Skip to content
2000
image of Nanomedicine  Innovations  for  Diabetes  Management: Revolutionizing Diagnosis, Treatment, and Monitoring

Abstract

Diabetes mellitus, a widespread metabolic disease characterized by high blood sugar levels, affects many people globally. The limitations of conventional diagnostic and therapeutic approaches necessitate exploring innovative strategies. Nanotechnology shows remarkable potential for revolutionizing the field of diabetes theranostics (combined diagnosis and treatment) by enabling accurate diagnosis and precise treatment delivery. This article provides a comprehensive review of the latest advancements in nanomaterials for diagnosing and treating diabetes. It explores the applications of various nanomaterials, including inorganic and organic nanoparticles, nanocomposites, and nanostructured biosensors, in biomarker detection, glucose monitoring, insulin delivery, and addressing diabetes-related complications. The study focuses on the synthesis and functionalization of nanomaterials for diabetes, covering both traditional and environmentally friendly synthesis methods. This study looks into how nanomaterials can be used to carry natural antidiabetic extracts, recombinant insulin, and other antidiabetic drugs, to make them more bioavailable, targetable, and effective. However, the review also talks about the problems that come with using nanosensors to diagnose diabetes. It also looks at the newest developments in nanosensors for biomarker detection, implantable devices, and continuous glucose monitoring. Additionally, the review examines the potential of nanomaterials in the management of diabetic sequelae, including diabetic nephropathy, cardiovascular disorders, retinopathy, and wound healing. We underscore the significance of nanomaterials in islet transplantation, as they provide immunological protection and enhance the viability and efficacy of islets. This study provides useful insights into the prospects and challenges connected with the rapidly growing field of nanotechnology in diabetic theranostics through a comprehensive examination of the current landscape. Academics, clinicians, and stakeholders engaged in developing innovative nanomaterial-based approaches to accurately diagnose and effectively manage diabetes will find this resource highly helpful.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615327653241016145300
2024-10-29
2024-11-26
Loading full text...

Full text loading...

References

  1. Kumar S. Devi D. Kushari S. Gam S. Sarma H. A review on ethnomedicinal plants of Assam (India) used in the treatment of Diabetes mellitus. Int. J. Pharm. Sci. Res. 2021 12 3042 3050
    [Google Scholar]
  2. Crawford K. Review of 2017 Diabetes Standards of Care. Nurs. Clin. North Am. 2017 52 4 621 663 10.1016/j.cnur.2017.07.010 29080582
    [Google Scholar]
  3. Ma R.C.W. Lin X. Jia W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol. 2014 2 12 980 991 10.1016/S2213‑8587(14)70145‑7 25218727
    [Google Scholar]
  4. IDF Diabetes Atlas. 2021 Available from:https://diabetesatlas.org/resources/?gad_source=1&gclid=Cj0KCQjw6oi4BhD1ARIsAL6pox10f6CPMKCWQ5dmH68xDXhV5bCU4VSMSywzW7T7RsChGFJbpRLY9XEaAryzEALw_wcB(accessed on 2-10-2024)
  5. Reddi Rani P. Begum J. Screening and Diagnosis of Gestational Diabetes Mellitus, Where Do We Stand. JCDR Research & Publications Private Limited 2016 Vol. 10 QE01 QE04
    [Google Scholar]
  6. Low Wang C.C. Hess C.N. Hiatt W.R. Goldfine A.B. Clinical Update: Cardiovascular Disease in Diabetes Mellitus. Circulation. Lippincott Williams &WilkinsHagerstown. MD 2016 133 2459 2502
    [Google Scholar]
  7. Chawla R. Chawla A. Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016 20 4 546 551 10.4103/2230‑8210.183480 27366724
    [Google Scholar]
  8. Marín-Peñalver J.J. Martín-Timón I. Sevillano-Collantes C. Cañizo-Gómez. FJ del. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. Baishideng Publishing Group Inc 2016 7 395
    [Google Scholar]
  9. McCall A.L. Farhy L.S. Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control. Minerva Endocrinol. 2013 38 2 145 163 23732369
    [Google Scholar]
  10. Chaudhury A. Duvoor C. Reddy Dendi V.S. Kraleti S. Chada A. Ravilla R. Marco A. Shekhawat N.S. Montales M.T. Kuriakose K. Sasapu A. Beebe A. Patil N. Musham C.K. Lohani G.P. Mirza W. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. (Lausanne) 2017 8 6 10.3389/fendo.2017.00006 28167928
    [Google Scholar]
  11. Tsalamandris S. Antonopoulos A.S. Oikonomou E. Papamikroulis G.A. Vogiatzi G. Papaioannou S. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. EurCardiol Rev. Radcliffe Cardiology 2019 14 59
    [Google Scholar]
  12. Soares S. Sousa J. Pais A. Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018 6 360 10.3389/fchem.2018.00360 30177965
    [Google Scholar]
  13. Kaviarasu C. Ravichandran M. Nanomaterials through powder metallurgy: production, processing, and potential applications toward energy and environment. HandbNanomater Nanocomposites Energy Environ Appl. Kharissova O. Martínez L. Kharisov B. Cham Springer 2020 1 40 10.1007/978‑3‑030‑11155‑7_127‑1
    [Google Scholar]
  14. Jeevanandam J. Barhoum A. Chan Y.S. Dufresne A. Danquah M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018 9 1050 1074 10.3762/bjnano.9.98 29719757
    [Google Scholar]
  15. Thomas S. Harshita B.S.P. Mishra P. Talegaonkar S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr. Pharm. Des. 2015 21 42 6165 6188 10.2174/1381612821666151027153246 26503144
    [Google Scholar]
  16. Liu W. Zhou X. Xu L. Zhu S. Yang S. Chen X. Dong B. Bai X. Lu G. Song H. Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale 2019 11 24 11496 11504 10.1039/C9NR00942F 31112195
    [Google Scholar]
  17. Bulemo P.M. Cho H.J. Kim D.H. Kim I.D. Facile Synthesis of Pt-Functionalized Meso/Macroporous SnO 2 Hollow Spheres through in Situ Templating with SiO 2 for H 2 S Sensors. ACS Appl. Mater. Interfaces 2018 10 21 18183 18191 10.1021/acsami.8b00901 29608265
    [Google Scholar]
  18. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  19. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  20. Kakkar A. Traverso G. Farokhzad O.C. Weissleder R. Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 2017 1 8 0063 10.1038/s41570‑017‑0063 31286060
    [Google Scholar]
  21. Liu Y. Zeng S. Ji W. Yao H. Lin L. Cui H. Santos H.A. Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. Adv. Sci. (Weinh.) 2022 9 3 2102466 10.1002/advs.202102466 34825525
    [Google Scholar]
  22. Barani M. Sargazi S. Mohammadzadeh V. Rahdar A. Pandey S. Jha N.K. Gupta P.K. Thakur V.K. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J. Funct. Biomater. 2021 12 4 54 10.3390/jfb12040054 34698244
    [Google Scholar]
  23. Moumaris M. Bretagne J-M. Abuaf N. Nanomedical Devices and Cancer Theranostics. Open NanomedNanotechnol J Bentham Sci Publishers Ltd. 2020 6 1 11
    [Google Scholar]
  24. Shakeri S. Ashrafizadeh M. Zarrabi A. Roghanian R. Afshar E.G. Pardakhty A. Mohammadinejad R. Kumar A. Thakur V.K. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020 8 1 13 10.3390/biomedicines8010013 31941057
    [Google Scholar]
  25. Shakeri-Zadeh A. Zareyi H. Sheervalilou R. Laurent S. Ghaznavi H. Samadian H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J. Control. Release 2021 330 49 60 10.1016/j.jconrel.2020.12.022 33340564
    [Google Scholar]
  26. Cash K.J. Clark H.A. Nanosensors and nanomaterials for monitoring glucose in Diabetes. Trends Mol Med. NIH Public Access 2010 16 593
    [Google Scholar]
  27. Sharma D. Singh J. Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan‑zinc-insulin complexes incorporated in thermosensitive copolymer. J. Control. Release 2020 323 161 178 10.1016/j.jconrel.2020.04.012 32283211
    [Google Scholar]
  28. Saï P. Damagé C. Rivereau A.S. Hoeltzel A. Gouin E. Prophylactic oral administration of metabolically active insulin entrapped in isobutylcyanoacrylate nanocapsules reduces the incidence of diabetes in nonobese diabetic mice. J. Autoimmun. 1996 9 6 713 721 10.1006/jaut.1996.0093 9115573
    [Google Scholar]
  29. Sharma B. Thakur S. Mamba G. Prateek Gupta R.K. Gupta V.K. Thakur V.K. Titania modified gum tragacanth based hydrogel nanocomposite for water remediation. J. Environ. Chem. Eng. 2021 9 1 104608 10.1016/j.jece.2020.104608
    [Google Scholar]
  30. Narjinary M. Rana P. Sen A. Pal M. Enhanced and selective acetone sensing properties of SnO2-MWCNT nanocomposites: Promising materials for diabetes sensor. Mater. Des. 2017 115 158 164 10.1016/j.matdes.2016.11.042
    [Google Scholar]
  31. Zhang Y. Zhang P. Gao X. Chang L. Chen Z. Mei X. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. Mater. Sci. Eng. C 2021 120 111671 10.1016/j.msec.2020.111671 33545836
    [Google Scholar]
  32. Souto E.B. Souto S.B. Campos J.R. Severino P. Pashirova T.N. Zakharova L.Y. Silva A.M. Durazzo A. Lucarini M. Izzo A.A. Santini A. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019 24 23 4209 10.3390/molecules24234209 31756981
    [Google Scholar]
  33. Kerry R.G. Mahapatra G.P. Maurya G.K. Patra S. Mahari S. Das G. Patra J.K. Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev. Endocr. Metab. Disord. 2021 22 2 421 451 10.1007/s11154‑020‑09606‑0 33052523
    [Google Scholar]
  34. Jeffery C.J. Engineering periplasmic ligand binding proteins as glucose nanosensors. Nano Rev. 2011 2 1 5743 10.3402/nano.v2i0.5743 22110874
    [Google Scholar]
  35. Wang L. Yun X. Stanacevic M. Gouma P.I. An acetone nanosensorfor non-invasive diabetes detection. AIP Conf. Proc. 2009 1137 206 208
    [Google Scholar]
  36. Le L.V. Chendke G.S. Gamsey S. Wisniewski N. Desai T.A. Near-Infrared Optical Nanosensors for Continuous Detection of Glucose. J. Diabetes Sci. Technol. 2020 14 2 204 211 10.1177/1932296819886928 31709808
    [Google Scholar]
  37. Zhang W. Zhang H. Wang M. Li P. Ding C. Zhang W. Wang H. Tang B. Copolymer-Based Fluorescence Nanosensor for In Situ Imaging of Homocysteine in the Liver and Kidney of Diabetic Mice. Anal. Chem. 2020 92 24 16221 16228 10.1021/acs.analchem.0c04068 33210902
    [Google Scholar]
  38. Huang C. Hao Z. Qi T. Pan Y. Zhao X. An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose. Journal of Materiomics 2020 6 2 308 314 10.1016/j.jmat.2020.02.002
    [Google Scholar]
  39. Wahab A.W. Karim A. La Nafie N. Nurafni N. Sutapa I.W. Synthesis of silver nanoparticles using MuntingiaCalabura L. Leaf Extract as Bioreductor and Applied as glucose Nanosensor. Orient J Chem Oriental Scientific Publishing Company. 2018 34 3088 3094
    [Google Scholar]
  40. Eivazzadeh-Keihan R. Pashazadeh-Panahi P. Baradaran B. Maleki A. Hejazi M. Mokhtarzadeh A. de la Guardia M. Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends Analyt. Chem. 2018 100 103 115 10.1016/j.trac.2017.12.019
    [Google Scholar]
  41. Du S. Lv Y. Li N. Huang X. Liu X. Li H. Wang C. Jia Y.F. Biological investigations on therapeutic effect of chitosan encapsulated nano resveratrol against gestational diabetes mellitus rats induced by streptozotocin. Drug Deliv. 2020 27 1 953 963 10.1080/10717544.2020.1775722 32611265
    [Google Scholar]
  42. Cheng X. Xu Y. Jia Q. Guo N. Wang Z. Wang Y. Novel greener approached synthesis of polyacrylic nanoparticles for therapy and care of gestational diabetes. Drug Deliv. 2020 27 1 1263 1270 10.1080/10717544.2020.1809555 32880218
    [Google Scholar]
  43. Georgiou H.M. Lappas M. Georgiou G.M. Marita A. Bryant V.J. Hiscock R. Permezel M. Khalil Z. Rice G.E. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol. 2008 45 3 157 165 10.1007/s00592‑008‑0037‑8 18496643
    [Google Scholar]
  44. Nanda S. Savvidou M. Syngelaki A. Akolekar R. Nicolaides K.H. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 2011 31 2 135 141 10.1002/pd.2636 21268030
    [Google Scholar]
  45. Bogdanet D. Reddin C. Murphy D. Doheny H.C. Halperin J.A. Dunne F. O’Shea P.M. Emerging Protein Biomarkers for the Diagnosis or Prediction of Gestational Diabetes—A Scoping Review. J. Clin. Med. 2021 10 7 1533 10.3390/jcm10071533 33917484
    [Google Scholar]
  46. Rodrigo N. Glastras S.J. The Emerging Role of Biomarkers in the Diagnosis of Gestational Diabetes Mellitus. J. Clin. Med. 2018 7 6 120 10.3390/jcm7060120 29882903
    [Google Scholar]
  47. Funkhouse J. Reinventing pharma: the theranostic revolution. Curr Drug Discov. 2002 2 17 19
    [Google Scholar]
  48. Choudhury P.S. Gupta M. Differentiated thyroid cancer theranostics: radioiodine and beyond. Br. J. Radiol. 2018 91 1091 20180136 10.1259/bjr.20180136
    [Google Scholar]
  49. Xie J. Lee S. Chen X. e S Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010 62 11 1064 1079 10.1016/j.addr.2010.07.009
    [Google Scholar]
  50. Luk B.T. Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interf. 2014 6 24 6225 10.1021/am5036225
    [Google Scholar]
  51. Soetaert F. Korangath P. Serantes D. Fiering S. Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev. NIH Public Access 2020 163-164 83
    [Google Scholar]
  52. Bagalkot V. Zhang L. Levy-Nissenbaum E. Jon S. Kantoff P.W. Langer R. Farokhzad O.C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007 7 10 3065 3070 10.1021/nl071546n 17854227
    [Google Scholar]
  53. Yong K.T. Wang Y. Roy I. Rui H. Swihart M.T. Law W.C. Preparation of Quantum Dot/Drug Nanoparticle Formulations for Traceable Targeted Delivery and Therapy. Theranostics. Ivyspring International Publisher 2012 2 694
    [Google Scholar]
  54. Liu Z. Liang X.J. Nano-Carbons as Theranostics. Theranostics 2012 2 3 235 237 10.7150/thno.4156 22448193
    [Google Scholar]
  55. Yang S.T. Luo J. Zhou Q. Wang H. Pharmacokinetics. Metabolism and Toxicity of Carbon Nanotubes for Biomedical Purposes. Theranostics. Ivyspring International Publisher 2012 2 282
    [Google Scholar]
  56. Choi S.J. Oh J.M. Choy J.H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J. Inorg. Biochem. 2009 103 3 463 471 10.1016/j.jinorgbio.2008.12.017 19181388
    [Google Scholar]
  57. Luk B.T. Fang R.H. Zhang L. Lipid- and polymer-based nanostructures for cancer theranostics. Theranostics 2012 2 12 1117 1126 10.7150/thno.4381 23382770
    [Google Scholar]
  58. Righettoni M. Tricoli A. Pratsinis S.E. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 2010 82 9 3581 3587 10.1021/ac902695n 20380475
    [Google Scholar]
  59. Zhang H. Guo Y. Meng F. Metal Oxide Semiconductor Sensors for Triethylamine Detection: Sensing Performance and Improvements. Chemosensors (Basel) 2022 10 6 231 10.3390/chemosensors10060231
    [Google Scholar]
  60. Sherwani S.I. Khan H.A. Ekhzaimy A. Masood A. Sakharkar M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights 2016 11 95 104 10.4137/BMI.S38440
    [Google Scholar]
  61. Lyons T.J. Basu A. Biomarkers in Diabetes: Hemoglobin A1c, vascular and tissue markers. Transl Res. NIH Public Access 2012 159 312
    [Google Scholar]
  62. IH Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res. BioMed Central 2020 24 1 12
    [Google Scholar]
  63. Wang X. Su J. Zeng D. Liu G. Liu L. Xu Y. Wang C. Liu X. Wang L. Mi X. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 2019 201 119 125 10.1016/j.talanta.2019.03.100 31122401
    [Google Scholar]
  64. Lustig W.P. Mukherjee S. Rudd N.D. Desai A.V. Li J. Ghosh S.K. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017 46 11 3242 3285 10.1039/C6CS00930A 28462954
    [Google Scholar]
  65. Naresh V. Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel) 2021 21 4 1109 10.3390/s21041109 33562639
    [Google Scholar]
  66. Rong G. Tuttle E.E. Neal Reilly A. Clark H.A. Recent Developments in Nanosensors for Imaging Applications in Biological Systems. Annu Rev Anal Chem (Palo Alto Calif). NIH Public Access 2019 12 128
    [Google Scholar]
  67. Shi R. Wei S. Cheng S. Zeng J. Wang Y. Shu X. colorimetric detection of glucose using wo3 nanosheets as peroxidase-mimetic enzyme. Chem. Res. Chinese Uni. 2021 4 985 990
    [Google Scholar]
  68. Zhang P. Sun D. Cho A. Weon S. Lee S. Lee J. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 2019 101. Nature Publishing Group 2019 10 1 14
    [Google Scholar]
  69. Wei H. Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013 42 14 6060 6093 10.1039/c3cs35486e 23740388
    [Google Scholar]
  70. Iarossi M. Schiattarella C. Rea I. De Stefano L. Fittipaldi R. Vecchione A. Velotta R. Ventura B.D. Colorimetric Immunosensor by Aggregation of Photochemically Functionalized Gold Nanoparticles. ACS Omega 2018 3 4 3805 3812 10.1021/acsomega.8b00265 30023881
    [Google Scholar]
  71. Kesharwani P. Gorain B. Low S.Y. Tan S.A. Ling E.C.S. Lim Y.K. Chin C.M. Lee P.Y. C. M. Lee and C. H. Ooi. Diabetes Res. Clin. Pract. 2018 136 52 77 10.1016/j.diabres.2017.11.018 29196152
    [Google Scholar]
  72. Sagar V. Patel R.R. Singh S.K. Singh M. Mater. Adv. 2023 4 1831 1849 10.1039/D2MA01105K
    [Google Scholar]
  73. Chakrapani G. Zare M. Ramakrishna S. Intelligent hydrogels and their biomedical applications. Materials Advances 2022 3 21 7757 7772 10.1039/D2MA00527A
    [Google Scholar]
  74. Wong C.Y. Al-Salami H. Dass C.R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release 2017 264 247 275 10.1016/j.jconrel.2017.09.003 28887133
    [Google Scholar]
  75. San Tang K. Life Sci. 2019 239 117011 10.1016/j.lfs.2019.117011 31669241
    [Google Scholar]
  76. Othman S.I. Alturki A.M. Abu-Taweel G.M. Altoom N.G. Allam A.A. Abdelmonem R. Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int. J. Biol. Macromol. 2021 190 417 432 10.1016/j.ijbiomac.2021.08.154 34450151
    [Google Scholar]
  77. Wickramasinghe A.S.D. Kalansuriya P. Attanayake A.P. Nanoformulation of Plant-Based Natural Products for Type 2 Diabetes Mellitus: From Formulation Design to Therapeutic Applications. Curr. Ther. Res. Clin. Exp. 2022 96 100672 10.1016/j.curtheres.2022.100672 35586563
    [Google Scholar]
  78. Ma Y. He P. Tian X. Liu G. Zeng X. Pan G. Mussel-Derived, Cancer-Targeting Peptide as pH-Sensitive Prodrug Nanocarrier. ACS Appl. Mater. Interfaces 2019 11 27 23948 23956 10.1021/acsami.9b09031 31192575
    [Google Scholar]
  79. Govindaraju K. Suganya K.U. RSC. Med. Chem. 2020 11 814 822
    [Google Scholar]
  80. Nagaraja S.H. Al-Dhubiab B.E. Tekade R.K. Venugopala K.N. Ghorpade R.V. Meravanige G. Alqadheeb A. Indian J. Pharm. Educ. Res. 2019 53 S43 S49
    [Google Scholar]
  81. Kim S.J. Choi S.J. Jang J.S. Cho H.J. Koo W.T. Tuller H.L. Kim I.D. Exceptional High‐Performance of Pt‐Based Bimetallic Catalysts for Exclusive Detection of Exhaled Biomarkers. Adv. Mater. 2017 29 36 1700737 10.1002/adma.201700737
    [Google Scholar]
  82. Jahangiri-Manesh A. Mousazadeh M. Nikkhah M. Iran. Polym. J. 2022 ••• 1 9
    [Google Scholar]
  83. Arikan K. Burhan H. Sahin E. Sen F. A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support. Chemosphere 2022 291 Pt 3 132718 10.1016/j.chemosphere.2021.132718 34756949
    [Google Scholar]
  84. Liu Y. Tu D. Zheng W. Lu L. You W. Zhou S. Huang P. Li R. Chen X. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018 11 6 3164 3174 10.1007/s12274‑017‑1721‑1
    [Google Scholar]
  85. El-Gharbawy R.M. Emara A.M. Abu-Risha S.E.S. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed. Pharmacother. 2016 84 810 820 10.1016/j.biopha.2016.09.068 27723572
    [Google Scholar]
  86. Cui M. Wu W. Hovgaard L. Lu Y. Chen D. Qi J. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int. J. Pharm. 2015 489 1-2 277 284 10.1016/j.ijpharm.2015.05.006 25957702
    [Google Scholar]
  87. Bashyal S. Seo J.E. Keum T. Noh G. Choi Y.W. Lee S. Facilitated permeation of insulin across TR146 cells by cholic acid derivatives-modified elastic bilosomes. Int. J. Nanomedicine 2018 13 5173 5186 10.2147/IJN.S168310 30233179
    [Google Scholar]
  88. Bala N. Saha S. Chakraborty M. Maiti M. Das S. Basu R. Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances 2015 5 7 4993 5003 10.1039/C4RA12784F
    [Google Scholar]
  89. Chauhan P. Mahajan S. Prasad G.B.K.S. Preparation and characterization of CS-ZnO-NC nanoparticles for imparting anti-diabetic activities in experimental diabetes. J. Drug Deliv. Sci. Technol. 2019 52 738 747 10.1016/j.jddst.2019.05.020
    [Google Scholar]
  90. Velsankar K. Venkatesan A. Muthumari P. Suganya S. Mohandoss S. Sudhahar S. J. Mol. Struct. 2022 1255 132420 10.1016/j.molstruc.2022.132420
    [Google Scholar]
  91. M. N. UlHaq G. M. Shah, F. Menaa, R. A. Khan, N. A. Althobaiti, A. E. Albalawi and H. M. Alkreathy. Nanomaterials (Basel) 2022 12 1035
    [Google Scholar]
  92. Singh I.R. Mitra S. Modulated Protein Binding Ability of Anti-Diabetic Drugs in Presence of Monodispersed Gold Nanoparticles and its Inhibitory Potential towards Advanced Glycated End (AGE) Product Formation. J. Fluoresc. 2020 30 1 193 204 10.1007/s10895‑019‑02485‑y 31925653
    [Google Scholar]
  93. Niu M. Y. n Tan, P. Guan, L. Hovgaard, Y. Lu, J. Qi, R. Lian, X. Li and W. Wu. Int. J. Pharm. 2014 460 119 130 10.1016/j.ijpharm.2013.11.028 24275447
    [Google Scholar]
  94. Yuan J. Cen Y. Kong X.J. Wu S. Liu C.L. Yu R.Q. Chu X. MnO 2 -Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H 2 O 2 and Glucose in Blood. ACS Appl. Mater. Interfaces 2015 7 19 10548 10555 10.1021/acsami.5b02188 25919577
    [Google Scholar]
  95. Zhao Y. Li Z. Song S. Yang K. Liu H. Yang Z. Wang J. Yang B. Lin Q. Skin‐Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Adv. Funct. Mater. 2019 29 31 1901474 10.1002/adfm.201901474
    [Google Scholar]
  96. Li Y. Liu X. Tan L. Cui Z. Yang X. Zheng Y. Yeung K.W.K. Chu P.K. Wu S. Rapid Sterilization and Accelerated Wound Healing Using Zn 2+ and Graphene Oxide Modified g‐C 3 N 4 under Dual Light Irradiation. Adv. Funct. Mater. 2018 28 30 1800299 10.1002/adfm.201800299
    [Google Scholar]
  97. Jin X. Shang Y. Zou Y. Xiao M. Huang H. Zhu S. Liu N. Li J. Wang W. Zhu P. Injectable Hypoxia-Induced Conductive Hydrogel to Promote Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2020 12 51 56681 56691 10.1021/acsami.0c13197 33274927
    [Google Scholar]
  98. Fu J. Zhang Y. Chu J. Wang X. Yan W. Zhang Q. Liu H. Reduced Graphene Oxide Incorporated Acellular Dermal Composite Scaffold Enables Efficient Local Delivery of Mesenchymal Stem Cells for Accelerating Diabetic Wound Healing. ACS Biomater. Sci. Eng. 2019 5 8 4054 4066 10.1021/acsbiomaterials.9b00485 33448807
    [Google Scholar]
  99. Lu M. Yin N. Liu W. Cui X. Chen S. Wang E. Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling. BioMed Res. Int. 2017 2017 1 10 10.1155/2017/1516985 28194406
    [Google Scholar]
  100. Chen D. Han S. Zhu Y. Hu F. Wei Y. Wang G. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethyleneimine nanoparticles for diabetic nephropathy therapy. Int. J. Nanomedicine 2018 13 3507 3527 10.2147/IJN.S166445 29950832
    [Google Scholar]
  101. 74 V. Go’mez-Vallejo, M. Puigivila, S. Plaza-Garcı’a, B. Szczupak, R. Pin˜ol, J. L. Murillo, V. Sorribas, G. Lou, S. Veintemillas and P. Ramos-Cabrer. Nanoscale 2018 10 14153 14164
    [Google Scholar]
  102. Chen J. Pan H. Lanza G.M. Wickline S.A. Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Adv. Chronic Kidney Dis. 2013 20 6 466 478 10.1053/j.ackd.2013.08.004 24206599
    [Google Scholar]
  103. Shin S.R. Li Y.C. Jang H.L. Khoshakhlagh P. Akbari M. Nasajpour A. Zhang Y.S. Tamayol A. Khademhosseini A. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016 105 Pt B 255 274 10.1016/j.addr.2016.03.007 27037064
    [Google Scholar]
  104. Lanno G.M. Ramos C. Preem L. Putrinš M. Laidmäe I. Tenson T. Kogermann K. Antibacterial Porous Electrospun Fibers as Skin Scaffolds for Wound Healing Applications. ACS Omega 2020 5 46 30011 30022 10.1021/acsomega.0c04402 33251437
    [Google Scholar]
  105. López-Goerne T. Ramírez-Olivares P. Pérez-Dávalos L.A. Velázquez-Muñoz J.A. Reyes-González J. Catalytic Nanomedicine. Cu/TiO2–SiO2 Nanoparticles as Treatment of Diabetic Foot Ulcer: A Case Report. Curr. Nanomed. 2020 10 3 290 295 10.2174/2468187309666190906121924
    [Google Scholar]
  106. Loera-Valencia R. Neira R.E. Urbina B.P. Camacho A. Galindo R.B. Evaluation of the therapeutic efficacy of dressings with ZnO nanoparticles in the treatment of diabetic foot ulcers. Biomed. Pharmacother. 2022 155 113708 10.1016/j.biopha.2022.113708 36162373
    [Google Scholar]
  107. Shah U. Joshi G. Sawant K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater. Sci. Eng. C 2014 35 153 163 10.1016/j.msec.2013.10.038
    [Google Scholar]
  108. Arora A. Shafiq N. Jain S. Khuller G.K. Sharma S. Malhotra S. Development of Sustained Release “NanoFDC (Fixed Dose Combination)” for Hypertension – An Experimental Study. PLoS One 2015 10 6 e0128208 10.1371/journal.pone.0128208 26047011
    [Google Scholar]
  109. Jasmin G. de Souza T. Louzada R.A. Rosado-deCastro P.H. Mendez-Otero R. Campos de Carvalho A.C. 2017
  110. Dadfar S.M. Roemhild K. Drude N.I. von Stillfried S. Knüchel R. Kiessling F. Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019 138 302 325 10.1016/j.addr.2019.01.005 30639256
    [Google Scholar]
  111. Tarin C. Carril M. Martin-Ventura J.L. Markuerkiaga I. Padro D. Llamas-Granda P. Moreno J.A. García I. Genicio N. Plaza-Garcia S. Blanco-Colio L.M. Penades S. Egido J. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci. Rep. 2015 5 1 17135 10.1038/srep17135 26616677
    [Google Scholar]
  112. Danila D. Johnson E. Kee P. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomedicine 2013 9 7 1067 1076 10.1016/j.nano.2013.03.009 23563046
    [Google Scholar]
  113. Younis N.K. Ghoubaira J.A. Bassil E.P. Tantawi H.N. Eid A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine 2021 36 102433 10.1016/j.nano.2021.102433 34171467
    [Google Scholar]
  114. Luthi A.J. Patel P.C. Ko C.H. Mutharasan R.K. Mirkin C.A. Thaxton C.S. Nanotechnology for synthetic high-density lipoproteins. Trends Mol. Med. 2010 16 12 553 560 10.1016/j.molmed.2010.10.006 21087901
    [Google Scholar]
  115. Talapko J. Matijevic´ T. M. Juzbasˇic´, A. Antolovic´-Pozˇgain and I. Sˇkrlec. Microorganisms 2020 8 1400 10.3390/microorganisms8091400 32932967
    [Google Scholar]
  116. Shi J. Sun X. Lin Y. Zou X. Li Z. Liao Y. M. Du and H. Zhang. Biomaterials 2014 35 6657 6666 10.1016/j.biomaterials.2014.04.093 24818879
    [Google Scholar]
  117. Dave V. Sharma R. Gupta C. Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf. B Biointerfaces 2020 194 111151 10.1016/j.colsurfb.2020.111151 32540764
    [Google Scholar]
  118. Xu L. Li W. Shi Q. Li H. Yang Z. Liao D. Li L. Yang X. Zhang J. Synthesis of mulberry leaf extract mediated gold nanoparticles and their ameliorative effect on Aluminium intoxicated and diabetic retinopathy in rats during perinatal life. J. Photochem. Photobiol. B 2019 196 111502 10.1016/j.jphotobiol.2019.04.011 31129511
    [Google Scholar]
  119. Radwan S.E.S. El-Kamel A.H. Zaki E.I. Burgalassi S. Zucchetti E. El-Moslemany R.M. Hyaluronic-Coated Albumin Nanoparticles for the Non-Invasive Delivery of Apatinib in Diabetic Retinopathy. Int. J. Nanomedicine 2021 16 4481 4494 10.2147/IJN.S316564 34239300
    [Google Scholar]
  120. Qiu F. Meng T. Chen Q. Zhou K. Shao Y. Matlock G. Ma X. Wu W. Du Y. Wang X. Deng G. Ma J. Xu Q. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol. Pharm. 2019 16 5 1958 1970 10.1021/acs.molpharmaceut.8b01319 30912953
    [Google Scholar]
  121. Gao H. Tayebee R. Abdizadeh M.F. Mansouri E. Latifnia M. Pourmojahed Z. The efficient biogeneration of Ag and NiO nanoparticles from VPLE and a study of the anti-diabetic properties of the extract. RSC Advances 2020 10 5 3005 3012 10.1039/C9RA08668D 35496124
    [Google Scholar]
  122. Ashwini D. Mahalingam G. Green Synthesized Metal Nanoparticles, Characterization and its Antidiabetic activities-A Review. Research Journal of Pharmacy and Technology 2020 13 1 468 474 10.5958/0974‑360X.2020.00091.8
    [Google Scholar]
  123. Khan T. Ullah N. Khan M.A. Mashwani Z.R. Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv. Colloid Interface Sci. 2019 272 102017 10.1016/j.cis.2019.102017 31437570
    [Google Scholar]
  124. Bahman F. Greish K. Taurin S. Nanotechnology in Insulin Delivery for Management of Diabetes. Pharm. Nanotechnol. 2019 7 2 113 128 10.2174/2211738507666190321110721 30907328
    [Google Scholar]
  125. Mirazi N. Shoaei J. Khazaei A. Hosseini A. A comparative study on effect of metformin and metformin-conjugated nanotubes on blood glucose homeostasis in diabetic rats. Eur. J. Drug Metab. Pharmacokinet. 2015 40 3 343 348 10.1007/s13318‑014‑0213‑x 24969688
    [Google Scholar]
  126. Lucio D. Martínez-Ohárriz M.C. Jaras G. Aranaz P. González-Navarro C.J. Radulescu A. Irache J.M. Optimization and evaluation of zein nanoparticles to improve the oral delivery of glibenclamide. In vivo study using C. elegans. Eur. J. Pharm. Biopharm. 2017 121 104 112 10.1016/j.ejpb.2017.09.018 28986295
    [Google Scholar]
  127. Dhana lekshmi U.M. Poovi G. Kishore N. Reddy P.N. In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Int. J. Pharm. 2010 396 1-2 194 203 10.1016/j.ijpharm.2010.06.023 20600729
    [Google Scholar]
  128. Martins J.P. Liu D. Fontana F. Ferreira M.P.A. Correia A. Valentino S. Kemell M. Moslova K. Mäkilä E. Salonen J. Hirvonen J. Sarmento B. Santos H.A. Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Appl. Mater. Interfaces 2018 10 51 44354 44367 10.1021/acsami.8b20821 30525379
    [Google Scholar]
  129. Rickels M.R. Robertson R.P. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr. Rev. 2019 40 2 631 668 10.1210/er.2018‑00154 30541144
    [Google Scholar]
  130. Krol S. del Guerra S. Grupillo M. Diaspro A. Gliozzi A. Marchetti P. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 2006 6 9 1933 1939 10.1021/nl061049r 16968004
    [Google Scholar]
  131. Ghasemi A. Akbari E. Imani R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front. Bioeng. Biotechnol. 2021 9 662084 10.3389/fbioe.2021.662084 34513805
    [Google Scholar]
  132. Razavi M. Primavera R. Kevadiya B.D. Wang J. Buchwald P. Thakor A.S. A Collagen Based Cryogel Bioscaffold that Generates Oxygen for Islet Transplantation. Adv. Funct. Mater. 2020 30 15 1902463 10.1002/adfm.201902463 33071709
    [Google Scholar]
  133. Paladini F. Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials (Basel) 2019 12 16 2540 10.3390/ma12162540 31404974
    [Google Scholar]
  134. Jain N. Jain N.K. Surface functionalization of gold nanoparticles using sugars. Journal of Pharmaceutical Education and Research 2018 52 3 385 393
    [Google Scholar]
  135. Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 2008 18 1 1 10 10.1002/elan.1140030102
    [Google Scholar]
  136. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014 43 3 744 764 10.1039/C3CS60273G 24220322
    [Google Scholar]
  137. Park S. Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009 4 4 217 224 10.1038/nnano.2009.58 19350030
    [Google Scholar]
  138. Zhang W. Lu Y. Zhang G. Huang Q. Zhang Y. Metal-organic frameworks: a potential platform for sensing applications. Front Chem. 2019 7 271
    [Google Scholar]
  139. Stern E. Klemic J.F. Routenberg D.A. Wyrembak P.N. Turner-Evans D.B. Hamilton A.D. LaVan D.A. Fahmy T.M. Reed M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007 445 7127 519 522 10.1038/nature05498 17268465
    [Google Scholar]
  140. Sharma A. Lee J.S. Chatterjee S. Ultrasensitive and selective electrochemical glucose biosensor based on (Cd, Zn) S quantum dots anchored on functionalized graphene oxide. Biosens. Bioelectron. 2016 77 1004 1012
    [Google Scholar]
  141. Lombardi J.R. Birke R.L. Lu T. Nanoparticle enhanced Raman scattering. Chem. Soc. Rev. 2008 37 5 946 954 18443680
    [Google Scholar]
  142. Soni G. Yadav K.S. Patel M. Nanotechnology: A future tool to improve quality and safety in meat industry. J. Food Sci. Technol. 2018 55 12 4659 4670
    [Google Scholar]
  143. Mahajan S. Kaur S. Kaushal A. Sharma V. Nanostructured palladium: synthesis, characterization and applications. Int. Nano Lett. 2019 9 1 1 18
    [Google Scholar]
  144. Ma X. Zhao Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2015 115 15 7794 7839 10.1021/cr500392w 25415447
    [Google Scholar]
  145. Muthukumar S. Velmathi S. A review on titanium dioxide nanoparticles. Journal of Chemical and Pharmaceutical Sciences 2017 10 2 806 809
    [Google Scholar]
  146. Banerjee S. Das P. Biosensors and their principles: A review. Journal of Biological and Chemical Chronicles 2015 1 1 55 72
    [Google Scholar]
  147. Wang X. Zhuang J. Peng Q. Li Y. A general strategy for nanocrystal synthesis. Nature 2005 437 7055 121 124 10.1038/nature03968 16136139
    [Google Scholar]
  148. Lee K.S. El-Sayed M.A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006 110 39 19220 19225 10.1021/jp062536y 17004772
    [Google Scholar]
  149. Li Q. Zhang S. Dai L. Li L.S. Carbon dots: A small conundrum. J. Am. Chem. Soc. 2018 140 38 11926 11929 30196699
    [Google Scholar]
  150. Canham L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1995 67 2 218 220
    [Google Scholar]
  151. Leach J. Achyuta A.K. Murthy S.K. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front. Neuroeng. 2010 2 18 10.3389/neuro.16.018.2009 20161810
    [Google Scholar]
  152. Kim H. Choi W. A Review of Molybdenum Disulfide (MoS2)-Based Biosensors for Detection of Various Analytes. Molecules 2019 24 3 487 30704023
    [Google Scholar]
  153. Suman R.K. Mishra P. Kumar M. Khushboo K. Shukla Y.N. Recent advances in various drug delivery systems for an antidiabetic drug. Curr. Drug Deliv. 2017 14 6 912 922
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615327653241016145300
Loading
/content/journals/cnm/10.2174/0124054615327653241016145300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test