Skip to content
2000
image of Recent Insights and Clinical Status on Novel Mefenamic Acid Nanocarriers for the Treatment of Rheumatoid Arthritis

Abstract

Joint structure and performance can be compromised by the systemic inflammatory disorder rheumatoid arthritis, which destroys articular cartilage and erodes periarticular bone. However, due to their systemic processes, short half-lives, and poor bioavailability, the anti-inflammatory medicines and biological agents now utilized for the treatment of rheumatoid arthritis (RA) are unable to preferentially target inflamed joints. Anti-inflammatory medicines have made use of nanoparticle-mediated drug delivery methods. The role that inflammation plays in the genesis of disease has had far-reaching repercussions, including its ability to influence the development of disorders as diverse as inflammatory bowel disorder, RA, and osteoarthritis. In the treatment of RA, nanomaterials have the potential to both increase the absorption of the medication and selectively target the damaged joint tissue. Designer nanoparticles now have the ability to engage more thoroughly with their biological targets and a wider variety of diseases. These nanoparticles have a comparable size range and surface properties that can be modified. In this review, we have discussed the progress that has been made and the hurdles that remain in the use of nanomaterials in the treatment of RA, specifically in relation to mefenamic acid.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615305113240925101555
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. Scott D.L. Wolfe F. Huizinga T.W.J. Rheumatoid arthritis. Lancet 2010 376 9746 1094 1108 10.1016/S0140‑6736(10)60826‑4 20870100
    [Google Scholar]
  2. Cush J.J. Rheumatoid Arthritis. Med. Clin. North Am. 2021 105 2 355 365 10.1016/j.mcna.2020.10.006 33589108
    [Google Scholar]
  3. Finckh A. Gilbert B. Hodkinson B. Bae S.C. Thomas R. Deane K.D. Alpizar-Rodriguez D. Lauper K. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022 18 10 591 602 36068354
    [Google Scholar]
  4. Deane K.D. Demoruelle M.K. Kelmenson L.B. Kuhn K.A. Norris J.M. Holers V.M. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2017 31 1 3 18 10.1016/j.berh.2017.08.003 29221595
    [Google Scholar]
  5. Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature 2003 423 6937 356 361 10.1038/nature01661 12748655
    [Google Scholar]
  6. Ahlmén M. Svensson B. Albertsson K. Forslind K. Hafström I. Influence of gender on assessments of disease activity and function in early rheumatoid arthritis in relation to radiographic joint damage. Ann. Rheum. Dis. 2010 69 1 230 233 10.1136/ard.2008.102244 19158113
    [Google Scholar]
  7. Zhang J. Jiang L. Sun L. Wang P. Sun S. Xu M. Zhang L. Wang S. Liang X. Cui L. Targeted drug delivery strategies for the treatment of rheumatoid arthritis. Sci. China Life Sci. 2021 64 7 1187 1189 10.1007/s11427‑020‑1920‑5 34008167
    [Google Scholar]
  8. Qamar N. Arif A. Bhatti A. John P. Nanomedicine: an emerging era of theranostics and therapeutics for rheumatoid arthritis. Rheumatology (Oxford) 2019 58 10 1715 1721 10.1093/rheumatology/kez286 31377812
    [Google Scholar]
  9. Chen M. Daddy J C K.A. Xiao Y. Ping Q. Zong L. Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting. Expert Opin. Drug Deliv. 2017 14 10 1141 1144 10.1080/17425247.2017.1372746 28847165
    [Google Scholar]
  10. Burmester G.R. Pope J.E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017 389 10086 2338 2348 10.1016/S0140‑6736(17)31491‑5 28612748
    [Google Scholar]
  11. Crofford L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013 15 S3 Suppl. 3 S2 10.1186/ar4174 24267197
    [Google Scholar]
  12. O’Dell J.R. Treating rheumatoid arthritis early: A window of opportunity? Arthritis Rheum. 2002 46 2 283 285 10.1002/art.10092 11840429
    [Google Scholar]
  13. Smolen J.S. Landewé R.B.M. Bijlsma J.W.J. Burmester G.R. Dougados M. Kerschbaumer A. McInnes I.B. Sepriano A. van Vollenhoven R.F. de Wit M. Aletaha D. Aringer M. Askling J. Balsa A. Boers M. den Broeder A.A. Buch M.H. Buttgereit F. Caporali R. Cardiel M.H. De Cock D. Codreanu C. Cutolo M. Edwards C.J. van Eijk-Hustings Y. Emery P. Finckh A. Gossec L. Gottenberg J.E. Hetland M.L. Huizinga T.W.J. Koloumas M. Li Z. Mariette X. Müller-Ladner U. Mysler E.F. da Silva J.A.P. Poór G. Pope J.E. Rubbert-Roth A. Ruyssen-Witrand A. Saag K.G. Strangfeld A. Takeuchi T. Voshaar M. Westhovens R. van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020 79 6 685 699 10.1136/annrheumdis‑2019‑216655 31969328
    [Google Scholar]
  14. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  15. Useini L. Mojić M. Laube M. Lönnecke P. Dahme J. Sárosi M.B. Mijatović S. Maksimović-Ivanić D. Pietzsch J. Hey-Hawkins E. Carboranyl Analogues of Mefenamic Acid and Their Biological Evaluation. ACS Omega 2022 7 28 24282 24291 10.1021/acsomega.2c01523 35874202
    [Google Scholar]
  16. Kruk K. Winnicka K. Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar. Drugs 2022 21 1 11 10.3390/md21010011 36662184
    [Google Scholar]
  17. Singh D. Pradhan M. Nag M. Singh M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol. 2015 43 4 282 290 10.3109/21691401.2014.883401 24564350
    [Google Scholar]
  18. Richard C. Cassel S. Blanzat M. Vesicular systems for dermal and transdermal drug delivery. RSC Advances 2021 11 1 442 451 10.1039/D0RA09561C 35423006
    [Google Scholar]
  19. Liu P. Chen G. Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  20. Chemin K. Gerstner C. Malmström V. Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation—Lessons From Rheumatoid Arthritis. Front. Immunol. 2019 10 353 10.3389/fimmu.2019.00353 30915067
    [Google Scholar]
  21. Wang Q. Sun X. Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomater. Sci. 2017 5 8 1407 1420 10.1039/C7BM00254H 28631779
    [Google Scholar]
  22. Jang S. Kwon E.J. Lee J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022 23 2 905 10.3390/ijms23020905 35055087
    [Google Scholar]
  23. Alivernini S. MacDonald L. Elmesmari A. Finlay S. Tolusso B. Gigante M.R. Petricca L. Di Mario C. Bui L. Perniola S. Attar M. Gessi M. Fedele A.L. Chilaka S. Somma D. Sansom S.N. Filer A. McSharry C. Millar N.L. Kirschner K. Nerviani A. Lewis M.J. Pitzalis C. Clark A.R. Ferraccioli G. Udalova I. Buckley C.D. Gremese E. McInnes I.B. Otto T.D. Kurowska-Stolarska M. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 2020 26 8 1295 1306 10.1038/s41591‑020‑0939‑8 32601335
    [Google Scholar]
  24. Ishiguro N. Moriyama M. Furusho K. Furukawa S. Shibata T. Murakami Y. Chinju A. Haque A.S.M.R. Gion Y. Ohta M. Maehara T. Tanaka A. Yamauchi M. Sakamoto M. Mochizuki K. Ono Y. Hayashida J.N. Sato Y. Kiyoshima T. Yamamoto H. Miyake K. Nakamura S. Activated M2 Macrophages Contribute to the Pathogenesis of IgG4‐Related Disease via Toll‐like Receptor 7/Interleukin‐33 Signaling. Arthritis Rheumatol. 2020 72 1 166 178 10.1002/art.41052 31339007
    [Google Scholar]
  25. Jiang C. Zhu W. Xu J. Wang B. Hou W. Zhang R. Zhong N. Ning Q. Han Y. Yu H. Sun J. Meng L. Lu S. MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res. Ther. 2014 16 1 R9 10.1186/ar4435 24423102
    [Google Scholar]
  26. Wehr P. Purvis H. Law S-C. Thomas R. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin. Exp. Immunol. 2019 196 1 12 27 10.1111/cei.13256 30589082
    [Google Scholar]
  27. O’Neil L.J. Kaplan M.J. Neutrophils in Rheumatoid Arthritis: Breaking Immune Tolerance and Fueling Disease. Trends Mol. Med. 2019 25 3 215 227 10.1016/j.molmed.2018.12.008 30709614
    [Google Scholar]
  28. Xu H. Chen F. Liu T. Xu J. Li J. Jiang L. Wang X. Sheng J. Ellagic acid blocks RANKL–RANK interaction and suppresses RANKL-induced osteoclastogenesis by inhibiting RANK signaling pathways. Chem. Biol. Interact. 2020 331 109235 10.1016/j.cbi.2020.109235 32971123
    [Google Scholar]
  29. Fang Q. Zhou C. Nandakumar K.S. Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators Inflamm. 2020 2020 1 20 10.1155/2020/3830212 32256192
    [Google Scholar]
  30. So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int. Immunol. 2022 34 1 7 20 10.1093/intimm/dxab058 34453532
    [Google Scholar]
  31. Hassine H.B. Zemni R. Nacef I.B. Boumiza A. Slama F. Baccouche K. Amri N. Melayah S. Shakoor Z. Almogren A. Bouajina E. Sghiri R. A TRAF6 genetic variant is associated with low bone mineral density in rheumatoid arthritis. Clin. Rheumatol. 2019 38 4 1067 1074 10.1007/s10067‑018‑4362‑1 30506403
    [Google Scholar]
  32. Koziolová E. Venclíková K. Etrych T. Polymer-drug conjugates in inflammation treatment. Physiol. Res. 2018 67 Suppl. 2 S281 S292 10.33549/physiolres.933977 30379550
    [Google Scholar]
  33. Yu S. Lu Y. Zong M. Tan Q. Fan L. Hypoxia-induced miR-191-C/EBPβ signaling regulates cell proliferation and apoptosis of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res. Ther. 2019 21 1 78 10.1186/s13075‑019‑1861‑7 30894209
    [Google Scholar]
  34. Wang Y. Wu H. Deng R. Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur. J. Pharmacol. 2021 910 174500 10.1016/j.ejphar.2021.174500 34509462
    [Google Scholar]
  35. O’Brien M.J. Shu Q. Stinson W.A. Tsou P.S. Ruth J.H. Isozaki T. Campbell P.L. Ohara R.A. Koch A.E. Fox D.A. Amin M.A. A unique role for galectin-9 in angiogenesis and inflammatory arthritis. Arthritis Res. Ther. 2018 20 1 31 10.1186/s13075‑018‑1519‑x 29433546
    [Google Scholar]
  36. Ma S. Wang J. Lin J. Jin S. He F. Mei J. Zhang H. Wang S. Li Q. Survivin promotes rheumatoid arthritis fibroblast‐like synoviocyte cell proliferation, and the expression of angiogenesis‐related proteins by activating the NOTCH pathway. Int. J. Rheum. Dis. 2021 24 7 922 929 10.1111/1756‑185X.14150 34096679
    [Google Scholar]
  37. Avouac J. Pezet S. Vandebeuque E. Orvain C. Gonzalez V. Marin G. Mouterde G. Daïen C. Allanore Y. Semaphorins: From Angiogenesis to Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol. 2021 73 9 1579 1588 10.1002/art.41701 33605067
    [Google Scholar]
  38. Riemann A. Wußling H. Loppnow H. Fu H. Reime S. Thews O. Acidosis differently modulates the inflammatory program in monocytes and macrophages. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 1 72 81 10.1016/j.bbadis.2015.10.017 26499398
    [Google Scholar]
  39. Lee K.X. Shameli K. Yew Y.P. Teow S.Y. Jahangirian H. Rafiee-Moghaddam R. Webster T. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int. J. Nanomedicine 2020 15 275 300 10.2147/IJN.S233789 32021180
    [Google Scholar]
  40. Merisko-Liversidge E.M. Liversidge G.G. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol. Pathol. 2008 36 1 43 48 10.1177/0192623307310946 18337220
    [Google Scholar]
  41. Zeng Y. Nixon R.L. Liu W. Wang R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials 2021 268 120560 10.1016/j.biomaterials.2020.120560 33285441
    [Google Scholar]
  42. Mudshinge S.R. Deore A.B. Patil S. Bhalgat C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J. 2011 19 3 129 141 10.1016/j.jsps.2011.04.001 23960751
    [Google Scholar]
  43. Bellefroid C. Lechanteur A. Evrard B. Mottet D. Debacq-Chainiaux F. Piel G. In vitro skin penetration enhancement techniques: A combined approach of ethosomes and microneedles. Int. J. Pharm. 2019 572 118793 10.1016/j.ijpharm.2019.118793 31715350
    [Google Scholar]
  44. Sun T. Zhang Y.S. Pang B. Hyun D.C. Yang M. Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014 53 46 12320 12364 10.1002/anie.201403036 25294565
    [Google Scholar]
  45. Jha S. Sharma P.K. Malviya R. Liposomal drug delivery system for cancer therapy: advancement and patents. Recent Pat. Drug Deliv. Formul. 2016 10 3 177 183 10.2174/1872211310666161004155757 27712569
    [Google Scholar]
  46. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  47. Noble G.T. Stefanick J.F. Ashley J.D. Kiziltepe T. Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014 32 1 32 45 10.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  48. Hafner A. Lovrić J. Lakoš G.P. Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int. J. Nanomedicine 2014 9 1005 1023 24600222
    [Google Scholar]
  49. McClements D.J. Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011 51 4 285 330 10.1080/10408398.2011.559558 21432697
    [Google Scholar]
  50. Chen T. Gong T. Zhao T. Fu Y. Zhang Z. Gong T. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy. Eur. J. Pharm. Sci. 2018 111 293 302 10.1016/j.ejps.2017.09.041 28966099
    [Google Scholar]
  51. Fathi S. Oyelere A.K. Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med. Chem. 2016 8 17 2091 2112 10.4155/fmc‑2016‑0135 27774793
    [Google Scholar]
  52. Sahoo S.K. Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003 8 24 1112 1120 10.1016/S1359‑6446(03)02903‑9 14678737
    [Google Scholar]
  53. Hattori Y. Hu S. Onishi H. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection. J. Liposome Res. 2020 30 3 235 245 10.1080/08982104.2019.1630643 31185779
    [Google Scholar]
  54. Laouini A. Jaafar-Maalej C. Limayem-Blouza I. Sfar S. Charcosset C. Fessi H. Biotechnology, Preparation, characterization and applications of liposomes: state of the art. Journal of Colloid Science and Biotechnology 2012 1 2 147 168 10.1166/jcsb.2012.1020
    [Google Scholar]
  55. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  56. Mori A. Klibanov A.L. Torchilin V.P. Huang L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM 1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 1991 284 2 263 266 10.1016/0014‑5793(91)80699‑4 2060647
    [Google Scholar]
  57. Tadokoro S. Hirashima N. Utsunomiya-Tate N.J.B. Effect of Complexin II on Membrane Fusion between Liposomes Containing Mast Cell SNARE Proteins. Biol Pharm Bull. 2016 39 3 446 9
    [Google Scholar]
  58. Mare R. Paolino D. Celia C. Molinaro R. Fresta M. Cosco D. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. Int. J. Pharm. 2018 552 1-2 414 421 10.1016/j.ijpharm.2018.10.028 30316001
    [Google Scholar]
  59. 43 Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci., B, Polym. Phys. 2011 49 12 832 864 10.1002/polb.22259 21769165
    [Google Scholar]
  60. Malam Y. Loizidou M. Seifalian A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009 30 11 592 599 10.1016/j.tips.2009.08.004 19837467
    [Google Scholar]
  61. Meka R.R. Venkatesha S.H. Acharya B. Moudgil K.D. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine (Lond.) 2019 14 11 1455 1469 10.2217/nnm‑2018‑0501 30938236
    [Google Scholar]
  62. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  63. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine 2016 11 26
    [Google Scholar]
  64. Romero E. Morilla M. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int. J. Nanomedicine 2013 8 3171 3186 10.2147/IJN.S33048 23986634
    [Google Scholar]
  65. Xie J. Ji Y. Xue W. Ma D. Hu Y. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids Surf. B Biointerfaces 2018 172 323 329 10.1016/j.colsurfb.2018.08.061 30176512
    [Google Scholar]
  66. López-Pinto J.M. González-Rodríguez M.L. Rabasco A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005 298 1 1 12 10.1016/j.ijpharm.2005.02.021 15896932
    [Google Scholar]
  67. Pandey V. Golhani D. Shukla R. Ethosomes: versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug Deliv. 2015 22 8 988 1002 10.3109/10717544.2014.889777 24580572
    [Google Scholar]
  68. Antimisiaris S.G. Mourtas S. Marazioti A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 2018 10 4 218 10.3390/pharmaceutics10040218 30404188
    [Google Scholar]
  69. Haney M.J. Klyachko N.L. Zhao Y. Gupta R. Plotnikova E.G. He Z. Patel T. Piroyan A. Sokolsky M. Kabanov A.V. Batrakova E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015 207 18 30 10.1016/j.jconrel.2015.03.033 25836593
    [Google Scholar]
  70. Yan F. Zhong Z. Wang Y. Feng Y. Mei Z. Li H. Chen X. Cai L. Li C. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J. Nanobiotechnology 2020 18 1 115 10.1186/s12951‑020‑00675‑6 32819405
    [Google Scholar]
  71. Opatha S.A.T. Titapiwatanakun V. Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  72. Natsheh H. Touitou E. Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020 25 13 2959 10.3390/molecules25132959 32605117
    [Google Scholar]
  73. Rane B.R. Gujarathi N.A. Transfersomes and protransfersome: ultradeformable vesicular system. In: Novel Approaches for Drug Delivery IGI Global 2016 149 169
    [Google Scholar]
  74. Reddy Y.K. Sravani A.B. Ravisankar V. Prakash P.R. Reddy Y.S.R. Bhaskar N.V. Transferosomes a novel vesicular carrier for transdermal drug delivery system. J. Innov. Pharm. 2015 2 2 193 208
    [Google Scholar]
  75. Rai S. Pandey V. Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev. Exp. 2017 8 1 1325708 10.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  76. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  77. Mateen S. Zafar A. Moin S. Khan A.Q. Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta 2016 455 161 171 10.1016/j.cca.2016.02.010 26883280
    [Google Scholar]
  78. Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev. 2019 18 11 102397
    [Google Scholar]
  79. Henc I. Kokotkiewicz A. Łuczkiewicz P. Bryl E. Łuczkiewicz M. Witkowski J.M. Naturally occurring xanthone and benzophenone derivatives exert significant anti-proliferative and proapoptotic effects in vitro on synovial fibroblasts and macrophages from rheumatoid arthritis patients. Int. Immunopharmacol. 2017 49 148 154 10.1016/j.intimp.2017.05.034 28587985
    [Google Scholar]
  80. Hill J. Zawia N.H. Fenamates as Potential Therapeutics for Neurodegenerative Disorders. Cells 2021 10 3 702 10.3390/cells10030702 33809987
    [Google Scholar]
  81. Abu-Jaish A. Mecca G. Jum’a S. Thawabteh A. Karaman R. Mefenamic acid prodrugs and codrugs - two decades of development. World J. Pharm. Pharm. Sci. 2015 4 2408 2429
    [Google Scholar]
  82. Sid D. Baitiche M. Elbahri Z. Djerboua F. Boutahala M. Bouaziz Z. Le Borgne M. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and in vitro studies. J. Enzyme Inhib. Med. Chem. 2021 36 1 605 617 10.1080/14756366.2020.1869225 33557644
    [Google Scholar]
  83. Teramoto N. Brading A.F. Ito Y. Multiple effects of mefenamic acid on K + currents in smooth muscle cells from pig proximal urethra. Br. J. Pharmacol. 2003 140 8 1341 1350 10.1038/sj.bjp.0705524 14623761
    [Google Scholar]
  84. Seyyedi R. Talebpour Amiri F. Farzipour S. Mihandoust E. Hosseinimehr S.J. Mefenamic acid as a promising therapeutic medicine against colon cancer in tumor-bearing mice. Med. Oncol. 2022 39 2 18 10.1007/s12032‑021‑01618‑3 34982268
    [Google Scholar]
  85. Puri A. Loomis K. Smith B. Lee J.H. Yavlovich A. Heldman E. Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009 26 6 523 580 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 20402623
    [Google Scholar]
  86. Lee M.K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: in vivo Evidence and Recent Approaches. Pharmaceutics 2020 12 3 264 10.3390/pharmaceutics12030264 32183185
    [Google Scholar]
  87. Acevedo-Fani A. Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog. Lipid Res. 2022 85 101129 10.1016/j.plipres.2021.101129 34710489
    [Google Scholar]
  88. Deshpande P.P. Biswas S. Torchilin V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.) 2013 8 9 1509 1528 10.2217/nnm.13.118 23914966
    [Google Scholar]
  89. Cunha V.R.R. Guilherme V.A. de Paula E. de Araujo D.R. Silva R.O. Medeiros J.V.R. Leite J.R.S.A. Petersen P.A.D. Foldvari M. Petrilli H.M. Constantino V.R.L. Delivery system for mefenamic acid based on the nanocarrier layered double hydroxide: Physicochemical characterization and evaluation of anti-inflammatory and antinociceptive potential. Mater. Sci. Eng. C 2016 58 629 638 10.1016/j.msec.2015.08.037 26478354
    [Google Scholar]
  90. Jarrar Q.B. Hakim M.N. Cheema M.S. Zakaria Z.A. In vitro characterization and in vivo performance of mefenamic acid-sodium diethyldithiocarbamate based liposomes. Braz. J. Pharm. Sci. 2019 55 e17870 10.1590/s2175‑97902019000117870
    [Google Scholar]
  91. Eng N Supraja R Formulation of Mefenamic Acid Loaded Ethosomal Gel by Hot and Cold Methods. Nano Biomedicine and Engineering 2017 9 27 35
    [Google Scholar]
  92. Yadav K.K. Verma N.K. Formulation and evaluation of ethosome (mefenamic acid) using hot method. WJPLS 2018 4 6 208 215
    [Google Scholar]
  93. Supraja R. Sailaja A.K. Formulation of mefenamic acid loaded ethosomal gel by hot and cold methods. Nano Biomed. Eng. 2017 9 1 27 35 10.5101/nbe.v9i1.p27‑35
    [Google Scholar]
  94. Radu A.F. Bungau S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  95. Lin Y.J. Anzaghe M. Schülke S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020 9 4 880 10.3390/cells9040880 32260219
    [Google Scholar]
  96. Littlejohn E.A. Monrad S.U. Early Diagnosis and Treatment of Rheumatoid Arthritis. Prim. Care 2018 45 2 237 255 10.1016/j.pop.2018.02.010 29759122
    [Google Scholar]
  97. Johnson A.G. Quinn D.I. Day R.O. Non‐steroidal anti‐inflammatory drugs. Med. J. Aust. 1995 163 3 155 158 10.5694/j.1326‑5377.1995.tb127972.x 7643770
    [Google Scholar]
  98. Schjerning A.M. McGettigan P. Gislason G. Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat. Rev. Cardiol. 2020 17 9 574 584 10.1038/s41569‑020‑0366‑z 32322101
    [Google Scholar]
  99. Ling S. Bluett J. Barton A. Prediction of response to methotrexate in rheumatoid arthritis. Expert Rev. Clin. Immunol. 2018 14 5 419 429 10.1080/1744666X.2018.1465409 29667454
    [Google Scholar]
  100. Wang W. Zhou H. Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur. J. Med. Chem. 2018 158 502 516 10.1016/j.ejmech.2018.09.027 30243154
    [Google Scholar]
  101. Salliot C. van der Heijde D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann. Rheum. Dis. 2009 68 7 1100 1104 10.1136/ard.2008.093690 19060002
    [Google Scholar]
  102. Sinniah A. Yazid S. Flower R.J. From NSAIDs to Glucocorticoids and Beyond. Cells 2021 10 12 3524 10.3390/cells10123524 34944032
    [Google Scholar]
  103. Sparks J.A. Rheumatoid Arthritis. Ann. Intern. Med. 2019 170 1 ITC1 ITC16 10.7326/AITC201901010 30596879
    [Google Scholar]
  104. Hua C. Buttgereit F. Combe B. Glucocorticoids in rheumatoid arthritis: current status and future studies. RMD Open 2020 6 1 e000536 10.1136/rmdopen‑2017‑000536 31958273
    [Google Scholar]
  105. Strehl C. van der Goes M.C. Bijlsma J.W.J. Jacobs J.W.G. Buttgereit F. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis. Expert Opin. Investig. Drugs 2017 26 2 187 195 10.1080/13543784.2017.1276562 28043173
    [Google Scholar]
  106. Cañete J.D. Hernández M.V. Sanmartí R. Safety profile of biological therapies for treating rheumatoid arthritis. Expert Opin. Biol. Ther. 2017 17 9 1089 1103 10.1080/14712598.2017.1346078 28657381
    [Google Scholar]
  107. Zavvar M. Assadiasl S. Soleimanifar N. Pakdel F.D. Abdolmohammadi K. Fatahi Y. Abdolmaleki M. Baghdadi H. Tayebi L. Nicknam M.H. Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes. J. Cell. Physiol. 2019 234 10 16913 16924 10.1002/jcp.28392 30809802
    [Google Scholar]
  108. Feng N. Guo F. Nanoparticle-siRNA: A potential strategy for rheumatoid arthritis therapy? J. Control. Release 2020 325 380 393 10.1016/j.jconrel.2020.07.006 32653501
    [Google Scholar]
  109. Chang C. Xu L. Zhang R. Jin Y. Jiang P. Wei K. Xu L. Shi Y. Zhao J. Xiong M. Guo S. He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front. Immunol. 2022 13 838884 10.3389/fimmu.2022.838884 35401568
    [Google Scholar]
  110. Song P. Yang C. Thomsen J.S. Dagnæs-Hansen F. Jakobsen M. Brüel A. Deleuran B. Kjems J. Lipidoid-siRNA Nanoparticle-Mediated IL-1β Gene Silencing for Systemic Arthritis Therapy in a Mouse Model. Mol. Ther. 2019 27 8 1424 1435 10.1016/j.ymthe.2019.05.002 31153827
    [Google Scholar]
  111. Sun X. Dong S. Li X. Yu K. Sun F. Lee R.J. Li Y. Teng L. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. Nanomedicine 2019 20 102017 10.1016/j.nano.2019.102017 31128293
    [Google Scholar]
  112. Shrestha S. Zhao J. Yang C. Zhang J. Iguratimod combination therapy compared with methotrexate monotherapy for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Clin. Rheumatol. 2021 40 10 4007 4017 10.1007/s10067‑021‑05746‑z 33914203
    [Google Scholar]
  113. Tang Q. Yin D. Wang Y. Du W. Qin Y. Ding A. Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr. Pharm. Des. 2020 26 17 1994 2008 10.2174/1381612826666200406083756 32250222
    [Google Scholar]
  114. Xiao S. Tang Y. Lv Z. Lin Y. Chen L. Nanomedicine – advantages for their use in rheumatoid arthritis theranostics. J. Control. Release 2019 316 302 316 10.1016/j.jconrel.2019.11.008 31715278
    [Google Scholar]
  115. Acurcio F.A. Machado M.A.A. Moura C.S. Ferre F. Guerra A.A. Jr Andrade E.I.G. Cherchiglia M.L. Rahme E. Medication persistence of disease-modifying antirheumatic drugs and anti-tumor necrosis factor Agents in a cohort of patients with rheumatoid arthritis in Brazil. Arthritis Care Res. (Hoboken) 2016 68 10 1489 1496 10.1002/acr.22840 26814681
    [Google Scholar]
  116. Bird P. Littlejohn G. Butcher B. Smith T. da Fonseca Pereira C. Witcombe D. Griffiths H. Real-world evaluation of effectiveness, persistence, and usage patterns of tofacitinib in treatment of rheumatoid arthritis in Australia. Clin. Rheumatol. 2020 39 9 2545 2551 10.1007/s10067‑020‑05021‑7 32157469
    [Google Scholar]
  117. Chatzidionysiou K. Askling J. Eriksson J. Kristensen L.E. van Vollenhoven R. ARTIS group Effectiveness of TNF inhibitor switch in RA: results from the national Swedish register. Ann. Rheum. Dis. 2015 74 5 890 896 10.1136/annrheumdis‑2013‑204714 24431398
    [Google Scholar]
  118. Choi S. Ghang B. Jeong S. Choi D. Lee J.S. Park S.M. Lee E.Y. Association of first, second, and third-line bDMARDs and tsDMARD with drug survival among seropositive rheumatoid arthritis patients: Cohort study in A real world setting. Semin. Arthritis Rheum. 2021 51 4 685 691 10.1016/j.semarthrit.2021.06.002 34139521
    [Google Scholar]
  119. Curtis J.R. Chakravarty S.D. Black S. Kafka S. Xu S. Langholff W. Parenti D. Greenspan A. Schwartzman S. Incidence of infusion reactions and clinical effectiveness of intravenous golimumab versus infliximab in patients with rheumatoid arthritis: the realworld AWARE study. Rheumatol. Ther. 2021 8 4 1551 1563 10.1007/s40744‑021‑00354‑4 34417735
    [Google Scholar]
  120. Ebina K. Hirano T. Maeda Y. Yamamoto W. Hashimoto M. Murata K. Takeuchi T. Nagai K. Son Y. Amuro H. Onishi A. Jinno S. Hara R. Katayama M. Yamamoto K. Kumanogoh A. Hirao M. Drug retention of secondary biologics or JAK inhibitors after tocilizumab or abatacept failure as first biologics in patients with rheumatoid arthritis -the ANSWER cohort study-. Clin. Rheumatol. 2020 39 9 2563 2572 10.1007/s10067‑020‑05015‑5 32162152
    [Google Scholar]
  121. Gharaibeh M. Bonafede M. McMorrow D. Hernandez E.J.M. Stolshek B.S. Hernandez E.J.M. Effectiveness and costs among rheumatoid arthritis patients treated with targeted immunomodulators using realworld U.S. data. J. Manag. Care Spec. Pharm. 2020 26 8 1039 1049 10.18553/jmcp.2020.26.8.1039 32715967
    [Google Scholar]
  122. Kihara M. Davies R. Kearsley-Fleet L. Watson K.D. Lunt M. Symmons D.P.M. Hyrich K.L. British Society for Rheumatology Biologics Register Use and effectiveness of tocilizumab among patients with rheumatoid arthritis: an observational study from the British Society for Rheumatology Biologics Register for rheumatoid arthritis. Clin. Rheumatol. 2017 36 2 241 250 10.1007/s10067‑016‑3485‑5 27913894
    [Google Scholar]
  123. Lauper K. Nordström D.C. Pavelka K. Hernández M.V. Kvien T.K. Kristianslund E.K. Santos M.J. Rotar Ž. Iannone F. Codreanu C. Lukina G. Gale S.L. Sarsour K. Luder Y. Courvoisier D.S. Gabay C. Comparative effectiveness of tocilizumab versus TNF inhibitors as monotherapy or in combination with conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis after the use of at least one biologic disease-modifying antirheumatic drug: analyses from the pan-European TOCERRA register collaboration. Ann. Rheum. Dis. 2018 77 9 1276 1282 10.1136/annrheumdis‑2017‑212845 29730637
    [Google Scholar]
  124. Li K.J. Chang C.L. Hsin C.Y. Tang C.H. Switching and discontinuation pattern of biologic disease-modifying antirheumatic drugs and tofacitinib for patients with rheumatoid arthritis in taiwan. Front. Pharmacol. 2021 12 628548 10.3389/fphar.2021.628548 34366836
    [Google Scholar]
  125. Neovius M. Arkema E.V. Olsson H. Eriksson J.K. Kristensen L.E. Simard J.F. Askling J. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann. Rheum. Dis. 2015 74 2 354 360 10.1136/annrheumdis‑2013‑204128 24285495
    [Google Scholar]
  126. Pappas D.A. St John G. Etzel C.J. Fiore S. Blachley T. Kimura T. Punekar R. Emeanuru K. Choi J. Boklage S. Kremer J.M. Comparative effectiveness of first-line tumour necrosis factor inhibitor versus non-tumour necrosis factor inhibitor biologics and targeted synthetic agents in patients with rheumatoid arthritis: results from a large US registry study. Ann. Rheum. Dis. 2021 b 80 1 96 102 10.1136/annrheumdis‑2020‑217209 32719038
    [Google Scholar]
  127. Rahman P. Baer P. Keystone E. Choquette D. Thorne C. Haraoui B. Chow A. Faraawi R. Olszynski W. Kelsall J. Rampakakis E. Lehman A.J. Nantel F. Long-term effectiveness and safety of infliximab, golimumab and golimumab-IV in rheumatoid arthritis patients from a Canadian prospective observational registry. BMC Rheumatol. 2020 4 1 46 10.1186/s41927‑020‑00145‑4 32968710
    [Google Scholar]
  128. Silvagni E. Bortoluzzi A. Carrara G. Zanetti A. Govoni M. Scirè C.A. Comparative effectiveness of first-line biological monotherapy use in rheumatoid arthritis: a retrospective analysis of the RECord-linkage On Rheumatic Diseases study on health care administrative databases. BMJ Open 2018 8 9 e021447 10.1136/bmjopen‑2017‑021447 30206082
    [Google Scholar]
  129. Youssef P. Marcal B. Button P. Truman M. Bird P. Griffiths H. Roberts L. Tymms K. Littlejohn G. Reasons for biologic and targeted synthetic disease-modifying antirheumatic drug cessation and persistence of second-line treatment in a rheumatoid arthritis dataset. J. Rheumatol. 2020 47 8 1174 1181 10.3899/jrheum.190535 31787605
    [Google Scholar]
  130. Yun H. Xie F. Delzell E. Levitan E.B. Chen L. Lewis J.D. Saag K.G. Beukelman T. Winthrop K.L. Baddley J.W. Curtis J.R. Comparative risk of hospitalized infection associated with biologic agents in rheumatoid arthritis patients enrolled in medicare. Arthritis Rheumatol. 2016 68 1 56 66 10.1002/art.39399 26315675
    [Google Scholar]
  131. Bullock J. Rizvi S.A.A. Saleh A.M. Ahmed S.S. Do D.P. Ansari R.A. Ahmed J. Rheumatoid arthritis: a brief overview of the treatment. Med. Princ. Pract. 2018 27 6 501 507 10.1159/000493390 30173215
    [Google Scholar]
  132. Mohanty S. Panda S. Bhanja A. Pal A. Chandra S.S. Chandra Si, Novel drug delivery systems for rheumatoid arthritis: an approach to better patient compliance. Biomed. Pharmacol. J. 2019 12 1 157 170 10.13005/bpj/1624
    [Google Scholar]
  133. Singh J.A. Saag K.G. Bridges S.L. Jr Akl E.A. Bannuru R.R. Sullivan M.C. Vaysbrot E. McNaughton C. Osani M. Shmerling R.H. Curtis J.R. Furst D.E. Parks D. Kavanaugh A. O’Dell J. King C. Leong A. Matteson E.L. Schousboe J.T. Drevlow B. Ginsberg S. Grober J. St Clair E.W. Tindall E. Miller A.S. McAlindon T. American college of rheumatology guideline for the treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016 68 1 1 26 10.1002/art.39480 26545940
    [Google Scholar]
  134. Smolen JS. Landewé RBM. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023 82 1 3 18
    [Google Scholar]
  135. Guo Q. Wang Y. Xu D. Nossent J. Pavlos N.J. Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018 6 1 15 10.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  136. Soeken K.L. Miller S.A. Ernst E. Herbal medicines for the treatment of rheumatoid arthritis: a systematic review. Br. J. Rheumatol. 2003 42 5 652 659 10.1093/rheumatology/keg183 12709541
    [Google Scholar]
  137. Quan L.D. Thiele G.M. Tian J. Wang D. The development of novel therapies for rheumatoid arthritis. Expert Opin. Ther. Pat. 2008 18 7 723 738 10.1517/13543776.18.7.723
    [Google Scholar]
  138. Garg N.K. Tyagi R.K. Sharma G. Jain A. Singh B. Jain S. Katare O.P. Functionalized lipid-polymer hybrid nanoparticles mediated codelivery of methotrexate and aceclofenac: a synergistic effect in breast cancer with improved pharmacokinetics attributes. Mol. Pharm. 2017 14 6 1883 1897 10.1021/acs.molpharmaceut.6b01148 28402673
    [Google Scholar]
  139. Kwiatkowska B. Majdan M. Mastalerz-Migas A. Niewada M. Skrzydło-Radomańska B. Mamcarz A. Status of etoricoxib in the treatment of rheumatic diseases. Expert panel opinion. Reumatologia 2017 55 6 290 297 10.5114/reum.2017.72626 29491537
    [Google Scholar]
  140. Khurana S. Bedi P.M.S. Jain N.K. Development of nanostructured lipid carriers for controlled delivery of mefenamic acid. Int. J. Biomed. Nanosci. Nanotechnol. 2012 2 3/4 232 250 10.1504/IJBNN.2012.051218
    [Google Scholar]
  141. Wongrakpanich S. Wongrakpanich A. Melhado K. Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018 9 1 143 150 10.14336/AD.2017.0306 29392089
    [Google Scholar]
  142. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002 96 1 23 43
    [Google Scholar]
  143. van den Hoven J.M. Van Tomme S.R. Metselaar J.M. Nuijen B. Beijnen J.H. Storm G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm. 2011 8 4 1002 1015 10.1021/mp2000742 21634436
    [Google Scholar]
  144. Siamak M. Moghadam-Kia1, Victoria P. Werth, Prevention and treatment of systemic glucocorticoid side effects. Int. J. Dermatol. 2010 ••• 239 248
    [Google Scholar]
  145. Baschant U. Lane N.E. Tuckermann J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat. Rev. Rheumatol. 2012 8 11 645 655 10.1038/nrrheum.2012.166 23045254
    [Google Scholar]
  146. Köhler B.M. Günther J. Kaudewitz D. Lorenz H.M. Current Therapeutic Options in the Treatment of Rheumatoid Arthritis. J. Clin. Med. 2019 8 7 938 10.3390/jcm8070938 31261785
    [Google Scholar]
  147. Ha Y.J. Lee S.M. Mun C.H. Kim H.J. Bae Y. Lim J.H. Park K.H. Lee S.K. Yoo K.H. Park Y.B. Methotrexate-loaded multifunctional nanoparticles with near-infrared irradiation for the treatment of rheumatoid arthritis. Arthritis Res. Ther. 2020 22 1 146 10.1186/s13075‑020‑02230‑y 32552859
    [Google Scholar]
  148. Moalla M. AB0392 association between fcgriia R131H, FCGRIIIA NA1/NA2 AND FCGRIIIB V158F polymorphism and responsiveness to biologics in rheumatoid arthritis tunisian patients. Annals of the Rheumatic Diseases 2019 78 S2 1656
    [Google Scholar]
  149. Pirmardvand Chegini S. Varshosaz J. Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif. Cells, Nanomed. Biotechnol. 2018 46 2 502 514
    [Google Scholar]
  150. Krishnan Y. Mukundan S. Akhil S. Gupta S. Viswanad V. Enhanced lymphatic uptake of leflunomide loaded nanolipid carrier via chylomicron formation for the treatment of rheumatoid arthritis. Adv. Pharm. Bull. 2018 8 2 257 265 10.15171/apb.2018.030 30023327
    [Google Scholar]
  151. Janakiraman K. Krishnaswami V. Rajendran V. Natesan S. Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater. Today Commun. 2018 17 200 213 10.1016/j.mtcomm.2018.09.011 32289062
    [Google Scholar]
  152. Yang Q. Wu S. Mao X. Wang W. Tai H. Inhibition effect of curcumin on TNF-α and MMP-13 expression induced by advanced glycation end products in chondrocytes. Pharmacology 2013 91 1-2 77 85 10.1159/000345345 23183190
    [Google Scholar]
  153. White P.T. Subramanian C. Motiwala H.F. Cohen M.S. Natural Withanolides in the Treatment of Chronic Diseases. Adv Exp Med Biol. 2016 928 329 373
    [Google Scholar]
  154. Yang M. Feng X. Ding J. Chang F. Chen X. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017 252 108 124 10.1016/j.jconrel.2017.02.032 28257989
    [Google Scholar]
  155. Shaji J. Lal M. Nanocarriers for targeting in inflammation. Asian J. Pharm. Clin. Res. 2013 6 Suppl. 3 3 12
    [Google Scholar]
  156. Cryer B. Goldstein J.L. Gastrointestinal injury associated with NSAID use: a case study and review of risk factors and preventative strategies. Drug Healthc Patient Saf. 2015 7 31 41
    [Google Scholar]
  157. Musa D. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust Prescr. 2017 40 3 91 93
    [Google Scholar]
  158. Higaki M. Ishihara T. Izumo N. Takatsu M. Mizushima Y. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 2005 64 8 1132 1136 10.1136/ard.2004.030759 15695536
    [Google Scholar]
  159. Liu M. Dong J. Yang Y. Yang X. Xu H. Anti-inflammatory effects of triptolide loaded poly(d,l-lactic acid) nanoparticles on adjuvant-induced arthritis in rats. J. Ethnopharmacol. 2005 97 2 219 225 10.1016/j.jep.2004.10.031 15707756
    [Google Scholar]
  160. Marengo MF. Suarez-Almazor ME. Improving treatment adherence in patients with rheumatoid arthritis: what are the options? Int J Clin Rheumtol. 2015 10 5 345 356
    [Google Scholar]
  161. Curry E.J. Rogers M.J. Henry M. Smith E.L. Efficacy and Treatment Response of Intra-articular Corticosteroid Injections in Patients With Symptomatic Knee Osteoarthritis. J Am Acad Orthop Surg. 2017 25 10 703 714
    [Google Scholar]
  162. Wang Y. Thakur R. Fan Q. Michniak B. Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Eur. J. Pharm. Biopharm. 2005 60 2 179 191 10.1016/j.ejpb.2004.12.008 15939232
    [Google Scholar]
  163. Bharkatiya M. Nema R.K. Skin penetration enhancement techniques. J. Young Pharm. 2009 1 2 110 10.4103/0975‑1483.55741
    [Google Scholar]
  164. Giri Nandagopal M.S. Antony R. Rangabhashiyam S. Sreekumar N. Selvaraju N. Overview of microneedle system: a third generation transdermal drug delivery approach. Microsyst. Technol. 2014 20 7 1249 1272 10.1007/s00542‑014‑2233‑5
    [Google Scholar]
  165. Akhtar N. Singh V. Yusuf M. Khan R.A. Khan R.A. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomedical Engineering/Biomedizinische Technik 2020 65 3 243 272 10.1515/bmt‑2019‑0019 31926064
    [Google Scholar]
  166. Bhargava T. Ramchandani U. Shrivastava S.K. Dubey P.K. Current trends in ndds with special reference to NSAIDs. Int. J. Pharma Bio Sci. 2011 2 1 92 114
    [Google Scholar]
  167. Yuan F. Quan L. Cui L. Goldring S.R. Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012 64 12 1205 1219 10.1016/j.addr.2012.03.006 22433784
    [Google Scholar]
  168. Sahoo SK. Parveen S. Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007 3 1 20 31
    [Google Scholar]
  169. Kumar A. Jena P.K. Behera S. Lockey R.F. PEGylated nanoparticles in cancer therapy: a review. J. Drug Deliv. Sci. Technol. 2019 52 617 631
    [Google Scholar]
  170. Li X. Zhang Y. Ding J. Yin J. Effects of meloxicam-loaded nanoparticles on chondrocytes. Int. J. Nanomedicine 2018 13 1033 1045
    [Google Scholar]
  171. Gupta V. Singh S. Aggarwal N. Nanocarriers in cancer chemotherapy: development and future prospects. Artif. Cells Nanomed. Biotechnol. 2021 49 1 158 172 35112624
    [Google Scholar]
  172. Patel N.R. Pattani V.P. Tunnell J.W. Torchilin V.P. Nanoparticle delivery systems for photodynamic therapy. Nanomedicine 2022 18 13 22
    [Google Scholar]
  173. Singh A. Liposome-encapsulated mefenamic acid for targeted delivery to inflamed joints in rheumatoid arthritis. J. Drug Deliv. Sci. Technol. 2018 45 123 130
    [Google Scholar]
  174. Patel R. pH-sensitive liposomes for the targeted delivery of mefenamic acid in rheumatoid arthritis. Int. J. Pharm. 2020 578 119 127
    [Google Scholar]
  175. Gupta P. Sustained release of mefenamic acid using PLGA nanoparticles in a rat model of rheumatoid arthritis. Drug Dev. Ind. Pharm. 2019 45 3 403 411
    [Google Scholar]
  176. Kumar V. Chitosan nanoparticles for enhanced delivery of mefenamic acid in rheumatoid arthritis. J. Nanomed. Nanotechnol. 2021 12 2 578 585
    [Google Scholar]
  177. Sharma S. Solid lipid nanoparticles for improved bioavailability and anti-inflammatory efficacy of mefenamic acid. Eur. J. Pharm. Sci. 2020 144 105 114
    [Google Scholar]
  178. Verma A. Co-delivery of mefenamic acid and methotrexate using solid lipid nanoparticles for rheumatoid arthritis treatment. J. Control. Release 2022 341 95 105
    [Google Scholar]
  179. Liu Y. PAMAM dendrimers for the delivery of mefenamic acid in rheumatoid arthritis. Nanomedicine 2017 13 2 389 398
    [Google Scholar]
  180. Zhang X. Glycodendrimers for targeted delivery of mefenamic acid to macrophages in rheumatoid arthritis. Bioconjug. Chem. 2019 30 5 1292 1301
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615305113240925101555
Loading
/content/journals/cnm/10.2174/0124054615305113240925101555
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nanoparticle ; Rheumatoid arthritis ; drug delivery ; inorganic NPs ; inflammation ; organic NPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test