Skip to content
2000
image of Green Synthesis Techniques for Sulphur Nanoparticles: Current Methods and Future Perspectives

Abstract

In recent years, cancer has emerged as a significant public health challenge, prompting extensive research into the development of innovative anticancer therapies capable of selectively inducing cell death or halting the proliferation of cancer cells. Harnessing the distinctive characteristics of nanomaterials, advancements in nanotechnology have played a pivotal role in the progression of nanomedicine for cancer treatment. Various nanomaterials, such as gold, silver, silica, and carbon nanoparticles, have been investigated for their potential in drug delivery systems. Meanwhile, sulfur, with its abundant chemically diverse organic and inorganic compounds exhibiting a range of biological functions from antioxidant properties to antibacterial and anticancer capabilities, has garnered significant attention.

Sulphur nanoparticles (SNPs) find widespread application in diverse fields such as lithium sulfur batteries, sulphur-based photocatalysts, and antimicrobial agents. Despite their extensive utilization in non-biomedical domains, such as drug delivery and cancer prevention strategies, SNPs face challenges when employed for biomedical purposes. Concerns include toxicity, limited reactivity, and the substantial particle size of SNPs, which hinder their effectiveness as drug delivery carriers. To overcome these obstacles, surface modifications of SNPs are necessary to enhance their biomedical applicability.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615311740240928044804
2024-12-03
2025-07-15
Loading full text...

Full text loading...

References

  1. Krishnappa S. Naganna C.M. Rajan H.K. Rajashekarappa S. Gowdru H.B. Cytotoxic and apoptotic effects of chemogenic and biogenic nano-sulfur on human carcinoma cells: A comparative study. ACS Omega 2021 6 48 32548 32562 10.1021/acsomega.1c04047 34901604
    [Google Scholar]
  2. Choudhury S.R. Basu A. Nag T. Sengupta K. Bhowmik M. Goswami A. Expedition of in vitro dissolution and in vivo pharmacokinetic profiling of sulfur nanoparticles based antimicrobials. Environ. Toxicol. Pharmacol. 2013 36 2 675 679 10.1016/j.etap.2013.06.014 23892072
    [Google Scholar]
  3. Song Z. Jiang W. Jian X. Hu F. Advanced nanostructured materials for electrocatalysis in lithium-sulfur batteries. Nanomaterials (Basel) 2022 12 23 4341 10.3390/nano12234341 36500964
    [Google Scholar]
  4. Goci M.C. Leudjo Taka A. Martin L. Klink M.J. Chitosan-based polymer nanocomposites for environmental remediation of mercury pollution. Polymers (Basel) 2023 15 3 482 10.3390/polym15030482 36771779
    [Google Scholar]
  5. Wei Seh Z. Li W. Cha J.J. Zheng G. Yang Y. McDowell M.T. Hsu P.C. Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 2013 4 1 1331 10.1038/ncomms2327 23299881
    [Google Scholar]
  6. Thakur S. Das G. Raul P.K. Karak N. Green one-step approach to prepare sulfur/reduced graphene oxide nanohybrid for effective mercury ions removal. J. Phys. Chem. C 2013 117 15 7636 7642 10.1021/jp400221k
    [Google Scholar]
  7. Li S. Chen D. Zheng F. Zhou H. Jiang S. Wu Y. Water-soluble and lowly toxic sulfur quantum dots. Adv. Funct. Mater. 2014 24 45 7133 7138 10.1002/adfm.201402087
    [Google Scholar]
  8. Egorov A.R. Kirichuk A.A. Rubanik V.V. Rubanik V.V. Jr Tskhovrebov A.G. Kritchenkov A.S. Chitosan and its derivatives: Preparation and antibacterial properties. Materials (Basel) 2023 16 18 6076 10.3390/ma16186076 37763353
    [Google Scholar]
  9. Ding J. Guo Y. Recent advances in chitosan and its derivatives in cancer treatment. Front. Pharmacol. 2022 13 888740 10.3389/fphar.2022.888740 35694245
    [Google Scholar]
  10. Xu J.J. Zhang W.C. Guo Y.W. Chen X.Y. Zhang Y.N. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022 29 1 664 678 10.1080/10717544.2022.2039804 35209786
    [Google Scholar]
  11. Shankar S. Jaiswal L. Selvakannan P.R. Ham K.S. Rhim J.W. Gelatin-based dissolvable antibacterial films reinforced with metallic nanoparticles. RSC Advances 2016 6 71 67340 67352 10.1039/C6RA10620J
    [Google Scholar]
  12. Shen Z. Han G. Wang X. Luo J. Sun R. An ultra-light antibacterial bagasse–AgNP aerogel. J. Mater. Chem. B Mater. Biol. Med. 2017 5 6 1155 1158 10.1039/C6TB02171A 32263585
    [Google Scholar]
  13. Exner M. Bhattacharya S. Christiansen B. Gebel J. Goroncy-Bermes P. Hartemann P. Heeg P. Ilschner C. Kramer A. Larson E. Merkens W. Mielke M. Oltmanns P. Ross B. Rotter M. Schmithausen R.M. Sonntag H.G. Trautmann M. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 2017 12 Doc05 28451516
    [Google Scholar]
  14. Suryavanshi P. Pandit R. Gade A. Derita M. Zachino S. Rai M. Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. Lebensm. Wiss. Technol. 2017 81 4 188 194 10.1016/j.lwt.2017.03.038
    [Google Scholar]
  15. Zhao J. Li Y. He Y. Luo J. In situ green synthesis of the new Sandwichlike nanostructure of Mn3O4/Graphene as lubricant additives. ACS Appl. Mater. Interfaces 2019 11 40 36931 36938 10.1021/acsami.9b08993 31356745
    [Google Scholar]
  16. Srisa A. Promhuad K. San H. Laorenza Y. Wongphan P. Wadaugsorn K. Sodsai J. Kaewpetch T. Tansin K. Harnkarnsujarit N. Antibacterial, antifungal and antiviral polymeric food packaging in post-COVID-19 era. Polymers (Basel) 2022 14 19 4042 10.3390/polym14194042 36235988
    [Google Scholar]
  17. Yan A. Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019 20 5 1003 10.3390/ijms20051003 30813508
    [Google Scholar]
  18. Faizan M. Alam P. Rajput V.D. Faraz A. Afzal S. Ahmed S.M. Yu F.Y. Minkina T. Hayat S. Nanoparticle mediated plant tolerance to heavy metal stress: What we know? Sustainability (Basel) 2023 15 2 1446 10.3390/su15021446
    [Google Scholar]
  19. Dop R.A. Neill D.R. Hasell T. Sulfur-polymer nanoparticles: Preparation and antibacterial activity. ACS Appl. Mater. Interfaces 2023 15 17 20822 20832 10.1021/acsami.3c03826 37074085
    [Google Scholar]
  20. Froelich A. Jakubowska E. Wojtyłko M. Jadach B. Gackowski M. Gadziński P. Napierała O. Ravliv Y. Osmałek T. Alginate-based materials loaded with nanoparticles in wound healing. Pharmaceutics 2023 15 4 1142 10.3390/pharmaceutics15041142 37111628
    [Google Scholar]
  21. Kim Y.H. Kim G.H. Yoon K.S. Shankar S. Rhim J.W. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathog. 2020 144 104178 10.1016/j.micpath.2020.104178 32240768
    [Google Scholar]
  22. Khubiev O.M. Egorov A.R. Kirichuk A.A. Khrustalev V.N. Tskhovrebov A.G. Kritchenkov A.S. Chitosan-based antibacterial films for biomedical and food applications. Int. J. Mol. Sci. 2023 24 13 10738 10.3390/ijms241310738 37445916
    [Google Scholar]
  23. Osman A.I. Zhang Y. Farghali M. Rashwan A.K. Eltaweil A.S. Abd El-Monaem E.M. Mohamed I.M.A. Badr M.M. Ihara I. Rooney D.W. Yap P.S. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 2024 22 841 887 10.1007/s10311‑023‑01682‑3
    [Google Scholar]
  24. Ezati P. Rhim J.W. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr. Polym. 2020 230 115638 10.1016/j.carbpol.2019.115638 31887862
    [Google Scholar]
  25. Nakabayashi K. Takahashi T. Watanabe K. Lo C.T. Mori H. Synthesis of sulfur-rich nanoparticles using self-assembly of amphiphilic block copolymer and a site-selective cross-linking reaction. Polymer (Guildf.) 2017 126 188 195 10.1016/j.polymer.2017.08.033
    [Google Scholar]
  26. Porras I. Sulfur-33 nanoparticles: A Monte Carlo study of their potential as neutron capturers for enhancing boron neutron capture therapy of cancer. Appl. Radiat. Isot. 2011 69 12 1838 1841 10.1016/j.apradiso.2011.04.002 21497099
    [Google Scholar]
  27. Giri V.P. Shukla P. Tripathi A. Verma P. Kumar N. Pandey S. Dimkpa C.O. Mishra A. A review of sustainable use of biogenic nanoscale agro-materials to enhance stress tolerance and nutritional value of Plants. Plants 2023 12 4 815 10.3390/plants12040815 36840163
    [Google Scholar]
  28. Hashem N.M. Hosny A.E.D.M.S. Abdelrahman A.A. Zakeer S. Antimicrobial activities encountered by sulfur nanoparticles combating Staphylococcal species harboring sccmecA recovered from acne vulgaris. AIMS Microbiol. 2021 7 4 481 498 10.3934/microbiol.2021029 35071944
    [Google Scholar]
  29. Rai M. Ingle A.P. Paralikar P. Sulfur and sulfur nanoparticles as potential antimicrobials: From traditional medicine to nanomedicine. Expert Rev. Anti Infect. Ther. 2016 14 10 969 978 10.1080/14787210.2016.1221340 27494175
    [Google Scholar]
  30. Smola-Dmochowska A. Lewicka K. Macyk A. Rychter P. Pamuła E. Dobrzyński P. Biodegradable polymers and polymer composites with antibacterial properties. Int. J. Mol. Sci. 2023 24 8 7473 10.3390/ijms24087473 37108637
    [Google Scholar]
  31. Jaiswal L. Shankar S. Rhim J.W. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr. Polym. 2019 224 115191 10.1016/j.carbpol.2019.115191 31472875
    [Google Scholar]
  32. Paralikar P. Rai M. Bio‐inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnol. 2018 12 1 25 31 10.1049/iet‑nbt.2017.0079
    [Google Scholar]
  33. Dikshit P. Kumar J. Das A. Sadhu S. Sharma S. Singh S. Gupta P. Kim B. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021 11 8 902 10.3390/catal11080902
    [Google Scholar]
  34. Ghotekar S. Pagar T. Pansambal S. Oza R. A review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Advanced J. Chem.: Sec. B. 2020 2 3 128 143
    [Google Scholar]
  35. Awwad A.M. Salem N.M. Abdeen A.O. Phytochemical and spectral studies of synthesis sulfur nanoparticles using Sophora japonica Pods Extract. J. Advances In Chem. 2015 11 3 3426 3432 10.24297/jac.v11i3.869
    [Google Scholar]
  36. Shankar S. Pangeni R. Park J.W. Rhim J.W. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C 2018 92 508 517 10.1016/j.msec.2018.07.015 30184776
    [Google Scholar]
  37. Kanmani P. Rhim J.W. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr. Polym. 2014 102 708 716 10.1016/j.carbpol.2013.10.099 24507339
    [Google Scholar]
  38. Liu H. Zhang Y. Zheng S. Weng Z. Ma J. Li Y. Xie X. Zheng W. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 2016 477 4 1031 1037 10.1016/j.bbrc.2016.07.026 27392714
    [Google Scholar]
  39. Gao Y. Xie J. Chen H. Gu S. Zhao R. Shao J. Jia L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv. 2014 32 4 761 777 10.1016/j.biotechadv.2013.10.013 24211475
    [Google Scholar]
  40. Shankar S. Jaiswal L. Rhim J.W. New insight into sulfur nanoparticles: Synthesis and applications. Crit. Rev. Environ. Sci. Technol. 2021 51 20 2329 2356 10.1080/10643389.2020.1780880
    [Google Scholar]
  41. Gamal-Eldeen A.M. Moustafa D. El-Daly S.M. Abo-Zeid M.A.M. Saleh S. Khoobchandani M. Katti K. Shukla R. Katti K.V. Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed. Pharmacother. 2017 89 1045 1054 10.1016/j.biopha.2017.03.006 28298068
    [Google Scholar]
  42. Yadav V.K. Malik P. Khan A.H. Pandit P.R. Hasan M.A. Cabral-Pinto M.M.S. Islam S. Suriyaprabha R. Yadav K.K. Dinis P.A. Khan S.H. Diniz L. Recent advances on properties and utility of nanomaterials generated from industrial and biological activities. Crystals (Basel) 2021 11 6 634 10.3390/cryst11060634
    [Google Scholar]
  43. Shao D. Zhang X. Liu W. Zhang F. Zheng X. Qiao P. Li J. Dong W. Chen L. Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug delivery in Cancer therapy. ACS Appl. Mater. Interfaces 2016 8 7 4303 4308 10.1021/acsami.5b11310 26844695
    [Google Scholar]
  44. Dotan I. Roche P.J.R. Paliouras M. Mitmaker E.J. Trifiro M.A. Engineering multi-walled carbon nanotube therapeutic bionanofluids to selectively target papillary thyroid Cancer cells. PLoS One 2016 11 2 e0149723 10.1371/journal.pone.0149723 26901566
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615311740240928044804
Loading
/content/journals/cnm/10.2174/0124054615311740240928044804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test