efficiency of hydroxyl radical formation on diamond electrodes by functionalization with hydrophobic monolayers. Langmuir 2019 35 6 2153 2163 10.1021/acs.langmuir.8b04030 30550713
    [Google Scholar]
  32. Kausar A. Properties and applications of nanodiamond nanocomposite. Am. J. Nanosci. Nanotechnol. Res. 2018 6 1 46 54
    [Google Scholar]
  33. Jung H.S. Neuman K.C. Surface modification of fluorescent nanodiamonds for biological applications. Nanomaterials 2021 11 1 153 10.3390/nano11010153 33435443
    [Google Scholar]
  34. Moore L.K. Caldwell M.A. Townsend T.R. MacRenaris K.W. Moyle-Heyrman G. Rammohan N. Schonher E.K. Burdette J.E. Ho D. Meade T.J. Water-soluble nanoconjugate for enhanced cellular delivery of receptor-targeted magnetic resonance contrast agents. Bioconjug. Chem. 2019 30 11 2947 2957 10.1021/acs.bioconjchem.9b00640 31589412
    [Google Scholar]
  35. Liu D. Qiao S. Cheng B. Li D. Chen J. Wu Q. Pan H. Pan W. Enhanced oral delivery of curcumin via vitamin E TPGS modified nanodiamonds: A comparative study on the efficacy of non-covalent and covalent conjugated strategies. AAPS PharmSciTech 2020 21 5 187 10.1208/s12249‑020‑01721‑0 32642862
    [Google Scholar]
  36. Garg S. Garg A. Sahu N.K. Yadav A.K. Synthesis and characterization of nanodiamond-anticancer drug conjugates for tumor targeting. Diamond Related Materials 2019 94 172 185 10.1016/j.diamond.2019.03.008
    [Google Scholar]
  37. Madamsetty V.S. Pal K. Keshavan S. Caulfield T.R. Dutta S.K. Wang E. Fadeel B. Mukhopadhyay D. Development of multi- drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale 2019 11 45 22006 22018 10.1039/C9NR05478B 31710073
    [Google Scholar]
  38. Yang T.C. Chang C.Y. Yarmishyn A.A. Mao Y.S. Yang Y.P. Wang M.L. Hsu C.C. Yang H.Y. Hwang D.K. Chen S.J. Tsai M.L. Lai Y.H. Tzeng Y. Chang C.C. Chiou S.H. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2020 101 484 494 10.1016/j.actbio.2019.10.037 31672582
    [Google Scholar]
  39. Qin J.X. Yang X.G. Lv C.F. Li Y.Z. Liu K.K. Zang J.H. Yang X. Dong L. Shan C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021 210 110091 10.1016/j.matdes.2021.110091
    [Google Scholar]
  40. Hayat A. Taha T.A.M. Alenad A.M. Yingjin L. Mane S.K.B. Hayat A. Khan M. Rehman A.U. Khan W.U. Shaishta N. Organic conjugation of polymeric carbon nitride for improved photocatalytic CO2 conversion and H2 fixation. Energy Technol. (Weinheim) 2021 9 10 2100091 10.1002/ente.202100091
    [Google Scholar]
  41. Rouhani P. Singh R.N. Polyethyleneimine-functionalized magnetic Fe3O4 and nanodiamond particles as a platform for amoxicillin delivery. J. Nanosci. Nanotechnol. 2020 20 7 3957 3970 10.1166/jnn.2020.17896 31968409
    [Google Scholar]
  42. Zada A. Khan M. Khan M.A. Khan Q. Habibi-Yangjeh A. Dang A. Maqbool M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ. Res. 2021 195 110742 10.1016/j.envres.2021.110742 33515579
    [Google Scholar]
  43. Li A. Yang X. Yu B. Cai X. Immobilization of horseradish peroxidase on polyglycerol-functionalized magnetic Fe3O4/nanodiamond nanocomposites and its application in phenol biodegradation. Res. Chem. Intermed. 2020 46 1 101 118 10.1007/s11164‑019‑03937‑7
    [Google Scholar]
  44. Ackermann J. Krueger A. Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon 2020 163 56 62 10.1016/j.carbon.2020.02.088
    [Google Scholar]
  45. Gu M. Toh T.B. Hooi L. Lim J.J. Zhang X. Chow E.K.H. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl. Mater. Interfaces 2019 11 49 45427 45441 10.1021/acsami.9b16323 31718136
    [Google Scholar]
  46. Lin Q. Xu Xu R.H.J. Yang N. Karim A.A. Loh X.J. Zhang K. UV protection and antioxidant activity of nanodiamonds and fullerenes for sunscreen formulations. ACS Appl. Nano Mater. 2019 2 12 7604 7616 10.1021/acsanm.9b01698
    [Google Scholar]
  47. Yasmeen H. Zada A. Li W. Xu M. Liu S. Suitable energy platform of Bi2WO6 significantly improves visible-light degradation activity of g-C3N4 for highly toxic diuron pollutant. Mater. Sci. Semicond. Process. 2019 102 104598 10.1016/j.mssp.2019.104598
    [Google Scholar]
  48. Sultana N. Ali A. Waheed A. Aqil M. 3D Printing in pharmaceutical manufacturing: Current status and future prospects. Mater. Today Commun. 2024 38 107987 10.1016/j.mtcomm.2023.107987
    [Google Scholar]
  49. Parulski C. Jennotte O. Lechanteur A. Evrard B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: Where are we now? Adv. Drug Deliv. Rev. 2021 175 113810 10.1016/j.addr.2021.05.020 34029646
    [Google Scholar]
  50. Carou-Senra P. Rodríguez-Pombo L. Awad A. Basit A.W. Alvarez-Lorenzo C. Goyanes A. Inkjet printing of pharmaceuticals. Adv. Mater. 2024 36 11 2309164 10.1002/adma.202309164 37946604
    [Google Scholar]
  51. Chen X. Wang S. Wu J. Duan S. Wang X. Hong X. Han X. Li C. Kang D. Wang Z. Zheng A. The application and challenge of binder jet 3D printing technology in pharmaceutical manufacturing. Pharmaceutics 2022 14 12 2589 10.3390/pharmaceutics14122589 36559082
    [Google Scholar]
  52. Deshmane S. Kendre P. Mahajan H. Jain S. Stereolithography 3D printing technology in pharmaceuticals: A review. Drug Dev. Ind. Pharm. 2021 47 9 1362 1372 10.1080/03639045.2021.1994990 34663145
    [Google Scholar]
  53. Tabriz A.G. Kuofie H. Scoble J. Boulton S. Douroumis D. Selective laser sintering for printing pharmaceutical dosage forms. J. Drug Deliv. Sci. Technol. 2023 86 104699 10.1016/j.jddst.2023.104699
    [Google Scholar]
  54. Sun X. Wang Q. Wang H. Chen L. Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink. Constr. Build. Mater. 2020 247 118590 10.1016/j.conbuildmat.2020.118590
    [Google Scholar]
  55. Zhang Y. Zhang Y. She W. Yang L. Liu G. Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr. Build. Mater. 2019 201 278 285 10.1016/j.conbuildmat.2018.12.061
    [Google Scholar]
  56. Kumar S. Mukherjee A. Dutta J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020 97 196 209 10.1016/j.tifs.2020.01.002
    [Google Scholar]
  57. Santos A.C. Ferreira C. Veiga F. Ribeiro A.J. Panchal A. Lvov Y. Agarwal A. Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Adv. Colloid Interface Sci. 2018 257 58 70 10.1016/j.cis.2018.05.007 29887382
    [Google Scholar]
  58. Wang M. Fu Y. Chen G. Shi Y. Li X. Zhang H. Shen Y. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocoll. 2018 77 577 587 10.1016/j.foodhyd.2017.10.036
    [Google Scholar]
  59. Wang Y. Yi S. Lu R. Sameen D.E. Ahmed S. Dai J. Qin W. Li S. Liu Y. Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films. Int. J. Biol. Macromol. 2021 166 32 44 10.1016/j.ijbiomac.2020.09.253 33035530
    [Google Scholar]
  60. Liu Y. Li S. Misra R.D.K. Geng K. Yang Y. Planting carbon nanotubes within Ti-6Al-4V to make high-quality composite powders for 3D printing high-performance Ti-6Al-4V matrix composites. Scr. Mater. 2020 183 6 11 10.1016/j.scriptamat.2020.03.009
    [Google Scholar]
  61. Li S.F. Liu Y. Yang Y.F. Zhu Q.S. Kondoh K. Misra R.D.K. Tan C. Hu C.Q. Ge Y. Activating trace Fe impurity as catalyst to plant carbon nanotubes within Ti-6Al-4V powders for high-performance Ti metal matrix composites. Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 2019 50 9 3975 3979 10.1007/s11661‑019‑05321‑x
    [Google Scholar]
  62. Liu X. George M.N. Park S. Miller A.L. Gaihre B. Li L. Waletzki B.E. Terzic A. Yaszemski M.J. Lu L. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomater. 2020 111 129 140 10.1016/j.actbio.2020.04.047 32428680
    [Google Scholar]
  63. Bi H. Ye G. Yang H. Sun H. Ren Z. Guo R. Xu M. Cai L. Huang Z. Near infrared-induced shape memory polymer composites with dopamine-modified multiwall carbon nanotubes via 3D-printing. Eur. Polym. J. 2020 136 109920 10.1016/j.eurpolymj.2020.109920
    [Google Scholar]
  64. Xu X. Fan P. Ren J. Cheng Y. Ren J. Zhao J. Song R. Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos. Sci. Technol. 2018 168 255 262 10.1016/j.compscitech.2018.10.003
    [Google Scholar]
  65. Ge S. Ji N. Cui S. Xie W. Li M. Li Y. Xiong L. Sun Q. Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J. Agric. Food Chem. 2019 67 41 11489 11497 10.1021/acs.jafc.9b03947 31560530
    [Google Scholar]
  66. Bhattacharyya A. Priya V.N.K. Kim J. Khatun M.R. Nagarajan R. Noh I. Nanodiamond enhanced mechanical and biological properties of extrudable gelatin hydrogel cross-linked with tannic acid and ferrous sulphate. Biomater. Res. 2022 26 1 37 10.1186/s40824‑022‑00285‑3 35907919
    [Google Scholar]
  67. Mangal U. Seo J.Y. Yu J. Kwon J.S. Choi S.H. Incorporating aminated nanodiamonds to improve the mechanical properties of 3D-printed resin-based biomedical appliances. Nanomaterials 2020 10 5 827 10.3390/nano10050827 32357463
    [Google Scholar]
  68. Wu X. Vedelaar T. Li R. Schirhagl R. Kamperman M. Włodarczyk-Biegun M.K. Melt electrowritten scaffolds containing fluorescent nanodiamonds for improved mechanical properties and degradation monitoring. Bioprinting 2023 32 e00288 10.1016/j.bprint.2023.e00288
    [Google Scholar]
  69. Chung J.H.Y. Sayyar S. Wallace G.G. Effect of graphene addition on polycaprolactone scaffolds fabricated using melt-electrowriting. Polymers 2022 14 2 319 10.3390/polym14020319 35054724
    [Google Scholar]
  70. Spierings A.B. Ozherelkov D.Y. Kneubühler F. Eremin S.A. Pelevin I.A. Nalivaiko A.Y. Petrov E.A. Gromov A.A. Wegener K. Laser powder bed fusion of AlSi10Mg-based composites with graphene and nanodiamond additions. J. Alloys Compd. 2023 947 169421 10.1016/j.jallcom.2023.169421
    [Google Scholar]
  71. Hebisch E. Hjort M. Volpati D. Prinz C.N. Nanostraw-assisted cellular injection of fluorescent nanodiamonds via direct membrane opening. Small 2021 17 7 2006421 10.1002/smll.202006421 33502091
    [Google Scholar]
  72. Sotoma S. Okita H. Chuma S. Harada Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. Biophys. Physicobiol. 2022 19 0 e190034 10.2142/biophysico.bppb‑v19.0034 36349322
    [Google Scholar]
  73. Damiati S.A. Digital pharmaceutical sciences. AAPS PharmSciTech 2020 21 6 206 10.1208/s12249‑020‑01747‑4 32715351
    [Google Scholar]
  74. Saleemi M.A. Kong Y.L. Yong P.V.C. Wong E.H. An overview of recent development in therapeutic drug carrier system using carbon nanotubes. J. Drug Deliv. Sci. Technol. 2020 59 101855 10.1016/j.jddst.2020.101855
    [Google Scholar]
  75. Govindarajan D. Saravanan S. Sudhakar S. Vimalraj S. Graphene: A multifaceted carbon-based material for bone tissue engineering applications. ACS Omega 2024 9 1 67 80 10.1021/acsomega.3c07062 38222554
    [Google Scholar]
  76. Haq M.I.U. Raina A. Ghazali M.J. Javaid M. Haleem A. Potential of 3D printing technologies in developing applications of polymeric nanocomposites. Tribology of Polymer and Polymer Composites for Industry 4.0 Singapore Springer Jena H. Katiyar J.K. Patnaik A. 2021 193 210 10.1007/978‑981‑16‑3903‑6_10
    [Google Scholar]
  77. Pereira I. Saleh M. Nunes C. Reis S. Veiga F. Paiva-Santos A.C. Preclinical developments of natural-occurring halloysite clay nanotubes in cancer therapeutics. Adv. Colloid Interface Sci. 2021 291 102406 10.1016/j.cis.2021.102406 33819725
    [Google Scholar]
  78. Lin Y.C. Perevedentseva E. Lin Z.R. Chang C.C. Chen H.H. Yang S.M. Lin M.D. Karmenyan A. Speranza G. Minati L. Nebel C. Cheng C.L. Multimodal bioimaging using nanodiamond and gold hybrid nanoparticles. Sci. Rep. 2022 12 1 5331 10.1038/s41598‑022‑09317‑3 35351931
    [Google Scholar]
  79. Mitra I. Bose S. Dernell W.S. Dasgupta N. Eckstrand C. Herrick J. Yaszemski M.J. Goodman S.B. Bandyopadhyay A. 3D Printing in alloy design to improve biocompatibility in metallic implants. Mater. Today 2021 45 20 34 10.1016/j.mattod.2020.11.021 34220288
    [Google Scholar]
  80. Sadat Z. Farrokhi-Hajiabad F. Lalebeigi F. Naderi N. Ghafori Gorab M. Ahangari Cohan R. Eivazzadeh-Keihan R. Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: From antibacterial aspects to cell growth stimulation. Biomater. Sci. 2022 10 24 6911 6938 10.1039/D2BM01308H 36314845
    [Google Scholar]
  81. Zhang T. Liu P. Zhong Y. Zheng J. Deng K. Lv X. Li H. Tian W. Ji J. N, S co-doped branched carbon nanotubes with hierarchical porous structure and electron/ion transfer pathways for supercapacitors and lithium-ion batteries. Carbon 2022 198 91 100 10.1016/j.carbon.2022.07.015
    [Google Scholar]
  82. Mumtaz M. Hussain N. Salam S. Bilal M. Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications - A review. J. Mater. Sci. 2022 57 17 8064 8099 10.1007/s10853‑022‑07168‑x
    [Google Scholar]
  83. Aliheidari N. Ameli A. 3D-printing of carbon nanotube-based nanocomposites for sensors. 3D Printing CRC Press 2023 10.1201/9781003296676‑19
    [Google Scholar]
  84. Hamel C.M. Roach D.J. Long K.N. Demoly F. Dunn M.L. Qi H.J. Machine-learning based design of active composite structures for 4D printing. Smart Mater. Struct. 2019 28 6 065005 10.1088/1361‑665X/ab1439
    [Google Scholar]
  85. Li Z. Zhang Z. Shi J. Wu D. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput.-Integr. Manuf. 2019 57 488 495 10.1016/j.rcim.2019.01.004
    [Google Scholar]
  86. Wang J. Zhang Y. Aghda N.H. Pillai A.R. Thakkar R. Nokhodchi A. Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv. Drug Deliv. Rev. 2021 174 294 316 10.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  87. Chen H. Guo L. Zhu W. Li C. Recent advances in multi-material 3D printing of functional ceramic devices. Polymers 2022 14 21 4635 10.3390/polym14214635 36365628
    [Google Scholar]
  88. Li N. Khan S.B. Chen S. Aiyiti W. Zhou J. Lu B. Promising new horizons in medicine: Medical advancements with nanocomposite manufacturing via 3D printing. Polymers 2023 15 20 4122 10.3390/polym15204122 37896366
    [Google Scholar]
  89. Soleimanzadeh H. Rolfe B. Bodaghi M. Jamalabadi M. Zhang X. Zolfagharian A. Sustainable robots 4D printing. Adv. Sustain. Syst. 2023 7 12 2300289 10.1002/adsu.202300289
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615354356241130072649
Loading
/content/journals/cnm/10.2174/0124054615354356241130072649
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanotechnology ; nanodiamonds ; 3D printing ; nanocomposites ; nanotubes ; thermal properties
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test