Skip to content
2000
image of Cutting Edge Nanoplatforms with Smart Bio-sensing Applications: Paving the Way for Sustainable Green Approaches

Abstract

In the era of automation, sustainable technologies employing eco-friendly materials and manufacturing techniques such as ‘’ have taken centre stage, owing to their opulent portfolio encompassing renewable fabrication and design from biomaterials, biocompatibility, and ease of functionalization. Generally, sensors utilize nanomaterials sourced from renewable resources or with minimal environmental impact, such as cellulose nanocrystals, chitosan, and biopolymers, owing to their exceptional properties such as high surface area.

With the advent of environmentally conscious attributes in the cutting-edge nano biosensing technology, green nano-biosensors offer innovative avenues for sensitive and selective detection and monitoring of myriad analytes with minimal environmental repercussions. Further, such sensors operate at low energy levels, contributing to reduced energy consumption, and can be mass-produced with minimal environmental influence.

The present outlay of literature aims to decipher the utilization of eco-friendly materials and sustainable manufacturing techniques in creating nano-biosensors and subsequently promulgating their advantages in terms of energy efficiency, low environmental impact, and use of renewable resources. Furthermore, this study embellishes a comprehensive framework that delineates the diverse applications of these green nanobiosensors as eco-friendly technological solutions across diverse sectors primarily agriculture, environmental monitoring, and biomedicine, showcasing their potential to revolutionize these domains while minimizing environmental impact.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615342051241002061227
2024-10-15
2024-11-26
Loading full text...

Full text loading...

References

  1. Aithal P. Aithal S. Opportunities & challenges for green technology in 21st century. Int. J. Curr. Res. Mod. Educ. 2016 1 1 818 828
    [Google Scholar]
  2. Huang X. Zhu Y. Kianfar E. Nano Biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol. 2021 12 1649 1672 10.1016/j.jmrt.2021.03.048
    [Google Scholar]
  3. Njagi J.I. Interfaces and interphases in analytical chemistry. ACS Publications Washington, D.C 2011 225 247 10.1021/bk‑2011‑1062.ch011
    [Google Scholar]
  4. Ali J. Najeeb J. Asim Ali M. Farhan Aslam M. Raza A. Biosensors: their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron. 2017 8 1 1 9 10.4172/2155‑6210.1000235
    [Google Scholar]
  5. Ramesh M. Janani R. Deepa C. Rajeshkumar L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors (Basel) 2022 13 1 40 10.3390/bios13010040 36671875
    [Google Scholar]
  6. Guerra F.D. Attia M.F. Whitehead D.C. Alexis F. Nanotechnology for environmental remediation: Materials and applications. Molecules 2018 23 7 1760 10.3390/molecules23071760 30021974
    [Google Scholar]
  7. Katz E. Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 2004 43 45 6042 6108 10.1002/anie.200400651 15538757
    [Google Scholar]
  8. Carneiro K. Greschner A.A. Recent advances in self-assembled DNA nanosensors. Am. J. Nano Res. Appl. 2015 3 (1-1) 1 7
    [Google Scholar]
  9. Mehrotra P. Biosensors and their applications – A review. J. Oral Biol. Craniofac. Res. 2016 6 2 153 159 10.1016/j.jobcr.2015.12.002 27195214
    [Google Scholar]
  10. Kumar S. Ahlawat W. Kumar R. Dilbaghi N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron. 2015 70 498 503 10.1016/j.bios.2015.03.062 25899923
    [Google Scholar]
  11. Wang H. Wang T. Yuan X. Wang Y. Yue X. Wang L. Zhang J. Wang J. Plasmonic nanostructure biosensors: A review. Sensors (Basel) 2023 23 19 8156 10.3390/s23198156 37836985
    [Google Scholar]
  12. Sargazi S. Fatima I. Hassan Kiani M. Mohammadzadeh V. Arshad R. Bilal M. Rahdar A. Díez-Pascual A.M. Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol. 2022 206 115 147 10.1016/j.ijbiomac.2022.02.137 35231532
    [Google Scholar]
  13. Shafiee H. Lidstone E.A. Jahangir M. Inci F. Hanhauser E. Henrich T.J. Kuritzkes D.R. Cunningham B.T. Demirci U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 2014 4 1 4116 10.1038/srep04116 24576941
    [Google Scholar]
  14. Tucci M. Grattieri M. Schievano A. Cristiani P. Minteer S.D. Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. Electrochim. Acta 2019 302 102 108 10.1016/j.electacta.2019.02.007
    [Google Scholar]
  15. Koncki R. Recent developments in potentiometric biosensors for biomedical analysis. Anal. Chim. Acta 2007 599 1 7 15 10.1016/j.aca.2007.08.003 17765058
    [Google Scholar]
  16. Shul’ga A.A. Soldatkin A.P. El’skaya A.V. Dzyadevich S.V. Patskovsky S.V. Strikha V.I. Thin-film conductometric biosensors for glucose and urea determination. Biosens. Bioelectron. 1994 9 3 217 223 10.1016/0956‑5663(94)80124‑X 8060591
    [Google Scholar]
  17. Kumalasari M.R. Alfanaar R. Andreani A.S. Gold nanoparticles (AuNPs): A versatile material for biosensor application. Talanta Open 2024 9 100327 10.1016/j.talo.2024.100327
    [Google Scholar]
  18. Ravichandran M. Silver nanoparticles as nanomaterial-based nanosensors in agri-food sector Silver Nanomaterials for Agri-Food Applications. Elsevier Amsterdam, Netherlands 2021 103 123 10.1016/B978‑0‑12‑823528‑7.00023‑8
    [Google Scholar]
  19. Zhang M. Wang X. Huang Z. Rao W. Liquid metal based flexible and implantable biosensors. Biosensors (Basel) 2020 10 11 170 10.3390/bios10110170 33182535
    [Google Scholar]
  20. Chopade R.L. Pandit P.P. Nagar V. Aseri V. Mavry B. Sharma A. Singh A. Verma R.K. Awasthi G. Awasthi K.K. Sankhla M.S. Carbon nanotube-based nano-biosensors for detecting heavy metals in the aquatic environment. Environ. Sci. Pollut. Res. Int. 2022 30 5 11199 11209 10.1007/s11356‑022‑24388‑5 36509954
    [Google Scholar]
  21. Monošík R. Streďanský M. Šturdík E. Biosensors - classification, characterization and new trends. Acta Chim. Slov. 2012 5 1 109 120 10.2478/v10188‑012‑0017‑z 24061179
    [Google Scholar]
  22. Park C. Lee C. Kwon O. Conducting polymer based nanobiosensors. Polymers (Basel) 2016 8 7 249 10.3390/polym8070249 30974524
    [Google Scholar]
  23. Sabzehmeidani M.M. Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. Sci. Total Environ. 2022 810 151997 10.1016/j.scitotenv.2021.151997 34848263
    [Google Scholar]
  24. Wujcik E.K. Wei H. Zhang X. Guo J. Yan X. Sutrave N. Wei S. Guo Z. Antibody nanosensors: A detailed review. RSC Advances 2014 4 82 43725 43745 10.1039/C4RA07119K
    [Google Scholar]
  25. Kilic N.M. Singh S. Keles G. Cinti S. Kurbanoglu S. Odaci D. Novel approaches to enzyme-based electrochemical nanobiosensors. Biosensors (Basel) 2023 13 6 622 10.3390/bios13060622 37366987
    [Google Scholar]
  26. Seok Kim Y. Ahmad Raston N.H. Bock Gu M. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016 76 2 19 10.1016/j.bios.2015.06.040 26139320
    [Google Scholar]
  27. Hussain M. Wackerlig J. Lieberzeit P. Biomimetic strategies for sensing biological species. Biosensors (Basel) 2013 3 1 89 107 10.3390/bios3010089 25587400
    [Google Scholar]
  28. Pramanik P.K.D. Solanki A. Debnath A. Nayyar A. El-Sappagh S. Kwak K.S. Advancing modern healthcare with nanotechnology, nanobiosensors, and internet of nano things: Taxonomies, applications, architecture, and challenges. IEEE Access 2020 8 65230 65266 10.1109/ACCESS.2020.2984269
    [Google Scholar]
  29. Thakur P.S. Sankar M. Nanobiosensors for biomedical, environmental, and food monitoring applications. Mater. Lett. 2022 311 131540 10.1016/j.matlet.2021.131540
    [Google Scholar]
  30. Thakur M. Wang B. Verma M.L. Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives. Environmental Technology & Innovation 2022 26 102371 10.1016/j.eti.2022.102371
    [Google Scholar]
  31. Kaur H. Bhosale A. Shrivastav S. Biosensors: Classification, fundamental characterization and new trends: A review. Int. J. Health Sci. Res. 2018 8 6 315 333
    [Google Scholar]
  32. Rasheed T. Nabeel F. Adeel M. Rizwan K. Bilal M. Iqbal H.M.N. Carbon nanotubes-based cues: A pathway to future sensing and detection of hazardous pollutants. J. Mol. Liq. 2019 292 111425 10.1016/j.molliq.2019.111425
    [Google Scholar]
  33. Shah M. Fawcett D. Sharma S. Tripathy S. Poinern G. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 2015 8 11 7278 7308 10.3390/ma8115377 28793638
    [Google Scholar]
  34. Prabhu S. Poulose E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012 2 1 32 10.1186/2228‑5326‑2‑32
    [Google Scholar]
  35. Aguilar-Pérez K.M. Heya M.S. Parra-Saldívar R. Iqbal H.M.N. Nano-biomaterials in-focus as sensing/detection cues for environmental pollutants. Case Studies in Chemical and Environmental Engineering 2020 2 100055 10.1016/j.cscee.2020.100055
    [Google Scholar]
  36. Tan Y.N. Lee J.Y. Wang D.I.C. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 2010 132 16 5677 5686 10.1021/ja907454f 20355728
    [Google Scholar]
  37. Malhotra S. Verma A. Tyagi N. Kumar V. Biosensors: principle, types and applications. Int. J. Adv. Res. Innov. Ideas Educ 2017 3 2 3639 3644
    [Google Scholar]
  38. Alzahrani E. Colorimetric detection based on localized surface plasmon resonance optical characteristics for sensing of mercury using green-synthesized silver nanoparticles. J. Anal. Methods Chem. 2020 2020 1 1 14 10.1155/2020/6026312 32399309
    [Google Scholar]
  39. Li L. Zhang Z. Biosynthesis of gold nanoparticles using green alga Pithophora oedogonia with their electrochemical performance for determining carbendazim in soil. Int. J. Electrochem. Sci. 2016 11 6 4550 4559 10.20964/2016.06.13
    [Google Scholar]
  40. Chahal S. Macairan J.R. Yousefi N. Tufenkji N. Naccache R. Green synthesis of carbon dots and their applications. RSC Advances 2021 11 41 25354 25363 10.1039/D1RA04718C 35478913
    [Google Scholar]
  41. Zou Y. Yan F. Dai L. Luo Y. Fu Y. Yang N. Wun J. Chen L. High photoluminescent carbon nanodots and quercetin-Al3+ construct a ratiometric fluorescent sensing system. Carbon 2014 77 1148 1156 10.1016/j.carbon.2014.06.056
    [Google Scholar]
  42. Nazarpour S. Hajian R. Sabzvari M.H. A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach. Microchem. J. 2020 154 104634 10.1016/j.microc.2020.104634
    [Google Scholar]
  43. Maruthupandy M. Zuo Y. Chen J.S. Song J.M. Niu H.L. Mao C.J. Zhang S.Y. Shen Y.H. Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Appl. Surf. Sci. 2017 397 167 174 10.1016/j.apsusc.2016.11.118
    [Google Scholar]
  44. Bollella P. Schulz C. Favero G. Mazzei F. Ludwig R. Gorton L. Antiochia R. Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis 2017 29 1 77 86 10.1002/elan.201600476
    [Google Scholar]
  45. Sebastian M. Aravind A. Mathew B. Green silver nanoparticles based multi-technique sensor for environmental hazardous Cu (II) ion. Bionanoscience 2019 9 2 373 385 10.1007/s12668‑019‑0608‑x
    [Google Scholar]
  46. Amouzadeh Tabrizi M. Varkani J.N. Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sens. Actuators B Chem. 2014 202 475 482 10.1016/j.snb.2014.05.099
    [Google Scholar]
  47. Karthik R. Sasikumar R. Chen S.M. Govindasamy M. Kumar J.V. Muthuraj V. Green synthesis of platinum nanoparticles using quercus glauca extract and its electrochemical oxidation of hydrazine in water samples. Int. J. Electrochem. Sci. 2016 11 10 8245 8255 10.20964/2016.10.62
    [Google Scholar]
  48. Shariati R. Rezaei B. Jamei H.R. Ensafi A.A. Manufacturing of a sensitive and selective optical sensor based on molecularly imprinted polymers and green carbon dots synthesized from cedrus plant for trace analysis of propranolol. Anal. Sci. 2019 35 10 1083 1088 10.2116/analsci.19P133 31130581
    [Google Scholar]
  49. Parra-Arroyo L. Parra-Saldivar R. Ramirez-Mendoza R.A. Keshavarz T. Iqbal H.M. 2020
  50. Slocik J.M. Stone M.O. Naik R.R. Synthesis of gold nanoparticles using multifunctional peptides. Small 2005 1 11 1048 1052 10.1002/smll.200500172 17193392
    [Google Scholar]
  51. Alam M.N. Chatterjee A. Das S. Batuta S. Mandal D. Begum N.A. Burmese grape fruit juice can trigger the “logic gate”-like colorimetric sensing behavior of Ag nanoparticles towards toxic metal ions. RSC Advances 2015 5 30 23419 23430 10.1039/C4RA16984K
    [Google Scholar]
  52. Lew T.T.S. Koman V.B. Silmore K.S. Seo J.S. Gordiichuk P. Kwak S.Y. Park M. Ang M.C.Y. Khong D.T. Lee M.A. Chan-Park M.B. Chua N.H. Strano M.S. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat. Plants 2020 6 4 404 415 10.1038/s41477‑020‑0632‑4 32296141
    [Google Scholar]
  53. Kaushal M. Wani S.P. 2017
  54. Ramnani P. Saucedo N.M. Mulchandani A. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 2016 143 85 98 10.1016/j.chemosphere.2015.04.063 25956023
    [Google Scholar]
  55. Malik S. Dhasmana A. Preetam S. Mishra Y.K. Chaudhary V. Bera S.P. Ranjan A. Bora J. Kaushik A. Minkina T. Jatav H.S. Singh R.K. Rajput V.D. Exploring microbial-based green nanobiotechnology for wastewater remediation: A sustainable strategy. Nanomaterials (Basel) 2022 12 23 4187 10.3390/nano12234187 36500810
    [Google Scholar]
  56. Kumar V. Arora K. Trends in nano-inspired biosensors for plants. Mater. Sci. Energy Technol. 2020 3 255 273 10.1016/j.mset.2019.10.004
    [Google Scholar]
  57. López-Campos G. Martínez-Suárez J.V. Aguado-Urda M. López-Alonso V. López-Campos G. Martínez-Suárez J.V. Aguado-Urda M. López-Alonso V. Detection, identification, and analysis of foodborne pathogens. Microarray detection and characterization of bacterial foodborne pathogens Springer Boston, MA 2012 13 32
    [Google Scholar]
  58. Zeng Y. Zhu Z. Du D. Lin Y. Nanomaterial-based electrochemical biosensors for food safety. J. Electroanal. Chem. (Lausanne) 2016 781 147 154 10.1016/j.jelechem.2016.10.030
    [Google Scholar]
  59. Baranwal A. Srivastava A. Kumar P. Bajpai V.K. Maurya P.K. Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front. Microbiol. 2018 9 422 10.3389/fmicb.2018.00422 29593676
    [Google Scholar]
  60. He X. Hwang H-M. Nanotechnology in food science: Functionality, applicability, and safety assessment. Yao Wu Shi Pin Fen Xi 2016 24 4 671 681 28911604
    [Google Scholar]
  61. Duncan T.V. The communication challenges presented by nanofoods. Nat. Nanotechnol. 2011 6 11 683 688 10.1038/nnano.2011.193 22036812
    [Google Scholar]
  62. Naghdi M. Taheran M. Sarma S.J. Brar S.K. Ramirez A.A. Verma M. Nanotechnology to remove contaminants. Sustain. Agric. Res. 2016 20 101 128 10.1007/978‑3‑319‑39303‑2_4
    [Google Scholar]
  63. Rashidi L. Khosravi-Darani K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr. 2011 51 8 723 730 10.1080/10408391003785417 21838555
    [Google Scholar]
  64. Jianrong C. Yuqing M. Nongyue H. Xiaohua W. Sijiao L. Nanotechnology and biosensors. Biotechnol. Adv. 2004 22 7 505 518 10.1016/j.biotechadv.2004.03.004 15262314
    [Google Scholar]
  65. Majdi H. Salehi R. Pourhassan-Moghaddam M. Mahmoodi S. Poursalehi Z. Vasilescu S. Antibody conjugated green synthesized chitosan-gold nanoparticles for optical biosensing. Colloid Interface Sci. Commun. 2019 33 100207 10.1016/j.colcom.2019.100207
    [Google Scholar]
  66. Yu T. Xu C. Qiao J. Zhang R. Qi L. Green synthesis of gold nanoclusters using papaya juice for detection of l-lysine. Chin. Chem. Lett. 2019 30 3 660 663 10.1016/j.cclet.2018.10.001
    [Google Scholar]
  67. Cheng Y. Zhang Y. Pei R. Xie Y. Yao W. Guo Y. Qian H. Fast detection of bismerthiazol in cabbage based on fluorescence quenching of protein-capping gold nanoclusters. Anal. Sci. 2018 34 4 415 419 10.2116/analsci.17P347 29643303
    [Google Scholar]
  68. Cheng YuLiang Visual detection of Cu2+ based on fluorescence quenching of green-synthesized gold nanoclusters using soy protein as template. Food Agric. Immunol. 2017 28 5 848 858
    [Google Scholar]
  69. Chen Y. Qiao J. Liu Q. Zhang M. Qi L. Fluorescence turn-on assay for detection of serum D-penicillamine based on papain@AuNCs-Cu2+ complex. Anal. Chim. Acta 2018 1026 133 139 10.1016/j.aca.2018.04.014 29852989
    [Google Scholar]
  70. Dayakar T. Rao K.V. Bikshalu K. Rajendar V. Park S.H. Novel synthesis and characterization of pristine Cu nanoparticles for the non-enzymatic glucose biosensor. J. Mater. Sci. Mater. Med. 2017 28 7 109 10.1007/s10856‑017‑5907‑6 28540582
    [Google Scholar]
  71. Sukumar S. Rudrasenan A. Padmanabhan Nambiar D. Green-synthesized rice-shaped copper oxide nanoparticles using caesalpinia bonducella seed extract and their applications. ACS Omega 2020 5 2 1040 1051 10.1021/acsomega.9b02857 31984260
    [Google Scholar]
  72. Omanović-Mikličanina E. Maksimović M. Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 2016 47 59 70
    [Google Scholar]
  73. Johnson M.S. Sajeev S. Nair R.S. 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) IEEE 17-18 March , 2021, pp 58-63
    [Google Scholar]
  74. Alvarado M. Guzmán N. Solís N. Vega Baudrit J. Recycling and Elimination of Wastes obtained from Agriculture by using Nanotechnology: Nanosensors. Int J Biosen Bioelectron 2017 3 5 368 375
    [Google Scholar]
  75. Shaikh A. Meroliya H. Dagade-Gadale S. Waghmode S. Applications of nanotechnology in precision agriculture: A review. Res. Rev. Biotechnol. Biosci 2021 8 105 117
    [Google Scholar]
  76. Prével C. Pellerano M. Van T.N.N. Morris M.C. Fluorescent biosensors for high throughput screening of protein kinase inhibitors. Biotechnol. J. 2014 9 2 253 265 10.1002/biot.201300196 24357625
    [Google Scholar]
  77. Nhu Ngoc Van T. Morris M.C. Fluorescent sensors of protein kinases: From basics to biomedical applications. Prog. Mol. Biol. Transl. Sci. 2013 113 217 274 10.1016/B978‑0‑12‑386932‑6.00006‑5 23244792
    [Google Scholar]
  78. Morris M.C. Fluorescent biosensors — Probing protein kinase function in cancer and drug discovery. Biochim. Biophys. Acta. Proteins Proteomics 2013 1834 7 1387 1395 10.1016/j.bbapap.2013.01.025 23376184
    [Google Scholar]
  79. Gao X. Zhang J. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 2008 19 10 4366 4373 10.1091/mbc.e08‑05‑0449 18701703
    [Google Scholar]
  80. Irby R.B. Yeatman T.J. Role of Src expression and activation in human cancer. Oncogene 2000 19 49 5636 5642 10.1038/sj.onc.1203912 11114744
    [Google Scholar]
  81. Wang Y. Botvinick E.L. Zhao Y. Berns M.W. Usami S. Tsien R.Y. Chien S. Visualizing the mechanical activation of Src. Nature 2005 434 7036 1040 1045 10.1038/nature03469 15846350
    [Google Scholar]
  82. Nobis M. McGhee E.J. Morton J.P. Schwarz J.P. Karim S.A. Quinn J. Edward M. Campbell A.D. McGarry L.C. Evans T.R.J. Brunton V.G. Frame M.C. Carragher N.O. Wang Y. Sansom O.J. Timpson P. Anderson K.I. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res. 2013 73 15 4674 4686 10.1158/0008‑5472.CAN‑12‑4545 23749641
    [Google Scholar]
  83. Allen M.D. DiPilato L.M. Rahdar M. Ren Y.R. Chong C. Liu J.O. Zhang J. Reading dynamic kinase activity in living cells for high-throughput screening. ACS Chem. Biol. 2006 1 6 371 376 10.1021/cb600202f 17163774
    [Google Scholar]
  84. Nikolaev V.O. Bünemann M. Hein L. Hannawacker A. Lohse M.J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 2004 279 36 37215 37218 10.1074/jbc.C400302200 15231839
    [Google Scholar]
  85. Mazina O. Reinart-Okugbeni R. Kopanchuk S. Rinken A. BacMam system for FRET-based cAMP sensor expression in studies of melanocortin MC1 receptor activation. SLAS Discov. 2012 17 8 1096 1101 10.1177/1087057112449862 22674933
    [Google Scholar]
  86. Klarenbeek J.B. Goedhart J. Hink M.A. Gadella T.W.J. Jalink K. A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 2011 6 4 e19170 10.1371/journal.pone.0019170 21559477
    [Google Scholar]
  87. Mazina O. Allikalt A. Heinloo A. Reinart-Okugbeni R. Kopanchuk S. Rinken A. cAMP assay for GPCR ligand characterization: Application of BacMam expression system. G protein-coupled receptor screening assays. Methods Protoc. 2015 ••• 65 77
    [Google Scholar]
  88. Tewson P.H. Quinn A.M. Hughes T.E. A multiplexed fluorescent assay for independent second-messenger systems: Decoding GPCR activation in living cells. SLAS Discov. 2013 18 7 797 806 10.1177/1087057113485427 23580666
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615342051241002061227
Loading
/content/journals/cnm/10.2174/0124054615342051241002061227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test